2016 STLE Tribology Frontiers Conference

Total Page:16

File Type:pdf, Size:1020Kb

2016 STLE Tribology Frontiers Conference 2016 STLE Tribology Frontiers Conference Tribology: The Interface of Physics, Chemistry, Materials and Mechanical Science and Engineering November 13-15, 2016 Historic Drake Hotel on Chicago’s “Magnificent Mile” Chicago, Illinois 2016 Preliminary Technical Program as of 8/2/16 Preliminary TABLE OF CONTENTS Program-at-a-Glance ............................................................................................3 Program with Abstracts Sunday ......................................................................................................4 Monday ......................................................................................................17 Tuesday .....................................................................................................47 Author Index .........................................................................................................64 2016 STLE Tribology Frontiers November 13-15, 2016 Historic Drake Hotel Chicago, Illinois (USA) Preliminary Program-at-a-Glance As of 8/2/16 – Subject to Change Sunday, November 13, 2016 Berkeley – 1:20 pm – 2:00 pm – Grand Ballroom AFM and TEM Studies of Friction and Wear in Pt- Welcome and Introductions – 1:00 pm – 1:20 pm Graphene and Pt-SiO2 Systems Invited Talk – J. Edward Colgate. PhD, Technical Sessions – 2:00 – 6:00 pm Northwestern University – 1:20 pm – 2:00 pm – 3A – Materials Tribology III – Walton North Grand Ballroom 3B – Surfaces & Interfaces III - Walton South Surface Haptics: How Friction Modulation Lets Us 3C – Machine Elements & Systems II - Georgian Touch Virtual Worlds Room 3D – Lubricants III- Venetian Room Networking Break – 2:00 pm – 2:40 pm – Grand 3E – Fluid Lubrication II: Rheology & EHL - Astor Ballroom Room 3F – Tribochemistry II – Superior Room Technical Sessions – 2:40 – 6:00 pm 1A – Beyond the Cutting Edge – Highlights from Networking Reception – 6:30 pm – 8:00 pm Tribology Letters – Walton South 1B – Surfaces & Interfaces I – Walton North (Monday Networking Break – Exhibits & Posters) 1C – Materials Tribology I – Georgian Room – 3:00 pm – 3:40 pm 1D – Lubricants I – Venetian Room 1E – Biotribology – Astor Room Tuesday, November 15, 2016 Student Career Mentoring Program – 6:00 pm – Invited Talk – Donald Hillebrand, PhD, Argonne 7:00 pm National Laboratory – 9:00 am – 9:40 am Kenneth Pelczarski, Pelichem Associates Topic TBD Effective Interviewing Networking Break (Exhibits & Posters) – 9:40 am – Student Networking Event – 7:30 pm – 9:00 pm – 10:20 am – Grand Ballroom Location TBD Technical Sessions - 10:20 am - 12 Noon 4A – Materials Tribology IV - Walton South Monday, November 14, 2016 4B – Surfaces & Interfaces IV - Walton North 4C – Machine Elements & Systems III - Georgian Invited Talk – Professor Michael Moseler, Room Fraunhofer Institute of Mechanics and Materials – 4D – Energy/Environment/Manufacturing I - Venetian 9:00 am – 9:40 am – Grand Ballroom Room Tribo-Mechano-Chemistry: Lessons From Atomic 4E – Fluid Lubrication II: Textured Lubricated Scale Modeling Contacts – Astor Room Networking Break (Exhibits & Posters) – 9:40 am – Lunch on Your Own – 12:00 noon – 1:20 pm 10:20 am – Grand Ballroom Technical Sessions – 1:20 – 6:00 pm Technical Sessions – 10:20 am – 12:00 noon 5A – Materials Tribology V - Walton South 2A – Materials Tribology II – Walton South 5B – Surfaces & Interfaces V - Walton North 2B – Surfaces & Interfaces II – Walton North 5D – Energy/Environment/Manufacturing - Venetian 2C –Machine Elements & Systems I – Georgian Room Room 5E - Fluid Lubrication IV - Astor Room 2D – Lubricants II – Venetian Room 2E – Fluid Lubricants I: Squeeze film, Cavitation & (Tuesday Networking – Exhibits & Posters) – 3:00 Gaseous Lubrication – Astor Room pm – 3:40 pm 2F – Tribochemistry I – Superior Room Lunch on Your Own – 12:00 noon – 1:20 pm Invited Talk: Miquel Salmeron, Lawrence Berkeley National Laboratory & University of California, 3 Sunday, November 13, 2016 K1 Grand Ballroom Keynote Session I 1 - 1:20 pm - Welcome & Introductions 1:20 - 2 pm Surface Haptics: How Friction Modulation lets us Touch Virtual Worlds J. Edward Colgate, Northwestern University, Evanston, IL Imagine reaching into a handbag for a key fob, finding it amidst clutter, grasping it and pressing “unlock”, all without looking. That