Transcriptome Analysis of Vaccine Responses to Francisella Tularensis Or Venezuelan Equine Encephalitis Virus Rebecca Ann Erwin-Cohen Walden University

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptome Analysis of Vaccine Responses to Francisella Tularensis Or Venezuelan Equine Encephalitis Virus Rebecca Ann Erwin-Cohen Walden University Walden University ScholarWorks Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies Collection 2016 Transcriptome Analysis of Vaccine Responses to Francisella Tularensis or Venezuelan Equine Encephalitis Virus Rebecca Ann Erwin-Cohen Walden University Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations Part of the Epidemiology Commons, Public Health Education and Promotion Commons, and the Systems Biology Commons This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please contact [email protected]. Walden University College of Health Sciences This is to certify that the doctoral dissertation by Rebecca Ann Erwin-Cohen has been found to be complete and satisfactory in all respects, and that any and all revisions required by the review committee have been made. Review Committee Dr. Ji Shen, Committee Chairperson, Public Health Faculty Dr. Bin Cai, Committee Member, Public Health Faculty Dr. James Rohrer, University Reviewer, Public Health Faculty Chief Academic Officer Eric Riedel, Ph.D. Walden University 2016 Abstract Transcriptome Analysis of Vaccine Responses to Francisella Tularensis or Venezuelan Equine Encephalitis Virus by Rebecca A. Erwin-Cohen MS, Hood College, 1995 BS, Gannon University, 1990 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Public Health -- Epidemiology Walden University December 2016 Abstract The lack of vaccines for emerging and re-emerging diseases highlights technical gaps and indicates a need for innovative approaches to produce new vaccines. Vaccines may be improved by knowledge of host responses to vaccination, disease pathogenesis, and the effect of age and genetics on vaccine outcome. This study’s purpose was to quantitatively assess the molecular epidemiology of Francisella tularensis (Ft) and Venezuelan Equine Encephalitis Virus (VEEV). Study results support the Epidemiology Nexus model which holds that association of changes in gene expression to vaccination facilitate understanding the mechanisms of immune development and link public health and disease epidemiology. My research questions assessed the relationship between gene expression following vaccination, the relationship between age and vaccine response, and the association between Human Leukocyte Antigen (HLA) allele and vaccine response. The study was a novel secondary analysis of human data subjected to ANOVA to measure association between treatment and outcome, correlation to measure association of age with vaccine outcome, and Mann-Whitney U tests to measure association of HLA allele with vaccine outcome. Both Ft and VEEV vaccination elicited significant changes in gene expression. A highly positive relationship between age and vaccine outcome was shown for VEEV. The results may affect positive social change by contributing to a growing compendium of evidence of vaccine efficacy mechanisms that may function to assure the public of vaccine safety, combat vaccine hesitancy, and promote vaccine acceptance, as well as contribute mechanistic knowledge to reduce developmental costs of novel vaccines. Transcriptome Analysis of Vaccine Responses to Francisella Tularensis or Venezuelan Equine Encephalitis Virus by Rebecca A. Erwin-Cohen MS, Hood College, 1995 BS, Gannon University, 1990 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Public Health - Epidemiology Walden University December 2016 Dedication I dedicate this work to my family; my beloved husband, Jeffrey, and our wonderful daughter, Aislinn. Their love, support, and encouragement made it possible to begin this scholarly journey and to see it through to the conclusion. I am grateful for the love and companionship of Daisy, Sookie, Walter, and BabbaLooey. I am also grateful for the encouragement and support of many friends, family, and colleagues, who excused my absences and absent-mindedness, lifted my spirits when down, and at the end of it all still want to spend time with me. Thank you all for supporting me. Acknowledgments I will be eternally grateful for the support and guidance of my committee. I would like to express my sincere thanks and gratitude to Dr. Ji Shen for his patience, wisdom, and guidance throughout the process of writing this dissertation; Dr. Bin Cai for his guidance on statistical analyses and interpretations; and Dr. James Rohrer for guidance and a keen eye for adhering to the guidelines and expectations of Walden. I would like to thank Dr. Luis DaSilva for his mentoring, for teaching me transcriptome analysis, and for being one of the finest human beings I’ve ever had the good fortune to meet. Finally, I would like to thank COL Shelley Honnold for her mentoring, encouragement, critical review of chapters, and friendship. The complete dissertation has been cleared for public presentation and dissemination under USAMRIID approval PR-17-009. The following human use protocols were associated with the work described herein: FY-05-01, FY-06-17. USAMRIID work has been funded through Department of Defense grant #05-4-8I-052 and Defense Threat Reduction Agency grant # 8.10022_05_RD_B. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Army. Table of Contents List of Tables ..................................................................................................................... vi List of Figures .................................................................................................................. viii Chapter 1: Introduction to the Study ....................................................................................1 Introduction ....................................................................................................................1 Background ....................................................................................................................3 General Overview of Francisella Tularensis ......................................................... 4 General Overview of Venezuelan Equine Encephalitis Virus .............................. 10 Problem Statement .......................................................................................................15 Study Purpose ..............................................................................................................18 Research Questions and Hypotheses ...........................................................................19 Research Question 1 ............................................................................................. 19 Research Question 2 ............................................................................................. 19 Research Question 3 ............................................................................................. 20 Research Question 4 ............................................................................................. 20 Conceptual Framework ................................................................................................21 Nature of the Study ......................................................................................................22 Definitions....................................................................................................................24 Assumptions .................................................................................................................26 Scope and Delimitations. .............................................................................................26 Limitations ...................................................................................................................27 Significance..................................................................................................................28 i Summary ......................................................................................................................30 Chapter 2: Literature Review .............................................................................................32 Problem Addressed by the Study .................................................................................32 Purpose of the Study ....................................................................................................32 Literature Relevant to the Problem ..............................................................................33 Literature Search Strategy............................................................................................34 Conceptual Framework ................................................................................................35 Theoretical Concepts ............................................................................................ 35 How the Current Study May Benefit From the Epidemiology Nexus Concept ..................................................................................................... 42 Literature Review Related to Key Variables and Concepts .........................................44 Previous Transcriptomic Studies of Human Responses to Ft or VEEV: Relation to Key Study Variables............................................................... 44 Strengths and
Recommended publications
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • The UBE2L3 Ubiquitin Conjugating Enzyme: Interplay with Inflammasome Signalling and Bacterial Ubiquitin Ligases
    The UBE2L3 ubiquitin conjugating enzyme: interplay with inflammasome signalling and bacterial ubiquitin ligases Matthew James George Eldridge 2018 Imperial College London Department of Medicine Submitted to Imperial College London for the degree of Doctor of Philosophy 1 Abstract Inflammasome-controlled immune responses such as IL-1β release and pyroptosis play key roles in antimicrobial immunity and are heavily implicated in multiple hereditary autoimmune diseases. Despite extensive knowledge of the mechanisms regulating inflammasome activation, many downstream responses remain poorly understood or uncharacterised. The cysteine protease caspase-1 is the executor of inflammasome responses, therefore identifying and characterising its substrates is vital for better understanding of inflammasome-mediated effector mechanisms. Using unbiased proteomics, the Shenoy grouped identified the ubiquitin conjugating enzyme UBE2L3 as a target of caspase-1. In this work, I have confirmed UBE2L3 as an indirect target of caspase-1 and characterised its role in inflammasomes-mediated immune responses. I show that UBE2L3 functions in the negative regulation of cellular pro-IL-1 via the ubiquitin- proteasome system. Following inflammatory stimuli, UBE2L3 assists in the ubiquitylation and degradation of newly produced pro-IL-1. However, in response to caspase-1 activation, UBE2L3 is itself targeted for degradation by the proteasome in a caspase-1-dependent manner, thereby liberating an additional pool of IL-1 which may be processed and released. UBE2L3 therefore acts a molecular rheostat, conferring caspase-1 an additional level of control over this potent cytokine, ensuring that it is efficiently secreted only in appropriate circumstances. These findings on UBE2L3 have implications for IL-1- driven pathology in hereditary fever syndromes, and autoinflammatory conditions associated with UBE2L3 polymorphisms.
