Germany [2005]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear Power Policy in China and Germany-A Comparative Case Study After Fukushima
1 Nuclear Power Policy in China and Germany-A Comparative Case Study after Fukushima Draft paper by Sheng, Chunhong FFU ([email protected]) [Abstract]Nuclear power is a controversial topic surrounding by science and politics, is it an evidence for sustainable development? The different nuclear power policies in China and Germany provided a vivid picture. China has published the medium and long-term nuclear power developing plan (2005-2020) which in the name of engaging sustainable development, climate change policies and clean energy policies. While Germany just made a decision to phase out nuclear power by 2022 after the Fukushima event and was praised for the sustainable development and renewable policies. It is interesting to look at the scientific and political framework for the different polices in these two countries after Fukushima. My paper will use discourse theory, which will analyze academic, scientific works, governmental documents and different news resources to examine how they legitimate for their different nuclear policies in their countries and how these polices got passed in the decision-making process, especially after the Fukushima nuclear event. Then the paper will explain what lead to these different policies in the two different country contexts. The interaction and relations between science and politics in these two countries will be studied. Not only the interests and powers behind scientific research undermined the objective of scientific evidence, but also the uncertainty of scientific or unclear of cause and effects greatly reduced the power of science in politics. The process of policy-making including scientific evidence for sustainable development is greatly influenced by politics. -
This Article Was Published in an Elsevier Journal. the Attached Copy
This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Progress in Nuclear Energy 49 (2007) 365e374 www.elsevier.com/locate/pnucene Review Permanent underground repositories for radioactive waste Norbert T. Rempe* 1403 N. Country Club Circle, Carlsbad, NM 88220, USA Abstract Solid radioactive waste first entered a deep geologic repository in 1959. Liquid radioactive waste has been injected into confined underground reservoirs since 1963. Solid wastes containing chemically toxic constituents with infinite half lives have been isolated underground since 1972. Performance to date of these and other repositories has not caused any of their owners and operators to transfer or contemplate transferring the waste confined in them to presumably safer locations. Natural and engineered analogues offer sound evidence that deep geologic isolation is effective, safe, and compatible with responsible environmental stewardship. Underground isolation of dangerous, including radioactive, wastes is therefore increasingly being used as a safe and reliable method of final disposal. Ó 2007 Elsevier Ltd. All rights reserved. -
Realization of the German Repository Concept - Current Status and Future Prospects
WM'99 CONFERENCE, FEBRUARY 28 - MARCH 4, 1999 REALIZATION OF THE GERMAN REPOSITORY CONCEPT - CURRENT STATUS AND FUTURE PROSPECTS - Peter W. Brennecke/Helmut Röthemeyer/Bruno R. Thomauske Bundesamt für Strahlenschutz (BfS) Salzgitter, Germany ABSTRACT Since the early sixties, the radioactive waste disposal policy in the Federal Republic of Germany has been based on the decision that all types of radioactive waste are to be disposed of in deep geological formations. According to the 1979 German radioactive waste management and disposal concept the Gorleben salt dome is investigated to decide upon its suitability to host a repository for all types of radioactive waste. In addition, the licensing procedure for the Konrad repository project has practically been finished, i.e. a decision could be taken. Since German unification on October 03, 1990, the Morsleben repository has to be considered, too. From January 1994 through September 1998 short-lived low and intermediate level radioactive waste with alpha emitter concentrations up to 4,0 · 108 Bq/m3 was disposed of in this facility. On September 27, 1998, federal elections took place in Germany. As a result, a coalition of the Social Democrats and the Greens has come into power. Based on the coalition agreement of October 20, 1998, nuclear energy is intended to be phased out in Germany. Thus, the new radioactive waste management policy comprises important disposal-related alterations and changes. INTRODUCTION The status and future prospects of the Morsleben repository as well as the Konrad and Gorleben repository projects are strongly influenced by technical, legal and political aspects. At present, due to the decrease of radioactive waste amounts to be emplaced in a repository, there is no time pressure for the disposal of wastes. -
