Geophysical Methods to Detect Tunnelling at a Geological Repository Site Applicability in Safeguards

Total Page:16

File Type:pdf, Size:1020Kb

Geophysical Methods to Detect Tunnelling at a Geological Repository Site Applicability in Safeguards #2008207/ APRIL 2021 Geophysical methods to detect tunnelling at a geological repository site Applicability in safeguards Heikkinen Eero (AFRY) Radiation and Nuclear Safety Authority Report #2008207 Nuclear Waste and Material Regulation Heikkinen Eero (AFRY) April 6, 2021 Contents ABSTRACT ......................................................................................................................................................................................... 1 PREFAFE ............................................................................................................................................................................................ 3 1 Introduction ............................................................................................................................................................................ 5 1.1 Nuclear safeguards to geological disposal ........................................................................................................ 5 1.2 Monitoring for long term nuclear safety ........................................................................................................... 9 1.3 Active geophysical surveys .................................................................................................................................. 10 1.4 Olkiluoto spent nuclear fuel repository .......................................................................................................... 13 2 Possibilities to detect an undeclared activity ........................................................................................................ 16 2.1 General ......................................................................................................................................................................... 16 2.2 Previous methodological considerations ....................................................................................................... 18 2.3 Capability of geophysical methods in safeguards ....................................................................................... 27 2.4 Places and timing of geophysical measurements for safeguards ......................................................... 29 3 Experiences from hard rock geophysical surveys ............................................................................................... 33 3.1 Ground penetrating radar and drillhole radar ............................................................................................ 33 3.1.1 GPR and drillhole radar surveys for Posiva and SKB ...................................................................... 38 3.1.2 Other types of environment and new GPR development .............................................................. 51 3.2 Seismic investigations ............................................................................................................................................ 53 3.2.1 Seismic surveys for Posiva and SKB ....................................................................................................... 58 3.2.2 Development in seismic survey techniques ........................................................................................ 77 3.3 Electrical measurements ...................................................................................................................................... 81 3.3.1 Electrical surveys carried out in Olkiluoto and in Äspö ................................................................. 84 4 Discussion .......................................................................................................................................................................... 105 5 Summary ............................................................................................................................................................................ 114 6 References ......................................................................................................................................................................... 118 Radiation and Nuclear Safety Authority Report #2008207 1 (128) Nuclear Waste and Material Regulation Heikkinen Eero (AFRY) April 6, 2021 ABSTRACT Generating power with nuclear energy accumulates radioactive spent nuclear fuel, anticipated not to be diversified into any unknown purposes. Nuclear safeguards include bookkeeping of nuclear fuel inventories, frequent checking, and monitoring to confirm nuclear non-proliferation. Permanent isolation of radionuclides from biosphere by disposal challenges established practices, as opportunities for monitoring of individual fuel assemblies ceases. Different concepts for treatment and geological disposal of spent nuclear fuel exist. Spent nuclear fuel disposal facility is under construction in Olkiluoto in Southwest Finland. Posiva Oy has carried out multidisciplinary bedrock characterization of crystalline bedrock for siting and design of the facility. Site description involved compilation of geological models from investigations at surface level, from drillholes and from underground rock characterization facility ONKALO. Research focused on long term safety case (performance) of engineered and natural