    [Show full text]
  • Structural Basis for Autoactivation of Human Mst2 Kinase and Its Regulation by RASSF5
    Structure Article Structural Basis for Autoactivation of Human Mst2 Kinase and Its Regulation by RASSF5 Lisheng Ni,1 Sheng Li,1,4 Jianzhong Yu,3 Jungki Min,1,5 Chad A. Brautigam,2 Diana R. Tomchick,2 Duojia Pan,3 and Xuelian Luo1,* 1Department of Pharmacology 2Department of Biophysics The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA 3Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 4Present address: Biologics Department, Shanghai ChemPartner Co. Ltd., Shanghai 201203, China 5Present address: Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.str.2013.07.008 SUMMARY dor (Sav1), the NDR family kinases Lats1 and Lats2 (Lats1/2), and the adaptor protein Mob1. They form a central kinase The tumor-suppressive Hippo pathway controls cascade to transduce signals from cell-surface receptors tissue homeostasis through balancing cell prolifera- (Avruch et al., 2012; Hergovich, 2012). tion and apoptosis. Activation of the kinases Mst1 In the canonical Hippo kinase cascade, Mst1/2, in complex and Mst2 (Mst1/2) is a key upstream event in this with Sav1, phosphorylate and activate the Lats1/2-Mob1 com- pathway and remains poorly understood. Mst1/2 plexes, which then phosphorylate the transcriptional coactivator and their critical regulators RASSFs contain Yes-associated protein (YAP), a major downstream target of the Hippo pathway (Dong et al., 2007; Hao et al., 2008; Hong and Salvador/RASSF1A/Hippo (SARAH) domains that Guan, 2012; Huang et al., 2005; Zhao et al., 2007).
    [Show full text]
  • STRIPAK Complexes in Cell Signaling and Cancer
    Oncogene (2016), 1–9 © 2016 Macmillan Publishers Limited All rights reserved 0950-9232/16 www.nature.com/onc REVIEW STRIPAK complexes in cell signaling and cancer Z Shi1,2, S Jiao1 and Z Zhou1,3 Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de) phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer. Oncogene advance online publication, 15 February 2016; doi:10.1038/onc.2016.9 INTRODUCTION in the central nervous system and STRN4 is mostly abundant in Recent proteomic studies identified a group of novel multi- the brain and lung, whereas STRN3 is ubiquitously expressed in 5–9 component complexes named striatin (STRN)-interacting phos- almost all tissues. STRNs share a
    [Show full text]
  • The Discovery of a Novel, Ras-Mediated NORE1A/PMLIV Tumor Suppressor Complex." (2016)
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2016 The discovery of a novel, Ras-mediated NORE1A/ PMLIV tumor suppressor complex. Jessica Mezzanotte Sharpe University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Medical Biochemistry Commons, and the Medical Molecular Biology Commons Recommended Citation Sharpe, Jessica Mezzanotte, "The discovery of a novel, Ras-mediated NORE1A/PMLIV tumor suppressor complex." (2016). Electronic Theses and Dissertations. Paper 2539. https://doi.org/10.18297/etd/2539 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. THE DISCOVERY OF A NOVEL, RAS-MEDIATED NORE1A/PMLIV TUMOR SUPPRESSOR COMPLEX By: Jessica Mezzanotte Sharpe B.A., Vanderbilt University, 2010 M.S., University of Louisville, 2014 A Dissertation Submitted to the Faculty of the School of Medicine of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry and Molecular Biology Department of Biochemistry and Molecular Genetics University of Louisville Louisville, KY August, 2016 Copyright 2016 by Jessica Mezzanotte Sharpe All Rights Reserved THE DISCOVERY OF A NOVEL, RAS-MEDIATED NORE1A/PMLIV TUMOR SUPPRESSOR COMPLEX By Jessica Mezzanotte Sharpe B.A., Vanderbilt University, 2010 M.S., University of Louisville, 2014 A Dissertation Approved on June 8, 2016 by the following Dissertation Committee: __________________________________________ Dr.
