Eukaryotic Cells and Their Cell Bodies: Cell Theory Revised
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AP Biology Planner
COURSE PLANNER Please note that not all activities for the course are listed, and many activities will be supplemented with additional activities such as diagram analysis, practice essays, etc. Intro to AP Biology/Scientific Method This course begins with introducing students to the seven science practices, in addition to the Big Ideas that unify the course. Students complete the lab exercises that emphasize the need for controls in experiments as well as to identify and explain potential sources of error as part of the normal scientific process. Reading in Campbell and Reece: Topics: • Intro to AP biology, the test and how to study. ♣ Activity: Theme-teams: Students research and present scientist who represent each Big Idea in AP Biology. ♣ Activity: Analyzing the AP multiple choice questions with diagrams. • Scientific Method: Steps and controlled experiments ♣ Activity: What is Science? Discussion/Poster Creation. ♣ Activity: Lab Safety activity: NIH’s Student Lab Safety Introduction Course. https://www.safetytraining.nih.gov/introcourse/labsafetyIntro.aspx ♣ Activity: Identify risks in procedures and materials (MSDS analysis) ♣ Activity: Guide to good graphing. ♣ Activity: Examining bias in science. ♣ Lab: Student Designed inquiry. The effect of environmental factors on the metabolic rate of yeast. In this student designed inquiry, students investigate environmental factors as they relate to CO2 production or O2 consumption in yeast. Students must select an independent variable and dependent variable, as well as design an experimental procedure based on an existing lab protocol. ECOLOGY The ecology unit introduces the ideas of energy processes and interactions, which are the focus of Big Idea 2 and 4. Ecology introduces students to creating, analyzing, and evaluating mathematical models in biology and prepares students to tackle evolution, the central unit in AP Biology. -
New Editor on Journal of Cell Science Michael Way (Editor-In-Chief)
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs229740. doi:10.1242/jcs.229740 EDITORIAL New Editor on Journal of Cell Science Michael Way (Editor-in-Chief) As someone who has worked on things related to the actin cytoskeleton my whole research career, the nucleus was not something I paid much attention to. Yes, there were scattered historical reports of actin in the nucleus long before I started my PhD, but no one believed actin was really there of course – it was all an artefact of fixation, you know. Nuclear actin was taboo and no one talked about it at the meetings I went to as a student and postdoc. How wrong we were – today nuclear actin is alive and kicking, although there are definitely more questions than answers concerning what it is actually doing there. We now appreciate that the nucleus contains a wide assortment of proteins associated with the cytoplasmic actin cytoskeleton including myosin motors and actin nucleators such as the Arp2/3 complex. In addition, it should not be forgotten that many chromatin-associated complexes including SWI/SNF and INO80/ SWR also contain multiple actin-related proteins, as well as actin itself. It strikes me that maybe we should all be paying more attention to the nucleus and not just because it contains my favourite proteins! Maybe that’s why, in recent years, we’ve been seeing more submissions to JCS that are focused on different aspects of the nucleus and that traditionally appeared in journals with ‘molecular’ in their titles. -
Conserved Microtubule–Actin Interactions in Cell Movement and Morphogenesis
REVIEW Conserved microtubule–actin interactions in cell movement and morphogenesis Olga C. Rodriguez, Andrew W. Schaefer, Craig A. Mandato, Paul Forscher, William M. Bement and Clare M. Waterman-Storer Interactions between microtubules and actin are a basic phenomenon that underlies many fundamental processes in which dynamic cellular asymmetries need to be established and maintained. These are processes as diverse as cell motility, neuronal pathfinding, cellular wound healing, cell division and cortical flow. Microtubules and actin exhibit two mechanistic classes of interactions — regulatory and structural. These interactions comprise at least three conserved ‘mechanochemical activity modules’ that perform similar roles in these diverse cell functions. Over