is an example of haptic perception. Now imagine extracting your cellphone, unlocking it, and opening an app, also without looking. Not as easy! In this talk, I’ll introduce “surface haptics”, which aims to give that cellphone controllable tactile properties such as buttons and sliders you can feel. How can a finger on a flat piece of glass feel a shape or texture? We approach this problem by controlling the frictional forces on the fingertip, modulating them in accordance with the finger’s movement. I’ll describe two friction modulation techniques – transverse ultrasonic vibrations and electrostatic fields; explain how friction modulation can be combined with lateral vibrations to create propulsive forces; and illustrate various ways in which lateral forces may be used to create the illusion of texture, events, and even 3D shape. BK1 Grand Ballroom 2 – 2:30 pm - Break #1 1A Walton South Beyond the Cutting Edge: Highlights from Tribology Letters I Session Chair: W. Tysoe, Chemistry and Biochemistry, UW-Milwaukee, Milwaukee, WI 2:40 - 3:20 pm Mechanisms Behind the Environmental Dependence of the Tribological Properties of Amorphous Carbon Coatings Robert Carpick, University of Pennsylvania, Philadelphia, PA, Medard Komlavi Dzidula Koshigan, Ecole Centrale de Lyon, Ecully cedex, France, Filippo Mangolini, University of Leeds, Leeds, United Kingdom, John Brandon McClimon, University of Pennsylvania, Philadelphia, PA, B. Vacher, Sandrine Bec, Julien Fontaine, Ecole Centrale de Lyon, Ecully cedex, France Amorphous carbon films are used as solid lubricants in a range of applications. However, one limitation is their environmental sensitivity. Silicon oxide-doped amorphous hydrogenated carbon films (a-C:H:Si:O) exhibit increased stability in extreme environments relative to amorphous hydrogenated carbons (a–C:H). We aim to develop fundamental understanding of the environmental impact on the tribology of a– C:H:Si:O. Upon sliding a–C:H:Si:O film against steel, two friction regimes occur: high friction in high vacuum or low pressures of oxygen or hydrogen gas, and a low friction regime at higher gas pressures (oxygen pressure >10 mbar, or hydrogen >50 mbar). Scanning electron microscopy revealed that the tribological behavior of a–C:H:Si:O is governed by environmentally-dependent adhesive junctions 4 behavior at the sliding interface. At low gas pressures, material transfer from the steel pin to the a– C:H:Si:O flat occurs. At higher gas pressures, a tribofilm forms on the steel countersurface. Raman and near edge X-ray absorption spectroscopy demonstrate that when sliding in the higher gas pressure (low friction) regime, a surface layer with an elevated fraction of sp2-bonded carbon atoms forms. These changes indicate that these gases favor the release of the adhesive junctions by dissociatively reacting with the mechanically-stressed sp2 carbon-rich surface layer. We will discuss the impact of these results in considering the design and function of other solid lubricant coatings. 3:20 - 4 pm Tribology Influences Rheology Influences Tribology: Microscopic Mechanism for Shear- thickening of Non-Brownian Suspensions Juliette Cayer-Barrioz, LTDS-CNRS UMR5513, Scully, France A simple model, supported by rheology and friction measurements as well as contact-dynamics simulation is proposed to link the transition from continuous to discontinuous shear thickening in dense granular pastes to distinct lubrication regimes in the particle contacts, is proposed. We identify a local Sommerfeld number that determines the transition from Newtonian to shear-thickening flows, and then show that the suspension’s volume fraction and the boundary lubrication friction coefficient control the nature of the shear-thickening transition, both in experiments and simulations. 