barriers in purpose to minimize risks of radionuclide release. Nuclear safeguards include several concepts. Containment and surveillance (C/S) are tracking presence of nuclear fuel through manufacturing, energy generation, cooling, transfer, and encapsulation. Continuity of knowledge (CoK) ensures traceability and non-diversion. Design information provided by the operator to the state and European Commission (Euratom), and further to IAEA describes spent nuclear fuel handling in the facility. Design information verification (DIV) using timely or unannounced inspections, provide credible assurance on absence of any ongoing undeclared activities within the disposal facility. Safeguards by design provide information applicable for the planning of safeguards measures, e.g., surveillance during operation of disposal facility. Probability of detection of an attempt to any undeclared intrusion into the repository containment needs to be high. Detection of such preparations after site closure would require long term monitoring or repeated geophysical measurements within or at proximity of the repository. Bedrock imaging (remote sensing, geophysical surveys) would serve for verifying declarations where applicable, or for characterization of surrounding rock mass to detect undeclared activities. ASTOR working group has considered ground penetrating radar (GPR) for DIV in underground constructed premises during operation. Seismic reflection survey and electrical or electromagnetic imaging may also apply. This report summarizes geophysical methods used in Olkiluoto, and some recent development, from which findings could be applied also for nuclear safeguards. In this report the geophysical source fields, involved physical properties, range of detection, resolution, survey geometries, and timing of measurements are reviewed for different survey methods. Useful interpretation of geophysical data may rely on comparison of results to declared repository layout, since independent understanding of the results may not be successful. Monitoring provided by an operator may enable alarm and localization of an undeclared activity in a cost-effective manner until closure of the site. Direct detection of constructed spaces, though possible, might require repeated effort, have difficulties to provide spatial coverage, and involve false positive alarms still requiring further inspection. Key words: spent nuclear fuel, disposal, nuclear safeguards, non-proliferation, containment, surveillance, design information verification, geophysical survey. Radiation and Nuclear Safety Authority Report #2008207 2 (128) Nuclear Waste and Material Regulation Heikkinen Eero (AFRY) April 6, 2021 Radiation and Nuclear Safety Authority Report #2008207 3 (128) Nuclear Waste and Material Regulation Heikkinen Eero (AFRY) April 6, 2021 PREFAFE Detailed site investigations are needed to demonstrate the suitability of the site to be selected for a geological repository to dispose of spent nuclear fuel. The hydraulic impermeability of the hosting geological formation surrounding the repository is essential for the safety case. The impermeability may be jeopardized by inhomogeneities in the rock mass and in case of igneous rock by fractured zones with may have long extensions. While developing the site-specific geological repository for spent nuclear fuel, the performance of rock mass and engineered systems as containment and isolation barriers are to be considered during planning, design, construction, operating and closing of the repository. The designers and rock engineering of a repository need site characterization data from different geophysical surveys, pilot drillholes ahead of tunnel front with related geophysical, geological, and hydrogeological investigations, and monitoring. Geophysical methods have developed and focused on the site-specific scientific and technical needs. Their role in safeguards have been under discussion during the development of IAEA safeguards approaches for geological disposal to detect undeclared activities. Geophysical methods have been proposed as design information verification measures as the rock engineering needs the understanding of the host geology and its impermeability. The exploratory works can provide sets of safeguards-relevant information, but
Recommended publications
  • This Article Was Published in an Elsevier Journal. the Attached Copy
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Progress in Nuclear Energy 49 (2007) 365e374 www.elsevier.com/locate/pnucene Review Permanent underground repositories for radioactive waste Norbert T. Rempe* 1403 N. Country Club Circle, Carlsbad, NM 88220, USA Abstract Solid radioactive waste first entered a deep geologic repository in 1959. Liquid radioactive waste has been injected into confined underground reservoirs since 1963. Solid wastes containing chemically toxic constituents with infinite half lives have been isolated underground since 1972. Performance to date of these and other repositories has not caused any of their owners and operators to transfer or contemplate transferring the waste confined in them to presumably safer locations. Natural and engineered analogues offer sound evidence that deep geologic isolation is effective, safe, and compatible with responsible environmental stewardship. Underground isolation of dangerous, including radioactive, wastes is therefore increasingly being used as a safe and reliable method of final disposal. Ó 2007 Elsevier Ltd. All rights reserved.