    [Show full text]
  • Gene Section Short Communication
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Short Communication RASSF5 (Ras association (RalGDS/AF -6) domain family member 5) Lee Schmidt, Geoffrey J Clark University of Louisville, Room 119C, Baxter II Research Building, 580 S Preston Street, Louisville, KY 40202, USA (LS, GJC) Published in Atlas Database: October 2011 Online updated version : http://AtlasGeneticsOncology.org/Genes/RASSF5ID42059ch1q32.html DOI: 10.4267/2042/47279 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2012 Atlas of Genetics and Cytogenetics in Oncology and Haematology Identity DNA/RNA Other names: MGC10823, MGC17344, Maxp1, Description NORE1, NORE1A, NORE1B, RAPL, RASSF3 The human gene for RASSF5 is 81 kb in length and is HGNC (Hugo): RASSF5 located on chromosome 1(q32.1). The gene can Location: 1q32.1 produce 4 protein isoforms, two via differential exon usage, a third via differential promoter usage and the genesis of the 4 th (which can be found as an EST clone) is not yet clear. The largest isoform, A, is 418 amino acids long and has a molecular weight of about 47 kD. The protein structure of RASSF5A contains a proline- rich region at the N-terminus which contains potential SH3 binding sites and a nuclear localization signal. This is followed by a cystein rich domain, sometimes Note referred to as a zinc finger. Next is the Ras association Murine RASSF5 originally named Nore1a. Nore1B domain and this is followed by sequence containing the independently identified and designated RAPL. Rat SARAH motif required for binding to the pro-apoptotic RASSF5 also cloned independently and designated kinases MST1 and MST2.
    [Show full text]
  • The Expression of RUNDC3B Is Associated with Promoter Methylation in Lymphoid Malignancies
    The expression of RUNDC3B is associated with promoter methylation in lymphoid malignancies Running Head: Epigenetic regulation of RUNDC3B Keywords: RUNDC3B, DNA methylation, lymphoma, leukemia, B-cell, gene expression Dane W. Burmeister1, Emily H. Smith1,2, Robert T. Cristel1, Stephanie D. McKay1,3, Huidong Shi4, Gerald L. Arthur1, J. Wade Davis5,6, and Kristen H. Taylor1,* 1Department of Pathology and Anatomical Sciences; University of Missouri; Columbia, MO USA; 2Department of Dermatology; University of Michigan Health System; Ann Arbor, MI USA; 3Department of Animal Science; University of Vermont; Burlington, VT USA; 4Department of Biochemistry and Molecular Biology; Georgia Regents University; Augusta, GA USA; 5Department of Health Management and Informatics; University of Missouri; Columbia, MO USA; 6Department of Statistics; University of Missouri, Columbia, MO USA *Corresponding author: Kristen H. Taylor PhD Department of Pathology and Anatomical Sciences One Hospital Drive University of Missouri-Columbia Columbia, Missouri 65212 USA E-mail: [email protected] Telephone: 573-882-5523 FAX: 573-884-4612 This work was supported by a National Institute of Health grant NCI R00 CA132784 (K.H. Taylor) No potential conflicts exist for the authors of this manuscript. Word Count: 2991 This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/HON.2238 1 This article is protected by copyright. All rights reserved. Abstract DNA methylation is an epigenetic modification that plays an important role in regulation of gene expression.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Insights from reconstructing cellular networks in transcription, stress, and cancer Permalink https://escholarship.org/uc/item/6s97497m Authors Ke, Eugene Yunghung Ke, Eugene Yunghung Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Insights from Reconstructing Cellular Networks in Transcription, Stress, and Cancer A dissertation submitted in the partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Eugene Yunghung Ke Committee in charge: Professor Shankar Subramaniam, Chair Professor Inder Verma, Co-Chair Professor Web Cavenee Professor Alexander Hoffmann Professor Bing Ren 2012 The Dissertation of Eugene Yunghung Ke is approved, and it is acceptable in quality and form for the publication on microfilm and electronically ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Co-Chair ________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION To my parents, Victor and Tai-Lee Ke iv EPIGRAPH [T]here are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there
    [Show full text]
  • The Yeast-Hyphal Transition of Candida Albicans
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 June 2021 doi:10.20944/preprints202106.0386.v1 Review From Jekyll to Hyde: The yeast-hyphal transition of Candida albicans Eve Wai Ling Chow 1, Li Mei Pang 2 and Yue Wang 1,3* 1 Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673; [email protected] 2 National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, 5 Second Hospi- tal Ave, Singapore 168938; [email protected] 3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medi- cal Drive, Singapore 117597 * Correspondence: [email protected] Abstract: Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmen- tal cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a signifi- cant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction path- ways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morpho- genesis.
