2012 Diesel Multiple Unit.Indd

Total Page:16

File Type:pdf, Size:1020Kb

2012 Diesel Multiple Unit.Indd Diesel Multiple Unit Self-propelled Railcar Project Scope Th e Alaska Railroad Corporation (ARRC) re- ceived a new commuter-style self-propelled railcar in April 2009. Colorado Railcar Manufacturing (CRM) began construction in late 2007. Named Chugach Explorer the diesel multiple unit (DMU) was constructed as part of the Chugach Forest Whistle Stop Service, a joint project between the ARRC and the U.S. Forest Service (USFS). The Forest Service-funded DMU arrives in spring 2009. Th e bi-level DMU is one of about a dozen such railcars in the country that meet stringent federal crash worthiness design standards required of passenger cars that operate on tracks shared with freight trains. Th e DMU measures 89 feet long, 19 feet 9.75 inches tall, and weighs 225,000 pounds. Capacity is 90 seats upstairs and 20 seats downstairs. Two additional non-revenue seats are Americans with Disabilities Act (ADA) compliant. Exits on either side of the car are equipped with a wheelchair lift. Th e car features a full service galley to support onboard food service. Two 600 horse- Chugach Explorer upstairs seating features large windows. power engines enable the DMU to pull two ad- ditional rail coaches. Th e DMU has been clocked as fast as 110 mph, but will operate at maximum speeds of 60 mph on the Alaska Railroad. Commuter rail service in Southcentral Alaska would require a minimum of four DMUs. Th e likely manufacturer is US Railcar, Inc., which aquired CRM. Project Cost and Funding Th e Chugach Explorer was funded primarily by a $4.7 million USFS grant adminstered through the Federal Transit Administration (FTA) in 2007. Chugach Explorer has a full galley for onboard food service. An additional $648,000 was funded by FTA and ARRC. Th e total cost was $5.35 million. ARRC continues to seek programs to fund the purchase of additional DMUs. Commuter rail DMUs may be confi gured differently. 12/28/2011.
Recommended publications
  • Investor Presentation 2019
    Eversholt Rail Investor Presentation 2nd December 2019 Contents • Strategic context • Refranchising, opportunities and challenges • New and existing fleet management • Financial overview • Conclusions • Q&A 1 Executive summary • 2015-2018 characterised by investment to grow balance sheet • General election result and Williams Review should set the industry’s direction of travel over the medium term • Business focused on long-term value while addressing strategic challenges and opportunities • Contracted new build programmes coming to a very successful conclusion: C802 fleet fully delivered, C397 in advanced state of delivery and C195/C331 fleets progressing well • Management effort shifting to maximising opportunities for fleets with leases expiring in the near future and exploring attractiveness of alternative growth opportunities 2 Strategic context Strategy Great Trains, Great People, Great Future To be recognised as the expert provider of transport asset financing and Vision asset management for the long term Two strands to our strategy: 1 Optimise our current portfolio through maximising asset utilisation and investing to enhance residual value (RV) 2 Developing opportunities for further growth in transport sector Maintain investment discipline: we will continue to be selective in choosing growth opportunities ensuring that they are the right assets for our portfolio Great Trains Great Great People Great Great FutureGreat C802 all units in service Company offsite C397 in service 2019 4 2019 – pressures across the rail industry Reshaping
    [Show full text]
  • Bilevel Rail Car - Wikipedia
    Bilevel rail car - Wikipedia https://en.wikipedia.org/wiki/Bilevel_rail_car Bilevel rail car The bilevel car (American English) or double-decker train (British English and Canadian English) is a type of rail car that has two levels of passenger accommodation, as opposed to one, increasing passenger capacity (in example cases of up to 57% per car).[1] In some countries such vehicles are commonly referred to as dostos, derived from the German Doppelstockwagen. The use of double-decker carriages, where feasible, can resolve capacity problems on a railway, avoiding other options which have an associated infrastructure cost such as longer trains (which require longer station Double-deck rail car operated by Agence métropolitaine de transport platforms), more trains per hour (which the signalling or safety in Montreal, Quebec, Canada. The requirements may not allow) or adding extra tracks besides the existing Lucien-L'Allier station is in the back line. ground. Bilevel trains are claimed to be more energy efficient,[2] and may have a lower operating cost per passenger.[3] A bilevel car may carry about twice as many as a normal car, without requiring double the weight to pull or material to build. However, a bilevel train may take longer to exchange passengers at each station, since more people will enter and exit from each car. The increased dwell time makes them most popular on long-distance routes which make fewer stops (and may be popular with passengers for offering a better view).[1] Bilevel cars may not be usable in countries or older railway systems with Bombardier double-deck rail cars in low loading gauges.