    [Show full text]
  • Realization of the German Repository Concept - Current Status and Future Prospects
    WM'99 CONFERENCE, FEBRUARY 28 - MARCH 4, 1999 REALIZATION OF THE GERMAN REPOSITORY CONCEPT - CURRENT STATUS AND FUTURE PROSPECTS - Peter W. Brennecke/Helmut Röthemeyer/Bruno R. Thomauske Bundesamt für Strahlenschutz (BfS) Salzgitter, Germany ABSTRACT Since the early sixties, the radioactive waste disposal policy in the Federal Republic of Germany has been based on the decision that all types of radioactive waste are to be disposed of in deep geological formations. According to the 1979 German radioactive waste management and disposal concept the Gorleben salt dome is investigated to decide upon its suitability to host a repository for all types of radioactive waste. In addition, the licensing procedure for the Konrad repository project has practically been finished, i.e. a decision could be taken. Since German unification on October 03, 1990, the Morsleben repository has to be considered, too. From January 1994 through September 1998 short-lived low and intermediate level radioactive waste with alpha emitter concentrations up to 4,0 · 108 Bq/m3 was disposed of in this facility. On September 27, 1998, federal elections took place in Germany. As a result, a coalition of the Social Democrats and the Greens has come into power. Based on the coalition agreement of October 20, 1998, nuclear energy is intended to be phased out in Germany. Thus, the new radioactive waste management policy comprises important disposal-related alterations and changes. INTRODUCTION The status and future prospects of the Morsleben repository as well as the Konrad and Gorleben repository projects are strongly influenced by technical, legal and political aspects. At present, due to the decrease of radioactive waste amounts to be emplaced in a repository, there is no time pressure for the disposal of wastes.
    [Show full text]
  • Underground Waste Disposal Authors: Kemal Yildizdag & Prof
    Underground waste disposal Authors: Kemal Yildizdag & Prof. Dr. habil. Heinz Konietzky (TU Bergakademie Freiberg, Geotechnical Institute) 1 Introduction to underground waste disposal ........................................................ 2 1.1 Radioactivity and radioactive waste types ..................................................... 2 1.2 Management, disposal and storage of radioactive wastes ............................ 5 2 Worldwide laws/regulations, applications and repositories .................................. 9 2.1 Repository design, multi-barrier concept & FEPs .......................................... 9 2.2 Host rocks for disposal and storage of radioactive wastes .......................... 13 2.3 Recent disposal and repository operations in Germany and worldwide ...... 18 3 Geotechnical aspects ........................................................................................ 21 3.1 Geotechnical terms and definitions concerning undergr. waste disposals ... 21 3.2 Geotechnical computations, experiments and measurements concerning underground waste disposals ............................................................................... 23 4 References ........................................................................................................ 32 5 Appendix ........................................................................................................... 37 Editor: Prof. Dr.-Ing. habil. Heinz Konietzky Layout: Angela Griebsch, Gunther Lüttschwager TU Bergakademie Freiberg, Institut für Geotechnik,
    [Show full text]
  • Impact of Climate Change on Far-Field and Biosphere Processes for a HLW
    Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Impact of climate change on far-fi eld and biosphere processes for a HLW-repository in rock salt GRS - 241 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Impact of climate change on far-fi eld and bisophere processes for a HLW-repository in rock salt Ulrich Noseck Christine Fahrenholz Eckhard Fein Judith Flügge Gerhard Pröhl Anke Schneider März 2009 Remark: This report, with the German title „Wissenschaftliche Grundlagen zum Nachweis der Langzeitsicherheit von Endlagern (Kurztitel WiGru5)“, was prepared under the contract No. 02 E 9954 with the Federal Ministry of Economics and Technology (BMWi). The work was conducted by the Ge- sellschaft für Anlagen- und Reaktor- sicherheit (GRS) mbH. The authors are responsible for the content of this report. GRS - 241 ISBN 978-3-939355-15-1 Keywords: biosphere, climate, climate change, glacial, hydrogeology, interglacial, permafrost, radioactive waste, safety assessment, transport Preface The assessment of the long-term safety of a repository for radioactive or hazardous waste requires a comprehensive system understanding and capable and qualified numerical tools. All relevant processes which contribute to mobilisation and release of contaminants from the repository, transport through the host rock and adjacent rock formations as well as exposition in the biosphere have to be implemented in the programme package. The objective of the project “Scientific basis for the assessment of the long-term safety of repositories”, identification number 02 E 9954, was to follow national and international developments in this area, to evaluate research projects, which contribute to knowledge, model approaches and data, and to perform specific investigations to improve the methodologies of the long-term safety assessment.