the past 35 years, great progress has been made towards under- crosstalk occurs in processes that require dynamic cellular asymme- standing the roles of the microtubule and actin cytoskeletal filament tries to be established or maintained to allow rapid intracellular reor- systems in mechanical cellular processes such as dynamic shape ganization or changes in shape or direction in response to stimuli. change, shape maintenance and intracellular organelle movement. Furthermore, the widespread occurrence of these interactions under- These functions are attributed to the ability of polarized cytoskeletal scores their importance for life, as they occur in diverse cell types polymers to assemble and disassemble rapidly, and to interact with including epithelia, neurons, fibroblasts, oocytes and early embryos, binding proteins and molecular motors that mediate their regulated and across species from yeast to humans. Thus, defining the mecha- movement and/or assembly into higher order structures, such as radial nisms by which actin and microtubules interact is key to understand- arrays or bundles. -
Theory of Cytoskeletal Reorganization During Crosslinker-Mediated Mitotic Spindle Assembly
bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Theory of cytoskeletal reorganization during crosslinker-mediated mitotic spindle assembly A. R. Lamson, C. J. Edelmaier, M. A. Glaser, and M. D. Betterton Abstract Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which micro- tubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mech- anisms of this process include regulated filament polymerization, crosslinking, and motor-protein activity. Remarkably, using passive crosslinkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization due to dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive crosslink- ers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include crosslinker-binding kinetics and other stochastic effects. Our results show that rapid crosslinker reorganization to microtubule overlaps facilitates crosslinker-driven spindle assembly, a testable prediction for future experiments. Combin- ing these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization. 1 bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. -
Introduction to the Cell Cell History Cell Structures and Functions
Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology. -
Cell Growth-Regulated Expression of Mammalian MCM5 and MCM6 Genes Mediated by the Transcription Factor E2F
Oncogene (1999) 18, 2299 ± 2309 ã 1999 Stockton Press All rights reserved 0950 ± 9232/99 $12.00 http://www.stockton-press.co.uk/onc Cell growth-regulated expression of mammalian MCM5 and MCM6 genes mediated by the transcription factor E2F Kiyoshi Ohtani1, Ritsuko Iwanaga1, Masataka Nakamura*,1, Masa-aki Ikeda2, Norikazu Yabuta3, Hiromichi Tsuruga3 and Hiroshi Nojima3 1Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan 2Department of Developmental Biology, Graduate School of Dentistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; 3Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan Initiation of DNA replication requires the function of family (MCM2-7) that have been identi®ed in yeast, MCM gene products, which participate in ensuring that Xenopus, and human. Mcm proteins seem to regulate DNA replication occurs only once in the cell cycle. the initiation at the replication origin where the loading Expression of all mammalian genes of the MCM family of the proteins onto the origin recognition complex is induced by growth stimulation, unlike yeast, and the (ORC) is regulated by Cdc6 and cyclin-dependent mRNA levels peak at G1/S boundary. In this study, we kinases (Donovan et al., 1997; Tanaka et al., 1997). examined the transcriptional activities of isolated human However, the mechanism(s) by which Mcm proteins MCM gene promoters. Human MCM5 and MCM6 control the initiation of DNA replication remains promoters with mutation in the E2F sites failed in unclear. promoter regulation following serum stimulation and Xenopus Mcm proteins seem to be able to access exogenous E2F expression. -
The Cell-Theory: a Restatement, History, and Critique Part III