4 - 4:40 pm Driving Mechanochemical Wear on Graphene Using Local Stress and Heat Jonathan Felts, Shivaranjan Raghuraman, Texas A&M University, College Station, TX Here we investigate the chemical dynamics of local graphene oxide reduction through the application of local temperature and stress using a heated atomic force microscope (AFM) tip. Specifically, a silicon AFM cantilever with an embedded Joule heater applies both local stress and heat to chemically functionalized graphene surfaces during tip sliding. The friction of the graphene sheet depends linearly on chemical group concentration, so monitoring friction force provides an in situ measure of chemical functionality on the surface over time. We demonstrate bond cleavage of oxygen, fluorine, and hydrogen from graphene using force alone. We then investigate both local temperature and force during tip sliding on graphene oxide. Monitoring friction over time for tip temperatures between 310 – 355 C and a load of 40 nN provides the kinetics of the reduction process, with an activation energy for bond scission of 0.7 ± 0.3 eV. Measurement noise contributed significantly to error and precluded determination of reaction order. In an effort to reduce measurement time and error, we introduce a new technique which measures friction during a linear temperature ramp between 50 - 450 C, providing an activation energy 0.62 ± 0.07 and a reaction order n ~ 1. It was further shown that applied force non-linearly reduces the
Recommended publications
  • Thomas W. Scharf
    Dr. Thomas W. Scharf Professor Department of Materials Science and Engineering University of North Texas P.O. BOX 305310 Denton, TX 76203-5310 (940) 891-6837 e-mail: [email protected] EDUCATION B.S. Ceramic Science and Engineering, The Pennsylvania State University, University Park, PA, 1994. Thesis title, “The Effects of Oxidation on the Strength Behavior of SiC Fibers” under Dr. Richard E. Tressler. M.S. Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL, 1997. Thesis title, “Structural, Tribo-Mechanical, and Thermal Characterization of Sputtered Diamond-Like Carbon and Nitrogenated Diamond-Like Carbon Thin Films” under Dr. John A. Barnard. Ph.D. Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL, 2000. Dissertation title, “Growth, Structure, and Mechanical Wear Strength of Ultra-Thin Ion Beam and Sputter Deposited Hard Coatings” under Dr. John A. Barnard. PROFESSIONAL EXPERIENCE 5/14-present: Professor, Department of Materials Science and Engineering, University of North Texas, Denton, TX. 5/10-5/14: Associate Professor, Department of Materials Science and Engineering, University of North Texas, Denton, TX. 9/05-5/10: Assistant Professor, Department of Materials Science and Engineering, University of North Texas, Denton, TX. •Established a materials tribology laboratory to measure friction, wear and lubrication processes by in situ and ex situ methods. •Constructed a viscous flow atomic layer/chemical vapor deposition reactor to synthesize solid lubricant and wear resistant
    [Show full text]
  • Wednesday Program Overview
    Overview Wednesday, May 19, 2021 8:30 – 10 am 2 – 6 pm Wednesday Keynote Session Wednesday Technical Sessions: Keynote Speaker: • 6A – Biotribology II • Dr. Armit Parikh, Research Manager, Smith & Nephew, Inc. • 6B – 2D Materials/Superlubricity: Material Tribology & Nanotribology Joint Session II 10 – 10:30 am • 6C – Engine & Drivetrain II Networking Break & Special Programming • 6D – Lubrication Fundamentals III: Additives II 10 am – 3:30 pm • 6E – Wear II Virtual Exhibits and Student Posters • 6F – Tribotesting II 10:30 am – 1 pm • 6G – Rolling Element Bearings IV Wednesday Technical Sessions: • 6H – Tribochemistry – Materials Tribology & Nanotribology • 5A – Biotribology I Joint Session I • 5B – 2D Materials/Superlubricity: Material Tribology & • 6I – Grease I Nanotribology Joint Session II • 6J – Commercial Marketing Forum V1 • 5C – Engine & Drivetrain I • 5D – Lubrication Fundamentals II: Additives I 3 – 3:30 pm Networking Break & Special Programming • 5E – Wear I • 5F – Tribotesting I • 5G – Rolling Element Bearings III • 5H – Nonferrous Metals III • 5I – Commercial Marketing Forum V Trade Show Hours: • Monday, May 17: 10 am – 4 pm 1 – 2 pm Plenary Program – Session #1 • Tuesday, May 18: 10 am – 3:30 pm • Wednesday, May 19: 10 am – 3:30 pm Plenary Speaker: • Thursday, May 20: 10 am – 3:30 pm • Dr. Jack Zakarian, Consultant, JAZTech Consulting LLC (All times listed are Eastern Daylight Time) www.stle.org | STLE 2021 Virtual Annual Meeting & Exhibition | 47 Technical Sessions Time Grids – Wednesday, May 19, 2021 TIME SESSION 5A SESSION 5B SESSION 5C Biotribology I 2D Materials/Superlubricity II Engine & Drivetrain I Virtual Meeting Room 1 Virtual Meeting Room 2 Virtual Meeting Room 3 10:30 – 11 am Impact of Metal Release on Chondrocytes Due to The Fascinating Frictional Properties of Layered Component Wear in Diesel Engine High Pressure Fuel Biotribocorrosion in CoCrMo Sliding Against Articular Materials, M.