Geophysical Methods to Detect Tunnelling at a Geological Repository Site Applicability in Safeguards
#2008207/ APRIL 2021 Geophysical methods to detect tunnelling at a geological repository site Applicability in safeguards Heikkinen Eero (AFRY) Radiation and Nuclear Safety Authority Report #2008207 Nuclear Waste and Material Regulation Heikkinen Eero (AFRY) April 6, 2021 Contents ABSTRACT ......................................................................................................................................................................................... 1 PREFAFE ............................................................................................................................................................................................ 3 1 Introduction ............................................................................................................................................................................ 5 1.1 Nuclear safeguards to geological disposal ........................................................................................................ 5 1.2 Monitoring for long term nuclear safety ........................................................................................................... 9 1.3 Active geophysical surveys .................................................................................................................................. 10 1.4 Olkiluoto spent nuclear fuel repository .......................................................................................................... 13 2 Possibilities to detect an undeclared activity ....................................................................................................... -
Underground Waste Disposal Authors: Kemal Yildizdag & Prof
Underground waste disposal Authors: Kemal Yildizdag & Prof. Dr. habil. Heinz Konietzky (TU Bergakademie Freiberg, Geotechnical Institute) 1 Introduction to underground waste disposal ........................................................ 2 1.1 Radioactivity and radioactive waste types ..................................................... 2 1.2 Management, disposal and storage of radioactive wastes ............................ 5 2 Worldwide laws/regulations, applications and repositories .................................. 9 2.1 Repository design, multi-barrier concept & FEPs .......................................... 9 2.2 Host rocks for disposal and storage of radioactive wastes .......................... 13 2.3 Recent disposal and repository operations in Germany and worldwide ...... 18 3 Geotechnical aspects ........................................................................................ 21 3.1 Geotechnical terms and definitions concerning undergr. waste disposals ... 21 3.2 Geotechnical computations, experiments and measurements concerning underground waste disposals ............................................................................... 23 4 References ........................................................................................................ 32 5 Appendix ........................................................................................................... 37 Editor: Prof. Dr.-Ing. habil. Heinz Konietzky Layout: Angela Griebsch, Gunther Lüttschwager TU Bergakademie Freiberg, Institut für Geotechnik, -
Impact of Climate Change on Far-Field and Biosphere Processes for a HLW
Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Impact of climate change on far-fi eld and biosphere processes for a HLW-repository in rock salt GRS - 241 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Impact of climate change on far-fi eld and bisophere processes for a HLW-repository in rock salt Ulrich Noseck Christine Fahrenholz Eckhard Fein Judith Flügge Gerhard Pröhl Anke Schneider März 2009 Remark: This report, with the German title „Wissenschaftliche Grundlagen zum Nachweis der Langzeitsicherheit von Endlagern (Kurztitel WiGru5)“, was prepared under the contract No. 02 E 9954 with the Federal Ministry of Economics and Technology (BMWi). The work was conducted by the Ge- sellschaft für Anlagen- und Reaktor- sicherheit (GRS) mbH. The authors are responsible for the content of this report. GRS - 241 ISBN 978-3-939355-15-1 Keywords: biosphere, climate, climate change, glacial, hydrogeology, interglacial, permafrost, radioactive waste, safety assessment, transport Preface The assessment of the long-term safety of a repository for radioactive or hazardous waste requires a comprehensive system understanding and capable and qualified numerical tools. All relevant processes which contribute to mobilisation and release of contaminants from the repository, transport through the host rock and adjacent rock formations as well as exposition in the biosphere have to be implemented in the programme package. The objective of the project “Scientific basis for the assessment of the long-term safety of repositories”, identification number 02 E 9954, was to follow national and international developments in this area, to evaluate research projects, which contribute to knowledge, model approaches and data, and to perform specific investigations to improve the methodologies of the long-term safety assessment. -
Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer
Final Report Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer Prepared by Steven C. Young, Ph.D., P.E., P.G. Tom Ewing, Ph.D., P.G Scott Hamlin, Ph.D., P.G. Ernie Baker, P.G. Daniel Lupton Prepared for: Texas Water Development Board P.O. Box 13231, Capitol Station Austin, Texas 78711-3231 June 2012 Texas Water Development Board Final Report Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer Steven C. Young, Ph.D., P.E., P.G. Daniel Lupton INTERA Incorporated Tom Ewing, Ph.D., P.G. Frontera Exploration Consultants Scot Hamlin, Ph.D., P.G Ernie Baker, P.G. June 2012 This page is intentionally blank. ii Final Report – Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer Table of Contents Executive Summary ..................................................................................................................... xiii 1.0 Introduction ........................................................................................................................ 1-1 1.1 Approach for Defining Stratigraphy ......................................................................... 1-2 1.2 Approach for Defining Lithology and Generating Sand Maps ................................ 1-3 2.0 Gulf Coast Aquifer Geologic Setting ................................................................................. 2-1 2.1 Overview ................................................................................................................... 2-1 -
Communication on the Safety Case for a Deep Geological Repository
Radioactive Waste Management 2017 Communication on the Safety Case for a Deep Geological Repository Communication on the Safety Case for a Deep Geological Repository NEA Radioactive Waste Management Communication on the Safety Case for a Deep Geological Repository © OECD 2017 NEA No. 7336 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 35 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Commission takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. This work is published on the responsibility of the Secretary-General of the OECD. NUCLEAR ENERGY AGENCY The OECD Nuclear Energy Agency (NEA) was established on 1 February 1958. -
Jahresbericht
jahresbericht Bundesamt für Strahlenschutz Fukushima und die Folgen Neue Stromtrassen quer durch Deutschland Auf der Suche – Entsorgung radioaktiver Abfälle in Deutschland | Verantwortung für Mensch und Umwelt | Titelfoto: Michael Janssen / Photocase.de Impressum Herausgeber: Bundesamt für Strahlenschutz Postfach 10 01 49 D-38201 Salzgitter Telefon: +49 (0)3018 333-0 Telefax: +49 (0)3018 333-1885 E-Mail: [email protected] Internet: www.bfs.de Redaktion: Lutz Ebermann Gestaltung: Quermedia Querallee 38 34119 Kassel Druck: MAREIS DRUCK GmbH Zeissstraße 8 89264 Weißenhorn Fotos: BfS und genannte Quellen Bundesamt für Strahlenschutz (2012) jahresbericht Bundesamt für Strahlenschutz jahresbericht Seite 9 Fukushima und die Folgen Am 11. März 2011 ereignete sich vor der Nordost- küste der japanischen Hauptinsel Honshu ein schweres Erdbeben mit nachfolgendem Tsunami. Im unmittelbaren Einwirkungsbereich dieser Na- turkatastrophe lagen 15 der insgesamt 54 japa- nischen Reaktoren. Der Beitrag geht ein auf Unfallablauf und -ursachen und gibt einen ersten Überblick über die Freisetzungen radioaktiver Stoffe und die Folgen in der Umgebung der Anlage für die Bevölkerung in und außerhalb von Japan. 97 Weitere ARBEITSSCHWerPUNKte DES bFs 97 "Sonne - Aber sicher!" - Das BfS engagiert sich für Hautkrebsprävention 101 Lungenkrebs-Früherkennung mittels Computertomographie 102 Berufliche Strahlenbelastung in der Medizin 103 Strahlenschutz beim Aufbau des digitalen Behördenfunks in Deutschland 106 Bedeutung von Ringversuchen für die Überwachung inkorporierter radioaktiver -
Germany 298 Germany Germany