    [Show full text]
  • Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer
    Final Report Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer Prepared by Steven C. Young, Ph.D., P.E., P.G. Tom Ewing, Ph.D., P.G Scott Hamlin, Ph.D., P.G. Ernie Baker, P.G. Daniel Lupton Prepared for: Texas Water Development Board P.O. Box 13231, Capitol Station Austin, Texas 78711-3231 June 2012 Texas Water Development Board Final Report Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer Steven C. Young, Ph.D., P.E., P.G. Daniel Lupton INTERA Incorporated Tom Ewing, Ph.D., P.G. Frontera Exploration Consultants Scot Hamlin, Ph.D., P.G Ernie Baker, P.G. June 2012 This page is intentionally blank. ii Final Report – Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer Table of Contents Executive Summary ..................................................................................................................... xiii 1.0 Introduction ........................................................................................................................ 1-1 1.1 Approach for Defining Stratigraphy ......................................................................... 1-2 1.2 Approach for Defining Lithology and Generating Sand Maps ................................ 1-3 2.0 Gulf Coast Aquifer Geologic Setting ................................................................................. 2-1 2.1 Overview ................................................................................................................... 2-1
    [Show full text]
  • Communication on the Safety Case for a Deep Geological Repository
    Radioactive Waste Management 2017 Communication on the Safety Case for a Deep Geological Repository Communication on the Safety Case for a Deep Geological Repository NEA Radioactive Waste Management Communication on the Safety Case for a Deep Geological Repository © OECD 2017 NEA No. 7336 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 35 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Commission takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. This work is published on the responsibility of the Secretary-General of the OECD. NUCLEAR ENERGY AGENCY The OECD Nuclear Energy Agency (NEA) was established on 1 February 1958.
    [Show full text]
  • Jahresbericht
    jahresbericht Bundesamt für Strahlenschutz Fukushima und die Folgen Neue Stromtrassen quer durch Deutschland Auf der Suche – Entsorgung radioaktiver Abfälle in Deutschland | Verantwortung für Mensch und Umwelt | Titelfoto: Michael Janssen / Photocase.de Impressum Herausgeber: Bundesamt für Strahlenschutz Postfach 10 01 49 D-38201 Salzgitter Telefon: +49 (0)3018 333-0 Telefax: +49 (0)3018 333-1885 E-Mail: [email protected] Internet: www.bfs.de Redaktion: Lutz Ebermann Gestaltung: Quermedia Querallee 38 34119 Kassel Druck: MAREIS DRUCK GmbH Zeissstraße 8 89264 Weißenhorn Fotos: BfS und genannte Quellen Bundesamt für Strahlenschutz (2012) jahresbericht Bundesamt für Strahlenschutz jahresbericht Seite 9 Fukushima und die Folgen Am 11. März 2011 ereignete sich vor der Nordost- küste der japanischen Hauptinsel Honshu ein schweres Erdbeben mit nachfolgendem Tsunami. Im unmittelbaren Einwirkungsbereich dieser Na- turkatastrophe lagen 15 der insgesamt 54 japa- nischen Reaktoren. Der Beitrag geht ein auf Unfallablauf und -ursachen und gibt einen ersten Überblick über die Freisetzungen radioaktiver Stoffe und die Folgen in der Umgebung der Anlage für die Bevölkerung in und außerhalb von Japan. 97 Weitere ARBEITSSCHWerPUNKte DES bFs 97 "Sonne - Aber sicher!" - Das BfS engagiert sich für Hautkrebsprävention 101 Lungenkrebs-Früherkennung mittels Computertomographie 102 Berufliche Strahlenbelastung in der Medizin 103 Strahlenschutz beim Aufbau des digitalen Behördenfunks in Deutschland 106 Bedeutung von Ringversuchen für die Überwachung inkorporierter radioaktiver
    [Show full text]
  • "The German Approach to the Disposal of Radioactive Wastes."