    [Show full text]
  • Garabedian Udel 0060
    A DIRECT EXPERIMENTAL LINK BETWEEN ATOMIC-SCALE AND MACROSCALE FRICTION by Nikolay T. Garabedian A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Spring 2019 © 2019 Nikolay T. Garabedian All Rights Reserved A DIRECT EXPERIMENTAL LINK BETWEEN ATOMIC-SCALE AND MACROSCALE FRICTION by Nikolay T. Garabedian Approved: __________________________________________________________ Ajay K. Prasad, Ph.D. Chair of the Department of Mechanical Engineering Approved: __________________________________________________________ Levi T. Thompson, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ David L. Burris, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ M. Zubaer Hossain, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Chaoying Ni, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Viewpoint Friction at the Atomic Scale
    Physics 6, 102 (2013) Viewpoint Friction at the Atomic Scale Philip Egberts Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 S. 33rd Street, Philadelphia, PA 19104, USA and Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 40 Research Place NW, Calgary, Alberta T2L 1Y6, Canada Robert W. Carpick Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 S. 33rd Street, Philadelphia, PA 19104, USA Published September 18, 2013 A new experimental method based on atomic force microscopy allows the investigation of friction at the scale of individual atoms. Subject Areas: Nanophysics, Materials Science A Viewpoint on: Atomic Structure Affects the Directional Dependence of Friction A. J. Weymouth, D. Meuer, P. Mutombo, T. Wutscher, M. Ondracek, P. Jelinek, and F. J. Giessibl Phys. Rev. Lett. 111, 2013 – Published September 18, 2013 Everyone learns the basics of friction in high-school in a simple way by pressing one’s hands together (as if in physics classes: the friction force experienced by a slid- prayer but with the fingers spaced apart). Upon sliding ing object is proportional to the normal force that an the fingers of the left hand against the fingers of right object exerts on a surface. Remarkably, this extremely hand (perpendicular to the long axis of your fingers), the simple and empirical relation, known as Amontons’ Law, fingers of one hand become stuck in between those of the is still often used in creating the most technologically so- other. However, if one instead slides the left hand down phisticated machines and devices, even though friction and the right hand up (parallel to the long axis of your is known to vary with a large number of other parame- fingers), the hands move smoothly.