GERMANY 298 GERMANY GERMANY 1. GENERAL INFORMATION 1.1. General Overview The Federal Republic of Germany is situated in central Europe, in the north bordering on the North Sea, Denmark, and the Baltic Sea; in the east on Poland and the Czech Republic; in the south on Austria and Switzerland; and in the west on France, Luxembourg, Belgium, and the Netherlands. The climate is moderate and influenced by winds from the West, the eastern part has more continental character. In the lowlands of the northern part the average July temperature is 16 - 18°C, the average precipitation amounting to 600-750 mm per annum. Half of the territory is used for agricultural purpose, one third is covered by woods, settlements and traffic area take 12 %. As a result of World War II Germany was split. Until 1990 two parts named Germany existed, the Federal Republic of Germany (FRG - Bundesrepublik Deutschland, named West Germany) and the German Democratic Republic (GDR - Deutsche Demokratische Republik , known as East Germany). In October 1990, the GDR joined West Germany. After the reunification Berlin again became capital of Germany. Part of the government, however, still remains in the former (provisional) capital Bonn. Area and population development is shown in Table 1. TABLE 1. POPULATION INFORMATION Growth rate (%) 1980 1960 1970 1980 1990 1996 1997 1998 to 1998 Population (millions) 55.4 60.7 61.6 63.3 82.0 82.1 82.0 1.6 (17.2)* (17.1) (16.7) (16.1) Population density (inhabitants/km²) 223 244 247 254 229 230 230 -0.4 (159) (158) (154) (149) Urban population (>5000 inh.) in 1996 as percent of total 82.4 Area (1000 km²) 357.0 * Numbers in brackets refer to former GDR data Source: IAEA Energy and Economic Database; Country Information. -
Nuclear Power in Germany, 1945 to the Present
Social History ISSN: 0307-1022 (Print) 1470-1200 (Online) Journal homepage: https://www.tandfonline.com/loi/rshi20 Taking on Technocracy: nuclear power in Germany, 1945 to the present Per Högselius To cite this article: Per Högselius (2019) Taking on Technocracy: nuclear power in Germany, 1945 to the present, Social History, 44:2, 269-271, DOI: 10.1080/03071022.2019.1583870 To link to this article: https://doi.org/10.1080/03071022.2019.1583870 Published online: 10 May 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rshi20 SOCIAL HISTORY 269 deserves to be read by everyone researching the field. The author shows much promise, which hopefully will be realized in years to come. John Macnicol London School of Economics [email protected] © 2019 John Macnicol https://doi.org/10.1080/03071022.2019.1583869 Taking on Technocracy: nuclear power in Germany, 1945 to the present,by Dolores L. Augustine, New York and Oxford, Berghahn Books, 2018, xiii + 286 pp., $120.00/£85.00 (hardback), ISBN 978-1-78533-645-4 Dolores L. Augustine’s new book explores the historical underpinnings of Germany’s radical 2011 decision to shut down all nuclear power plants in the country by 2022. This decision, which was supported almost unanimously by the Bundestag (the German Parliament), has popularly been interpreted as a response to the March 2011 Fukushima disaster in Japan. Augustine shows that it was much more than that, tracing in revealing detail the history of the German anti-nuclear movement. -
"The German Approach to the Disposal of Radioactive Wastes."
The German Approach to the Disposal of Radioactive Wastes Ernst Warnecke Physikalisch-Technische Bundesanstalt Bundesallee 100 D-3300 Braunschweig Finnish-German Seminar on Nuclear Waste Management Otaniemi, Espoo, Finland September 23-25, 1986 THE GERMAN APPROACH TO THE DISPOSAL OF RADIOACTIVE WASTES Ernst Warnecke Physikalisch-Technische Bundesanstalt Bundesallee 100 D-3300 Braunschweig, Federal Republic of Germany Abstract In the Federal Republic of Germany the PTB is responsible for the construction and operation of the repositories in which radioactive wastes will be disposed of. Two repository ries are planned: - Gorleben (salt dome; for all types of radioactive wastes) - Konrad (abandoned iron ore mine; for radioactive wastes with negligible thermal influence upon the host rock). The safe operation of the repositories has to be demon- strated to the licensing authorities. These are the respon- sible Ministers of the Federal States (Lander) and the mining authorities. According to the "safety criteria for the disposal of radioactive wastes in a mine", the safety of a repository has to be demonstrated by a site specific safety assessment for the normal operation of a repository, for incidents in the operational phase, and the post-opera- tional phase. These assessments result in waste acceptance requirements. The compliance of the waste packages to be disposed of with the waste acceptance requirements is checked with a waste package quality control either by random tests on waste packages or a qualification and in- spection of waste conditioning processes. Preliminary waste acceptance requirements have been set up for the planned Konrad repository. In the Kernforschungsan- lage Julich (KFA) a group for the quality control of radio- active waste has been established on behalf of the PTB.