    [Show full text]
  • Diesel Multiple Unit (DMU) Fact Sheet February 2016
    Oasis Rail Transit Diesel Multiple Unit (DMU) Fact Sheet February 2016 Approximately 17 miles in length, the proposed Oasis Rail Transit corridor extends between downtown Cincinnati and the City of Milford and would initially be served by seven stations. In addition to providing a new rail-based regional transportation option serving Eastern Corridor communities, the Oasis line would also offer new opportunities for community enhancement and development. PREFERRED RAIL VEHICLE TYPE: DMU One of the most prominent features considered for the Oasis line is the actual rail vehicle (or train) that would transport passengers to their destinations. Early studies completed for the Eastern Corridor Program recommended that self-propelled passenger coaches be considered as the preferred rail vehicle type. Further studies explored in more detail the technologies available for the line including: • Diesel-powered locomotives pulling single or bi-level passenger coaches • Electrically-powered streetcar-type vehicles • Electrically-powered light rail vehicles call Electric Multiple Units (EMU/LRT) • Diesel-powered passenger cars (Diesel Multiple Units or DMUs) The results of those studies confirmed that diesel-powered passenger cars, or DMUs, would be the most appropriate technology for the Oasis Rail Transit line. Features of DMUs that made it stand out beyond other rail vehicle choices included: • DMUs are flexible in terms of operational capabilities and can efficiently serve the 17-mile Oasis corridor – which is too short for traditional “push-pull” locomotives and coach cars but More information about rail generally too long for streetcar-type vehicles – and efficiently vehicles is available in the Oasis manage the spacing between stations.
    [Show full text]
  • Realizing the Potential of Diesel Multiple-Unit Technology
    00_TRN_286_TRN_286 7/11/13 5:04 PM Page 11 Realizing the Potential of Diesel Multiple-Unit Technology Research Overcomes Barriers THOMAS C. CORNILLIE P esigners of railroad vehicles long have recognized HOTO : T D the efficiencies achievable by locating propulsion HOMAS within a passenger-carrying vehicle, eliminating the need C. C for a separate locomotive. Although various designs of ORNILLIE vehicles powered by steam- and gasoline-fueled engines came into service starting in the 1890s, “diesel multiple unit” (DMU) emerged as a term-of-art in the late 1930s to describe vehicles that could operate as single cars or be combined to form a longer train. For the past 60 years, the rail diesel car (RDC) has epit- omized DMU technology in North America. The Budd Company of Philadelphia built nearly 400 RDCs between 1949 and 1962. These cars quickly gained a reputation for The Denton County Transportation Authority operates DMU vehicles between Denton, Texas, and a connection with the reliability, for adaptability to a range of services, and for Dallas Area Rapid Transit System at Carrolton. Couplings that the ease of making incremental technological upgrades. consolidate power and control connections into a single As federal policy structures for supporting transit couple—a standard feature on current DMU designs— investments solidified in the 1970s, DMU technology facilitate adapting train configuration to ridership demand. offered a way to improve the efficiency of commuter rail service. Revenue service demonstrations of European the intent of FRA crashworthiness regulations, coupled DMUs were carried out with federal funding; however, with regulatory reforms, has opened the door in Ameri- these efforts did not lead to the deployment of new tech- can and Canadian cities to DMUs incorporating proven nology.