    [Show full text]
  • Anirudha Sumant Center for Nanoscale Materials Building 440, Room A-127 Materials Scientist Phone: 630-252-4854 Nanofabrication and Devices Group Fax: 630-252-5739
    Argonne National Laboratory 9700 S Cass Ave., Argonne, IL 60439 Anirudha Sumant Center for Nanoscale Materials Building 440, Room A-127 Materials Scientist Phone: 630-252-4854 Nanofabrication and Devices Group Fax: 630-252-5739 E-mail: [email protected] LinkedIn Profile: http://www.linkedin.com/in/anisumant Argonne National Laboratory 9700 S Cass Ave., Argonne, IL 60439 Ph.D. Electronic Science, University of Pune, India 1998 Education M.Sc. Electronic Science, University of Pune, India 1993 B.Sc. Physics, University of Pune, India 1991 Awards 2018 National Innovation Award from Techconnect on Portable Ultrananocrystalline Diamond based Field Emission Electron Sources for Linear Accelerators and Honors Pacesetter Award, Argonne National Laboratory, 2018 Top 100 finalist Chicago Innovation Award 2017 Pinnacle of Education Award from Board of Governors for Argonne National Laboratory for teaching youth nanotechnology and developing Next Gen STEM Kit 2017 National Innovation Award from TechConnect on developing wafer-scale method to grow single and multilayer graphene on dielectric substrate in 1 min 2016 National Innovation Award from TechConnect on developing graphene-nanodiamond based solution to achieve superlubricity 2014 R&D 100 Award for the development of NanofabLab…in a Box 2014 NASA Tech Brief Magazine Award for NanofabLab…in a Box. 2013 R&D 100 Award for the development of Miraj Diamond Platform 2013 R&D Award for the development of Nanocrystalline diamond Coating for Microdrill 2011 R&D 100 Award for the development of Integrated RF MEMS Switch/CMOS Device based on Ultrananocrystalline Diamond Senior Editor of IEEE-eNano Listed in Who’s Who in America 62nd edition 2008.
    [Show full text]
  • UNIVERSITY of CALGARY Friction and Adhesion of Atomically Thin Films: a Study of Few-Layer Graphene by Peng Gong a THESIS SUBMIT
    UNIVERSITY OF CALGARY Friction and Adhesion of Atomically Thin Films: A Study of Few-layer Graphene by Peng Gong A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING CALGARY, ALBERTA December, 2016 c Peng Gong 2016 Abstract In order to gain better insight on the fundamental mechanisms governing friction and adhesion at the nanoscale, this thesis examines the friction and adhesion properties and mechanisms on the atomically-thin material, graphene. First, through conducting load dependent measurements of friction on mechanical exfoliated graphene samples, the dependence of the friction behaviour on graphene as a function of number of graphene layers, sliding history, environmental humidity, and air exposure time were examined. A mechanism was proposed to fully explain these experimental observations. Secondly, the finite element method (FEM) was applied to investigate the adhesion between a nanoscale tip and graphene covering a silicon substrate. The simulations, contrary to prior experimental results, showed a slight increase in the pull-off force as layer number increased. In addition, it was revealed that the layer-dependent pull-off forces result from the increasing tip- graphene interactions. This work contributes to gaining better insight on the applications to the lubrication mechanisms of graphene. ii Acknowledgments First and foremost, I would like to express my greatest gratitude to my supervisor, Dr. Philip Egberts, who has led me throughout my Master’s studies. I appreciate all the guidance, support, patience, time, ideas, and funding he has provided. Also, sincere thanks to Dr.
    [Show full text]
  • Friction Modifier Additives
    FRICTION MODIFIER ADDITIVES Hugh Spikes Tribology Group, Imperial College London, UK ABSTRACT The need for energy efficiency is leading to the growing use of additives that reduce friction in thin film boundary and mixed lubrication conditions. Several classes of such friction modifier additive exist, the main ones being organic friction modifiers, functionalised polymers, soluble organo-molybdenum additives and dispersed nanoparticles. All work in different ways. This paper reviews these four main types of lubricant friction modifier additive and outlines their history, research and the mechanisms by which they are currently believed to function. Aspects of their behaviour that are still not yet fully understood are highlighted. Keywords: Friction; lubricant additives; OFM; molybdenum additives; functionalised polymers; nanoparticles; boundary lubrication 1. INTRODUCTION In order to reduce energy consumption and thus CO2 emissions it is necessary to increase the energy efficiency of mechanical systems and an important way to achieve this is to design lubricants that give low friction in machine components. One design approach is to optimise liquid lubricant rheology so as to minimise hydrodynamic shear, churning and pumping losses. In practice this often means reducing lubricant viscosity to the lowest possible value consonant with maintaining fluid or mixed film lubrication. Another approach is to add small proportions of friction modifier additives to the lubricant in order to reduce friction in the boundary and mixed lubrication regimes. In practice both of these approaches are best applied concurrently since, as lubricant viscosity is progressively reduced, contacts are separated by thinner and thinner hydrodynamic films and so operate increasingly the regimes where friction modifier additives are effective.