    The German Approach to the Disposal of Radioactive Wastes Ernst Warnecke Physikalisch-Technische Bundesanstalt Bundesallee 100 D-3300 Braunschweig Finnish-German Seminar on Nuclear Waste Management Otaniemi, Espoo, Finland September 23-25, 1986 THE GERMAN APPROACH TO THE DISPOSAL OF RADIOACTIVE WASTES Ernst Warnecke Physikalisch-Technische Bundesanstalt Bundesallee 100 D-3300 Braunschweig, Federal Republic of Germany Abstract In the Federal Republic of Germany the PTB is responsible for the construction and operation of the repositories in which radioactive wastes will be disposed of. Two repository ries are planned: - Gorleben (salt dome; for all types of radioactive wastes) - Konrad (abandoned iron ore mine; for radioactive wastes with negligible thermal influence upon the host rock). The safe operation of the repositories has to be demon- strated to the licensing authorities. These are the respon- sible Ministers of the Federal States (Lander) and the mining authorities. According to the "safety criteria for the disposal of radioactive wastes in a mine", the safety of a repository has to be demonstrated by a site specific safety assessment for the normal operation of a repository, for incidents in the operational phase, and the post-opera- tional phase. These assessments result in waste acceptance requirements. The compliance of the waste packages to be disposed of with the waste acceptance requirements is checked with a waste package quality control either by random tests on waste packages or a qualification and in- spection of waste conditioning processes. Preliminary waste acceptance requirements have been set up for the planned Konrad repository. In the Kernforschungsan- lage Julich (KFA) a group for the quality control of radio- active waste has been established on behalf of the PTB.
    [Show full text]
  • Report on the Cost and Financing of the Disposal of Spent Fuel and Radioactive Waste
    Report on the cost and financing of the disposal of spent fuel and radioactive waste August 2015 In the event of discrepancies between this translation and the original German version, the latter shall prevail. Preamble 2 Preamble Contents Preamble .................................................................................................................. 4 1 Public sector ...................................................................................................... 5 1.1 Cost ...................................................................................................................... 5 1.2 Financing .............................................................................................................. 7 2 Private operators ............................................................................................... 8 2.1 Cost ...................................................................................................................... 8 2.2 Financing ............................................................................................................ 10 3 Cost of disposal................................................................................................ 10 3.1 Konrad disposal facility ....................................................................................... 10 3.2 Morsleben disposal facility .................................................................................. 11 3.3 Asse II mine .......................................................................................................
    [Show full text]
  • Perspectives of Radioactive Waste Disposal in Germany – 10448 Rev
    WM 2010 Conference, March 7-11, 2010 Phoenix, AZ Perspectives of Radioactive Waste Disposal in Germany – 10448 rev. Peter W. Brennecke Bundesamt für Strahlenschutz, Salzgitter, Germany ABSTRACT In the Federal Republic of Germany the disposal of all types of solid and solidified radioactive waste in deep geological formations is still the preferred option. Within the last decade the principal issues in radioactive waste disposal may be subdivided into activities further developing and detailing the revised German radioactive waste disposal concept as well as activities concerning the operation of the Konrad, Gorleben, Morsleben and Asse II sites. Of this, the Safety Requirements on the Disposal of Heat-Generating Radioactive Waste presented by the Federal Ministry for Environment, Nature Conservation and Nuclear Safety (BMU - Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) in July 2009, the licensing of the Konrad repository in May 2002 and, subsequent to the rejection of all lawsuits, the start of its construction in May 2007, as well as taking over of the responsibility for the Asse II mine by the Federal Office for Radiation Protection (BfS - Bundesamt für Strahlenschutz) in January 2009 are the most important topics. Future developments in the German radioactive waste disposal policy are indicated in the October 2009 coalition agreement of the new Federal Government. INTRODUCTION In the Federal Republic of Germany, the agreement between the Federal Government and the nuclear utilities which was initialled on June 14, 2000, and signed on June 14, 2001, served as basis for nuclear energy use and radioactive waste management issues during the last decade. According to this document, the former Government and the utilities agreed to limit the future utilization of the existing nuclear power plants.