    [Show full text]
  • Book of Abstracts
    13th Mee�ng of the 13. srečanje Slovenian Biochemical Society Slovenskega biokemijskega društva with Interna�onal Par�cipa�on z mednarodno udeležbo Book of Abstracts 24 ‐ 27 September 2019 Dobrna, Slovenia 13th Meeting of the Slovenian Biochemical Society with International Participation 13. srečanje Slovenskega biokemijskega društva z mednarodno udeležbo Book of Abstracts Knjiga povzetkov Dobrna, 24 ‐ 27 September 2019 i The 13th Meeting of the Slovenian Biochemical Society with International Participation is organised by the Slovenian Biochemical Society and the National Institute of Chemistry, Ljubljana, Slovenia. 13th Meeting of the Slovenian Biochemical Society with International Participation 13. srečanje Slovenskega biokemijskega društva z mednarodno udeležbo Editor: Matic Kisovec Technical Editors: Anja Golob‐Urbanc, Gašper Šolinc Published by: Slovenian Biochemical Society, Ljubljana Reviewed by: Matic Legiša, Anja Golob‐Urbanc, Gašper Šolinc Cover Design by: Matic Kisovec (graphics from vecteezy, freepik, smashicons) Organised by: National Institute of Chemistry, Ljubljana, Slovenia and the Slovenian Biochemical Society Printed by: Tiskarna knjigoveznica Radovljica d.o.o., Radovljica Circulation: 250 Complimentary publication CIP ‐ Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 577.1(082) SLOVENIAN Biochemical Society. Meeting with International Participation (13 ; 2019 ; Dobrna) Book of abstracts = Knjiga povzetkov / 13th Meeting of the Slovenian Biochemical Society with International Participation
    [Show full text]
  • RASSF6; the Putative Tumor Suppressor of the RASSF Family
    Review RASSF6; the Putative Tumor Suppressor of the RASSF Family Hiroaki Iwasa 1, Xinliang Jiang 2 and Yutaka Hata 1,2,* Received: 2 November 2015; Accepted: 1 December 2015; Published: 9 December 2015 Academic Editor: Reinhard Dammann 1 Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; [email protected] 2 Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5803-5164; Fax: +81-3-5803-0121 Abstract: Humans have 10 genes that belong to the Ras association (RA) domain family (RASSF). Among them, RASSF7 to RASSF10 have the RA domain in the N-terminal region and are called the N-RASSF proteins. In contradistinction to them, RASSF1 to RASSF6 are referred to as the C-RASSF proteins. The C-RASSF proteins have the RA domain in the middle region and the Salvador/RASSF/Hippo domain in the C-terminal region. RASSF6 additionally harbors the PSD-95/Discs large/ZO-1 (PDZ)-binding motif. Expression of RASSF6 is epigenetically suppressed in human cancers and is generally regarded as a tumor suppressor. RASSF6 induces caspase-dependent and -independent apoptosis. RASSF6 interacts with mammalian Ste20-like kinases (homologs of Drosophila Hippo) and cross-talks with the Hippo pathway. RASSF6 binds MDM2 and regulates p53 expression. The interactions with Ras and Modulator of apoptosis 1 (MOAP1) are also suggested by heterologous protein-protein interaction experiments. RASSF6 regulates apoptosis and cell cycle through these protein-protein interactions, and is implicated in the NF-κB and JNK signaling pathways.
    [Show full text]