    [Show full text]
  • Professor Robert Carpick
    Mechanical & Aerospace Engineering Colloquium Series Spring 2018 Program Wednesday, February 21, 2018 3:30 – 4:30 p.m. (refreshments/social hour at 4:30) Easton Hub Auditorium (in the Fiber Optics Building) Nanoscale Factors Controlling Friction, Lubrication, and Wear: From 2D Materials to Engine Oil Professor Robert Carpick University of Pennsylvania Abstract: New insights into friction and wear from atomic force microscopy (AFM) and in situ transmission electron microscopy (TEM) are presented. First, nanocontacts with 2-dimensional materials like graphene are discussed, where friction depends on the number of layers. An initial model attributing this to puckering [1] is now enhanced by molecular dynamics (MD) simulations showing a strong role of energy barriers due to interfacial pinning and commensurability [2]. Second, the origins of nanoscale wear using a novel combined TEM-AFM instrument is discussed. Wear of silicon sliding on diamond follows a kinetic model where energy barriers for chemical bonding are strongly affected by stress [3]. Finally, I will discuss very recent results where AFM is used to develop new insights into practical lubrication mechanisms. We study zinc dialkyldithiophosphates (ZDDPs), which are highly effective anti-wear additive molecules used nearly universally in engine oils. We developed a novel AFM-based approach for visualizing and quantifying the formation of ZDDP anti-wear films in situ at the nanoscale. Film growth depends exponentially on temperature and stress, which can explain the known graded- structure of the films. Our findings provide new insights into the mechanisms of formation of ZDDP derived anti- wear films and the control of lubrication in automotive applications [4].
    [Show full text]
  • Materials Scie Materials
    Imperial College Inaugur <\\ liHt'JJAVHvin s^ 1111n Materials Scie IlVb iilll Materials Eng IJIfifi»JIJILT Editor: Don W. P SJA&/ mperiaJ College Pre^a Imperial College Inaugural Lectures in Materials Science and Materials Engineering Imperial College Inaugural Lectures in Materials Science and Materials Engineering Editor Don W. Pashley Imperial College, UK Imperial College Press Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. P O Box 128, Farrer Road, Singapore 912805 USA office: Suite IB, 1060 Main Street, River Edge, NJ 07661 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. IMPERIAL COLLEGE INAUGURAL LECTURES IN MATERIALS SCIENCE AND MATERIALS ENGINEERING Copyright © 2001 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 1-86094-106-0 Printed in Singapore. PREFACE Newly appointed or newly promoted professors at Imperial College are required to give an inaugural lecture on a subject of their choosing. The professors inevitably talk about areas of their subject on which they are expert, but the lectures are presented in such a way that they appeal to a wide ranging audience, from those who have little knowledge of the subject to those who are comparatively expert in the field.
    [Show full text]
  • Virtual Annual Meeting & Exhibition
    Society of Tribologists and Lubrication Engineers Virtual Annual Meeting & Exhibition Program Guide May 17-20, 2021 Plus: Annual Meeting Exhibitor Directory, pg. 75 WE’RE BRINGING THE LUBRICANT INDUSTRY’S PREMIER EVENT TO YOU! #STLE2021 Contents 04 Welcome Message 19 075 2021 STLE Annual Meeting 05 Networking & Special Events MONDAY OVERVIEW Exhibitor Directory 05 Annual Meeting Exhibitors Program Time Grid Schedule, pg. 20 085 Early Career & Student Posters 06 Know Before You Go 24 Monday Technical Sessions & 088 2020-2021 STLE Annual Meeting 07 Annual Meeting Sponsors Commercial Marketing Forum Committees & Industry Councils 08 Program Schedule at a Glance • STLE Board of Directors 10 Keynote & Plenary Speakers 31 • Annual Meeting Program TUESDAY OVERVIEW 14 Education Courses Committee Program Time Grid Schedule, pg. 32 16 2021 STLE Award Recipients • Annual Meeting Education 36 Tuesday Technical Sessions & Course Committee Commercial Marketing Forum • Awards Committee • Education Committee 47 • Fellows Committee WEDNESDAY OVERVIEW • Technical Committees/Industry Program Time Grid Schedule, pg. 48 Councils 52 Wednesday Technical Sessions & • Student Posters Commercial Marketing Forum 096 Committee Business Meetings 63 098 Participants Index THURSDAY OVERVIEW 102 Advertisers Index Program Time Grid Schedule, pg. 64 68 Thursday Technical Sessions & Commercial Marketing Forum The 2021 STLE Virtual Annual Meeting & Exhibition is sponsored by the Society of Tribologists and Lubrication Engineers, an international organization headquartered at 840 Busse Highway, Park Ridge, Illinois (USA) 60068-2376. Telephone: (847) 825-5536. Fax: (847) 825-1456. Email: [email protected]. Web: www.stle.org. STLE is a not-for-profit professional society founded in 1944 to advance the science of tribology and best practices in lubrication engineering.