*57 The Cell-theory: A Restatement, History, and Critique Part III. The Cell as a Morphological Unit By JOHN R. BAKER (From the Department of Zoology and Comparative Anatomy, Oxford) SUMMARY A long time elapsed after the discovery of cells before they came to be generally regarded as morphological units. As a first step it was necessary to show that the cell-walls of plants were double and that cells could therefore be separated. The earliest advances in this direction were made by Treviranus (1805) and Link (1807). The idea of a cell was very imperfect, however, so long as attention was con- centrated on its wall. The first person who stated clearly that the cell-wall is not a necessary constituent was Leydig (1857). Subsequently the cell came to be regarded as a naked mass of protoplasm with a nucleus, and to this unit the name of protoplast was given. The true nature of the limiting membrane of the protoplast was discovered by Overton (1895). The plasmodesmata or connective strands that sometimes connect cells were prob- ably first seen by Hartig, in sieve-plates (1837). They are best regarded from the point of view of their functions in particular cases. They do not provide evidence for the view that the whole of a multicellular organism is basically a protoplasmic unit. Two or more nuclei in a continuous mass of protoplasm appear to have been seen for the first time in 1802, by Bauer. That an organism may consist wholly of a syn- cytium was discovered in i860, in the Mycetozoa. -
Journal of Cell Science & Therapy
Journal of Cell Science & Therapy 2021 Conference Announcement Mark on Your Calendar, Stem Cell 2021 is coming soon!! Ahmed Hegazi Pursued by the Successful Completion of the Stem Cell discuss the latest developments in the field of Stem Cell and Conference, we are facilitating its next version “International Regenerative Medicine as well. Current studies of Stem cell Conference on Stem Cell” in Osaka, Japan on March 16-17, are examining how undifferentiated organisms might be 2021. utilized to anticipate or fix sicknesses and wounds, for The theme attracts for the Stem Cell 2021 is “Frontiers in example, Parkinson's illness, type 1 diabetes, coronary illness, Stem Cells & Turning Ideas into Reality”. spinal string damage, strong dystrophy, Alzheimer's malady, Welcoming all of you for our Stem Cell 2021 involves strokes, osteoarthritis, vision and hearing misfortune. extraordinary delight, warmth and passion. We anticipate all Immature microorganisms could likewise be utilized to of you sharing your knowledge and information, look into supplant or repair tissue harmed by ailment or damage. thoughts and to make a sprinkle with new upgrades at this 2- days occasion. This time we have introduced some contemporary and recently updated and advanced highlights of Life sciences in Stem Cell 2021. Stem Cell 2021 wish to bring all the medicinal science, chemical engineering & tissue regeneration professionals and scientists under material science fields for our Smart Materials Meeting to collaborate and share their insight and their most Cancer Stem Cells, Bio-Makers Of Cancer Stem Cells, Stem current research to the whole Material Science Community. Cell Biology & Advances, Advanced In Tissue Regeneration, Also this time, Our International Conference on Stem Cell Embryonic Stem Cell, Reprogramming In Stem Cell & will be aims to haven for Multinational organizations, Transplantation, Treatment Of Diseases By Stem Cell entrepreneurs across the globe, the researchers and Therapeutics, Stem Cell Banking, Novel Stem Cell Therapy, academicians. -
Unifying Principles of Biology - Advanced
Unifying Principles of Biology - Advanced Douglas Wilkin, Ph.D. Niamh Gray-Wilson Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHORS Douglas Wilkin, Ph.D. To access a customizable version of this book, as well as other Niamh Gray-Wilson interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2016 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference. -
The Medical & Scientific Library of W. Bruce