    [Show full text]
  • North Wales Coastal Extension
    Train Simulator – North Wales Coastal Extension North Wales Coastal Extension: Crewe - Holyhead © Copyright Dovetail Games 2019, all rights reserved Release Version 1.0 Page 1 Train Simulator – North Wales Coastal Extension Contents 1 Route Map ............................................................................................................................................ 5 2 Rolling Stock ........................................................................................................................................ 6 3 Driving the Class 175 'Coradia' ............................................................................................................ 8 Cab Controls ....................................................................................................................................... 8 Key Layout .......................................................................................................................................... 9 4 Class 175 'Coradia' Systems ............................................................................................................. 10 DSD ................................................................................................................................................... 10 DRA ................................................................................................................................................... 10 Manual Door Control ........................................................................................................................
    [Show full text]
  • Accessibility in Rail Facilities
    9/7/2017 Accessibility in Rail Facilities Kenneth Shiotani Senior Staff Attorney National Disability Rights Network 820 First Street Suite 740 Washington, DC 20002 (202) 408-9514 x 126 [email protected] September 2017 1 ADA Transportation Provisions Making Transportation Accessible was a major focus of the statutory provisions of the ADA PART B - Actions Applicable to Public Transportation Provided by Public Entities Considered Discriminatory [Subtitle B] SUBPART I - Public Transportation Other Than by Aircraft or Certain Rail Operations [Part I] 42 U.S.C. § 12141 – 12150 Definitions – fixed route and demand responsive, requirements for new, used and remanufactured vehicles, complementary paratransit, requirements in new facilities and alterations of existing facilities and key stations SUBPART II - Public Transportation by Intercity and Commuter Rail [Part II] 42 U.S.C. § 12161- 12165 Detailed requirements for new, used and remanufactured rail cars for commuter and intercity service and requirements for new and altered stations and key stations 2 1 9/7/2017 What Do the DOT ADA Regulations Require? Accessible railcars • Means for wheelchair users to board • Clear path for wheelchair user in railcar • Wheelchair space • Handrails and stanchions that do create barriers for wheelchair users • Public address systems • Between-Car Barriers • Accessible restrooms if restrooms are provided for passengers in commuter cars • Additional mode-specific requirements for thresholds, steps, floor surfaces and lighting 3 What are the different ‘modes’ of passenger rail under the ADA? • Rapid Rail (defined as “Subway-type,” full length, high level boarding) 49 C.F.R. Part 38 Subpart C - NYCTA, Boston T, Chicago “L,” D.C.
    [Show full text]
  • Potentials of Alternative Propulsion Systems for Railway Vehicles – a Techno-Economic Evaluation
    2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER) Potentials of Alternative Propulsion Systems for Railway Vehicles – A Techno-Economic Evaluation Johannes Pagenkopf, M.Sc. Stefan Kaimer, M.Sc. German Aerospace Center, German Aerospace Center, Institute of Vehicle Concepts, Institute of Vehicle Concepts, Rutherfordstraße 2 Rutherfordstraße 2 12489 Berlin, Germany 12489 Berlin, Germany Email: [email protected] Email: [email protected] Abstract—This paper discusses alternative propulsion First, relevant alternative propulsion systems are briefly systems for heavy railway vehicles. First, edge conditions discussed. Then, the drivetrain’s potentials and drawbacks such as drivers and roadblocks for the implementation of in terms of technical, economical and operational aspects alternative propulsions in railway vehicles are discussed. For are briefly addressed with a particular focus on battery operations on a non-electrified railway route, the required electric multiple units (BEMU) and fuel cell multiple units main propulsion components of a battery electric multiple unit and of a fuel cell multiple unit are roughly dimensioned (FCMU). and economically compared with a benchmark diesel In the subsequent case study, the drivetrains of a multiple unit, the BR 612 of Deutsche Bahn. The non- BEMU and a FCMU are roughly designed and electrified route from Ulm to Oberstdorf was considered as a economically evaluated against a conventional diesel reference route for the simulation and drivetrain layout. Our multiple unit (DMU). analysis finds that alternative drive concepts hold a high potential for future railway vehicles, depending on the boundary conditions. III. ALTERNATIVE PROPULSION SYSTEMS IN (HEAVY) RAIL SYSTEMS Keywords — railway; life cycle costs; alternative propulsion; fuel cell; battery electric; simulation.