    [Show full text]
  • Influence of Initial Conditions and Hydrogeological Setting on Variable Density Flow in an Aquifer Above a Salt Dome
    Calibration and Reliability in Groundwater Modelling (Proceedings of the ModelCARE 96 Conference held at Golden, Colorado, September 1996). IAHS Publ. no. 237, 1996. 373 Influence of initial conditions and hydrogeological setting on variable density flow in an aquifer above a salt dome PETER VOGEL & KLAUS SCHELKES Federal Institute for Geosciences and Natural Resources (BGR), PO Box 510153, D-30631 Hannover, Germany Abstract The Gorleben salt dome, in the northeastern part of Lower Saxony in Germany, is under investigation as a candidate site for the final disposal of radioactive waste. The diapir is crossed by an Elsterian subglacial erosion channel, which forms the lowermost aquifer and is partly in contact with the cap rock or the salt itself. Saturated brines . occur in these areas. The high saline water is overlain by a narrow transi­ tion zone in which water salinities decrease to that of brackish or fresh water. Numerical models were constructed to study the behaviour of this variable density groundwater system starting 10 000 years ago at the end of the last ice age. Different combinations of initial conditions and hydrogeological setting may yield similar density distributions. A few of the calculated present density distributions compare well with measured field data. A unique solution to the inverse problem is not yet possible. INTRODUCTION In this paper, interest is focused on transient two-dimensional numerical modelling of a generalized hydrogeological cross-section along an erosion channel crossing the Gorleben salt dome. The objective was to calibrate the numerical model on the basis of the present groundwater density distribution. Paleoclimatic and hydraulic arguments yield a reasonable estimate of the rather unknown salinity distribution at the end of the last ice age to serve as initial condition.
    [Show full text]
  • Go.Rleben International Review
    THE STORY OF THE GO.RLEBEN INTERNATIONAL REVIEW A consortium of West German electric utilities wished to build at Gorleben (in the State of Lower Saxony, West Germany) a nuclear fuel centre encompassing spent fuel storage, reprocessing, waste disposal and fuel fabri- cation. The Lower Saxony State Government (as licensing authority) responded to public unease by commissioning a review of the project by 20 international critical scientists. The resulting report (Chapter 3 herewith) was submitted· in March 1979 and subjected to a semi-public examination during 28 March - 2 April, 1979, attended throughout by the state governor (Dr. Albrecht) and several of his cabinet. Five critical German scientists and approximately . 35 scientists favourable to the project participated, in addition to the' 20 international critics. On 16 May 1979, Dr. Albrecht announced that the project would not now be licensed and that future re-application would not be considered without changes in design (copy of Albrecht's statement follows). ~-G~~ „f r l G,,..-cl, ..... 1lo-..t~ 0 "" Declaration of the State Government, Lower Saxony, West Germany by Minister - President Dr. Ernst Albrecht May 16, 1979 Concerning the proposed nuclear f uel centre at Gorleben (English Translation) - l - In November 1976 I had the honor to receive, in the prese~c? of the frac tion chairmen of CDU, SPD and FDP, the Fe de ral '.-~ini s ters Maihofer, Friderichs and Matthöfer. The members of the Federal Government informed the State Government about the planned inte­ grated fuel cycle center {"Entsorgungszentrumtt) and reque.sted the immediate selection of a preliminary site for this center.
    [Show full text]