The Medical & Scientific Library of W. Bruce Fye New York I March 11, 2019 The Medical & Scientific Library of W. Bruce Fye New York | Monday March 11, 2019, at 10am and 2pm BONHAMS LIVE ONLINE BIDDING IS INQUIRIES CLIENT SERVICES 580 Madison Avenue AVAILABLE FOR THIS SALE New York Monday – Friday 9am-5pm New York, New York 10022 Please email bids.us@bonhams. Ian Ehling +1 (212) 644 9001 www.bonhams.com com with “Live bidding” in Director +1 (212) 644 9009 fax the subject line 48 hrs before +1 (212) 644 9094 PREVIEW the auction to register for this [email protected] ILLUSTRATIONS Thursday, March 7, service. Front cover: Lot 188 10am to 5pm Tom Lamb, Director Inside front cover: Lot 53 Friday, March 8, Bidding by telephone will only be Business Development Inside back cover: Lot 261 10am to 5pm accepted on a lot with a lower +1 (917) 921 7342 Back cover: Lot 361 Saturday, March 9, estimate in excess of $1000 [email protected] 12pm to 5pm REGISTRATION Please see pages 228 to 231 Sunday, March 10, Darren Sutherland, Specialist IMPORTANT NOTICE for bidder information including +1 (212) 461 6531 12pm to 5pm Please note that all customers, Conditions of Sale, after-sale [email protected] collection and shipment. All irrespective of any previous activity SALE NUMBER: 25418 with Bonhams, are required to items listed on page 231, will be Tim Tezer, Junior Specialist complete the Bidder Registration transferred to off-site storage +1 (917) 206 1647 CATALOG: $35 Form in advance of the sale. -
Auxin Inhibits Expansion Rate Independently of Cortical Microtubules
Spotlights Trends in Plant Science August 2015, Vol. 20, No. 8 Auxin inhibits expansion rate independently of cortical microtubules 1,2 Tobias I. Baskin 1 Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK 2 Biology Department, University of Massachusetts, Amherst, MA 01003, USA A recent publication announces that auin inhibits expan- sion by a mechanism based on the orientation of cortical microtubules. This is a textbook-revising claim, but as I argue here, a claim that is supported by neither the authors’ data nor previous research, and is contradicted by a simple experiment. ADP+P Ironically, we do not know how auxin, the growth hormone, ATP controls growth rate. The rate of expansion depends on the + H H+ rates of two linked processes: water uptake into the sym- plast and the deformation of the cell wall. Even though, in principle, either could be limiting, the cell wall has been H O the focus of attention. The rate of cell wall deformation is 2 2 usually alleged to be set by the rate of one of the following •OH processes: proton efflux, formation in the cell wall of hy- droxyl radicals, or secretion of cell wall polysaccharides. The favored process would then be adjusted by auxin. Which process does auxin in fact adjust? Strikingly we TRENDS in Plant Science have no consensus for the answer. Proton pumps, oxido-reductases, secretory machinery, Figure 1. Spotlight on the cell cortex. Juxtaposed to the cell wall, the cortex, a region that includes the plasma membrane and ER (yellow), is a pivotal locus for and for that matter aquaporins, all are located in the cell’s governing production and behavior of the apoplast. -
S41598-020-68694-9.Pdf
www.nature.com/scientificreports OPEN Delayed cytokinesis generates multinuclearity and potential advantages in the amoeba Acanthamoeba castellanii Nef strain Théo Quinet1, Ascel Samba‑Louaka2, Yann Héchard2, Karine Van Doninck1 & Charles Van der Henst1,3,4,5* Multinuclearity is a widespread phenomenon across the living world, yet how it is achieved, and the potential related advantages, are not systematically understood. In this study, we investigate multinuclearity in amoebae. We observe that non‑adherent amoebae are giant multinucleate cells compared to adherent ones. The cells solve their multinuclearity by a stretchy cytokinesis process with cytosolic bridge formation when adherence resumes. After initial adhesion to a new substrate, the progeny of the multinucleate cells is more numerous than the sibling cells generated from uninucleate amoebae. Hence, multinucleate amoebae show an advantage for population growth when the number of cells is quantifed over time. Multiple nuclei per cell are observed in diferent amoeba species, and the lack of adhesion induces multinuclearity in diverse protists such as Acanthamoeba castellanii, Vermamoeba vermiformis, Naegleria gruberi and Hartmannella rhysodes. In this study, we observe that agitation induces a cytokinesis delay, which promotes multinuclearity. Hence, we propose the hypothesis that multinuclearity represents a physiological adaptation under non‑adherent conditions that can lead to biologically relevant advantages. Te canonical view of eukaryotic cells is usually illustrated by an uninucleate organization. However, in the liv- ing world, cells harbouring multiple nuclei are common. Tis multinuclearity can have diferent origins, being either generated (i) by fusion events between uninucleate cells or by (ii) uninucleate cells that replicate their DNA content without cytokinesis.