    [Show full text]
  • Investigation of Industrial Gear Oils: Insights from Complementary Surface and Subsurface Characterisation
    Investigation of industrial gear oils: insights from complementary surface and subsurface characterisation A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2018 Aduragbemi J. Adebogun School of Materials Contents List of Tables ................................................................................................................. 7 List of Figures ............................................................................................................... 8 Abstract ...................................................................................................................... 13 Declaration ................................................................................................................. 14 Copyright Statement .................................................................................................. 14 Acknowledgments ...................................................................................................... 15 1 Introduction ....................................................................................................... 16 1.1 Research motivation and objectives ........................................................... 16 1.2 Structure of the thesis ................................................................................. 18 2 Literature review ................................................................................................ 20 2.1 Tribology as a scientific field ......................................................................
    [Show full text]
  • Tuesday Program Overview
    Overview Tuesday, May 18, 2021 8:30 – 10 am 2 – 6 pm Tuesday Keynote Session Tuesday Technical Sessions: Keynote Speaker: • 4A – Condition Monitoring II • Dr. Melissa Orme, Vice President, Boeing Additive Manufacturing • 4B – Additive Manufacturing I: Special Symposium • 4C – Nonferrous Metals II: Tribology and Biobased Session in 10 – 10:30 am Memory of Dr. Girma Biresaw Networking Break & Special Programming • 4D – Materials Tribology III 10 am – 3:30 pm • 4E – Metalworking Fluids IV Virtual Exhibits and Student Posters • 4F – Nanotribology IV 10:30 am – 1 pm • 4G – Rolling Element Bearings II Tuesday Technical Sessions: • 4H – 2D Materials/Superlubricity: Material Tribology & • 3A – Condition Monitoring I Nanotribology Joint Session I • 3B – Lab to Field: Bridging the Gap Between Bench and Engine: • 4I – Commercial Marketing Forum IV Engine & Drivetrain & Lubrication Fundamentals Joint Session I 3 – 3:30 pm • 3C – Nonferrous Metals I Networking Break & Exhibitor Appreciation • 3D – Materials Tribology II • 3E – Metalworking Fluids III • 3F – Nanotribology III • 3G – Rolling Element Bearings I Trade Show Hours: • 3H – Lubrication Fundamentals I: Non-Tribological Oil Properties • Monday, May 17: 10 am – 4 pm • 3I – Commercial Marketing Forum III • Tuesday, May 18: 10 am – 3:30 pm 1 – 2 pm • Wednesday, May 19: 10 am – 3:30 pm STLE Virtual Business Meeting • Thursday, May 20: 10 am – 3:30 pm (All times listed are Eastern Daylight Time) www.stle.org | STLE 2021 Virtual Annual Meeting & Exhibition | 31 Technical Sessions Time Grids – Tuesday, May 18, 2021 TIME SESSION 3A SESSION 3B SESSION 3C Condition Monitoring I Engine/Drivetrain/Lubrication Fundamentals Nonferrous Metals I Virtual Meeting Room 1 Virtual Meeting Room 2 Virtual Meeting Room 3 10:30 – 11 am Monitoring of EGR Diesel Engines Lubricant: Should the Correlation of Engine Oil Degradation in Large Scale A Non-Ferrous Study Investigating the Lubricity and Nitration be Considered?, J.
    [Show full text]