    [Show full text]
  • Rail Accident Report
    Rail Accident Report Buffer stop collision at Chester station 20 November 2013 Report 26/2014 November 2014 This investigation was carried out in accordance with: l the Railway Safety Directive 2004/49/EC; l the Railways and Transport Safety Act 2003; and l the Railways (Accident Investigation and Reporting) Regulations 2005. © Crown copyright 2014 You may re-use this document/publication (not including departmental or agency logos) free of charge in any format or medium. You must re-use it accurately and not in a misleading context. The material must be acknowledged as Crown copyright and you must give the title of the source publication. Where we have identified any third party copyright material you will need to obtain permission from the copyright holders concerned. This document/publication is also available at www.raib.gov.uk. Any enquiries about this publication should be sent to: RAIB Email: [email protected] The Wharf Telephone: 01332 253300 Stores Road Fax: 01332 253301 Derby UK Website: www.raib.gov.uk DE21 4BA This report is published by the Rail Accident Investigation Branch, Department for Transport. Buffer stop collision at Chester station 20 November 2013 Contents Summary 5 Introduction 6 Preface 6 Key definitions 6 The accident 7 Summary of the accident 7 Context 8 The investigation 12 Sources of evidence 12 Key facts and analysis 13 Sequence of events 13 Background information 16 Identification of the immediate cause 21 Identification of causal factors 22 Factors affecting the severity of consequences 35 Previous
    [Show full text]
  • CAF Annual Report 2018
    ANNUAL REPORT/2018 LETTER FROM THE CHAIRMAN 2 DIRECTORS' REPORT OF THE CONSOLIDATED GROUP 7 CAF Group business model and outlook 8 Business performance and results 10 Commercial activity 12 Industrial activity - Railway segment 14 R&D+i activity - Railway segment 16 Solaris 18 Investments 20 Main risks and uncertainties 22 Liquidity and capital resources 24 Stock market information 26 Other information 27 CONSOLIDATED NON-FINANCIAL INFORMATION STATEMENT 28 Environmental activity 30 Human resources 34 Respect for human rights 42 Fighting corruption and bribery 44 Social matters 48 AUDITOR'S REPORTS 57 FINANCIAL STATEMENTS OF THE CONSOLIDATED GROUP 69 Balance Sheets 70 Statements of Profit or Loss 72 Statements of Comprehensive Income 73 Statements of Changes in Equity 74 Statements of Cash Flows 75 Notes to the Consolidated Financial Statements 76 APPROVAL BY THE BOARD OF DIRECTORS 143 Resolutions submitted by the Board of Directors for approval by the Shareholders' meeting 144 PROPOSED DISTRIBUTION OF INCOME 145 BOARD OF DIRECTORS 145 SUPPLEMENTARY INFORMATION 147 Consolidated Statements of Financial Position 148 Consolidated Statements of Profit or Loss 150 ANNUAL REPORT 2018 Translation of a report originally issued in Spanish. In the event of a discrepancy, the Spanish-language version prevails. This publication, which is also published in Basque, French and Spanish, includes the legal documentation relating to CAF and Subsidiaries. More information on CAF and its products, together with the information required by law for shareholders and investors, can be obtained on the website www.caf.net LETTER FROM THE CHAIRMAN Dear Shareholder, Let me first extend you my warmest greeting.
    [Show full text]
  • High-Speed Ground Transportation Noise and Vibration Impact Assessment
    High-Speed Ground Transportation U.S. Department of Noise and Vibration Impact Assessment Transportation Federal Railroad Administration Office of Railroad Policy and Development Washington, DC 20590 Final Report DOT/FRA/ORD-12/15 September 2012 NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. Any opinions, findings and conclusions, or recommendations expressed in this material do not necessarily reflect the views or policies of the United States Government, nor does mention of trade names, commercial products, or organizations imply endorsement by the United States Government. The United States Government assumes no liability for the content or use of the material contained in this document. NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
    [Show full text]
  • North American Commuter Rail
    A1E07: Committee on Commuter Rail Transportation Chairman: Walter E. Zullig, Jr. North American Commuter Rail WALTER E. ZULLIG, JR., Metro-North Railroad S. DAVID PHRANER, Edwards & Kelcey, Inc. This paper should be viewed as the opening of a new research agenda for the Committee on Commuter Rail Transportation and its sibling rail transit committees in TRB’s Public Transportation Section in the new millennium. The evolution of the popular rail transit mode might be expressed succinctly, but subtly, in the change of terminology from railroad “commuter” to “rail commuter.” HISTORICAL CONTEXT Commuter railroad operation once was a thriving business in the United States and Canada. Founded and operated by private railroads, the business became uneconomical when faced with rigid regulation, the need to be self-supporting, and the requirement to compete with publicly-funded transportation systems including roads. The all-time low was reached in the mid-1960s, when high-volume operations remained in only six metropolitan areas in the United States (Boston, New York City, Philadelphia, Baltimore- Washington, Chicago, and San Francisco) and one in Canada (Montreal). The start of the rebound of commuter rail can be traced to the establishment of Toronto’s GO Transit in 1967. Since then, new services have been established in Northern Virginia, South Florida, Los Angeles, Dallas, San Diego, Vancouver, New Haven, and San Jose. New services are poised to begin in Seattle and elsewhere. Moreover, new routes or greatly expanded service, or both, are being provided in the traditional commuter rail cities of Boston, New York, Chicago, Philadelphia, San Francisco, and Montreal.
    [Show full text]
  • Battery-Powered Drive Systems: Latest Technologies and Outlook
    138 Hitachi Review Vol. 66 (2017), No. 2 Featured Articles II Battery-powered Drive Systems: Latest Technologies and Outlook Yasuhiro Nagaura OVERVIEW: Recently, progress is being made on the practical application Ryoichi Oishi of technologies for installing high-capacity lithium-ion batteries in rolling Motomi Shimada stock and using them for traction power. In particular, use of batteries in rolling stock that runs on non-electrified sections of track can save energy, Takashi Kaneko minimize noise, and reduce maintenance requirements compared with conventional diesel railcars. Hitachi has successfully commercialized a battery-powered train that can run on non-electrified sections of track by using energy stored in batteries that are charged from the alternating current overhead lines, and delivered it as the JR Kyushu Series BEC819. For hybrid rolling stock that supply power using a diesel engine and batteries, Hitachi has also developed a function that enables them to operate as electric railcars by fitting them with low-capacity emergency batteries that can be used when the main batteries are unavailable. The hybrid rolling stock have been delivered as the JR East Series HB-E210 and Series HB-E300 trains (fleet expansion trains). In the future, Hitachi will continue to meet a wide range of customer needs by drawing on the experience it has accumulated in battery-based technologies through its work on trains powered by batteries. East Japan Railway Company (JR East) to work INTRODUCTION on technology for rolling stock that travels on non- LOOKING for ways to reduce the energy consumption electrified lines. It developed a hybrid drive system and environmental impact of rolling stock, Hitachi, that combines an engine-generator and batteries(1), Ltd.
    [Show full text]