China's Nuclear Warhead Storage and Handling System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear Weapons Security Crises
CHAPTER 3 SECURING NUCLEAR ARSENALS: A CHINESE CASE STUDY Mark A. Stokes INTRODUCTION Nuclear warhead stockpile security has long been a concern of the major powers. Of particular concern is the potential theft of nuclear warheads and associ- ated materials, or a breakdown in command and con- trol authority over their use during periods of domes- tic instability. Since the inception of its program in the 1950s, the Chinese Communist Party (CCP) has granted nuclear warheads special political signifi- cance. The value of nuclear weapons resides not only in their international deterrent/coercive significance, but also in the domestic power and political legitimacy that a faction enjoys with control over the means of mass destruction. Domestic instability in the People’s Republic of China (PRC) during the initial stages of nuclear warhead production could serve as an illustra- tion of how one nuclear power has absorbed lessons from threats to the security of a warhead stockpile. China’s Great Proletarian Cultural Revolu- tion, which began in 1966 and ended by 1976, is the prominent case in which political instability could have resulted in the loss of control of China’s limited nuclear weapons stockpile. The domestic chaos that characterized this period coincided with a signifi- cant deterioration of relations with the former Soviet Union. Perceived domestic and external threats likely shaped the highly centralized approach to securing the 65 national nuclear warhead stockpile that the Chinese People’s Liberation Army (PLA) continues to employ until today. During the initial stages of China’s program, its system of storage and handling nuclear warheads was relatively integrated with its civilian nuclear research and development (R&D) and production complex. -
Estimations of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling
ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING By LU XING Bachelor of Arts/Science in Mechanical Engineering Huazhong University of Science & Technology Wuhan, China 2008 Master of Arts/Science in Mechanical Engineering Oklahoma State University Stillwater, OK, US 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING Dissertation Approved: Dr. Jeffrey D. Spitler Dissertation Adviser Dr. Daniel E. Fisher Dr. Afshin J. Ghajar Dr. Richard A. Beier ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey D. Spitler, who patiently guided me through the hard times and encouraged me to continue in every stage of this study until it was completed. I greatly appreciate all his efforts in making me a more qualified PhD, an independent researcher, a stronger and better person. Also, I would like to devote my sincere thanks to my parents, Hongda Xing and Chune Mei, who have been with me all the time. Their endless support, unconditional love and patience are the biggest reason for all the successes in my life. To all my good friends, colleagues in the US and in China, who talked to me and were with me during the difficult times. I would like to give many thanks to my committee members, Dr. Daniel E. Fisher, Dr. Afshin J. Ghajar and Dr. Richard A. Beier for their suggestions which helped me to improve my research and dissertation. -
Genetic Composition of Captive Panda Population Jiandong Yang1, Fujun Shen2, Rong Hou2 and Yang Da3*
Yang et al. BMC Genetics (2016) 17:133 DOI 10.1186/s12863-016-0441-y RESEARCH ARTICLE Open Access Genetic composition of captive panda population Jiandong Yang1, Fujun Shen2, Rong Hou2 and Yang Da3* Abstract Background: A major function of the captive panda population is to preserve the genetic diversity of wild panda populations in their natural habitats. Understanding the genetic composition of the captive panda population in terms of genetic contributions from the wild panda populations provides necessary knowledge for breeding plans to preserve the genetic diversity of the wild panda populations. Results: The genetic contributions from different wild populations to the captive panda population were highly unbalanced, with Qionglai accounting for 52.2 % of the captive panda gene pool, followed by Minshan with 21. 5 %, Qinling with 10.6 %, Liangshan with 8.2 %, and Xiaoxiangling with 3.6 %, whereas Daxiangling, which had similar population size as Xiaoxiangling, had no genetic representation in the captive population. The current breeding recommendations may increase the contribution of some small wild populations at the expense of decreasing the contributions of other small wild populations, i.e., increasing the Xiaoxiangling contribution while decreasing the contribution of Liangshan, or sharply increasing the Qinling contribution while decreasing the contributions of Xiaoxiangling and Liangshan, which were two of the three smallest wild populations and were already severely under-represented in the captive population. We developed three habitat-controlled breeding plans that could increase the genetic contributions from the smallest wild populations to 6.7–11.2 % for Xiaoxiangling, 11.5–12.3 % for Liangshan and 12.9–20.0 % for Qinling among the offspring of one breeding season while reducing the risk of hidden inbreeding due to related founders from the same habitat undetectable by pedigree data. -
Report on Domestic Animal Genetic Resources in China
Country Report for the Preparation of the First Report on the State of the World’s Animal Genetic Resources Report on Domestic Animal Genetic Resources in China June 2003 Beijing CONTENTS Executive Summary Biological diversity is the basis for the existence and development of human society and has aroused the increasing great attention of international society. In June 1992, more than 150 countries including China had jointly signed the "Pact of Biological Diversity". Domestic animal genetic resources are an important component of biological diversity, precious resources formed through long-term evolution, and also the closest and most direct part of relation with human beings. Therefore, in order to realize a sustainable, stable and high-efficient animal production, it is of great significance to meet even higher demand for animal and poultry product varieties and quality by human society, strengthen conservation, and effective, rational and sustainable utilization of animal and poultry genetic resources. The "Report on Domestic Animal Genetic Resources in China" (hereinafter referred to as the "Report") was compiled in accordance with the requirements of the "World Status of Animal Genetic Resource " compiled by the FAO. The Ministry of Agriculture" (MOA) has attached great importance to the compilation of the Report, organized nearly 20 experts from administrative, technical extension, research institutes and universities to participate in the compilation team. In 1999, the first meeting of the compilation staff members had been held in the National Animal Husbandry and Veterinary Service, discussed on the compilation outline and division of labor in the Report compilation, and smoothly fulfilled the tasks to each of the compilers. -
Geological Statistics Analysis of Population Distribution at Township Level in Henan Province, China
International Proceedings of Chemical, Biological and Environmental Engineering, Vol. 91 (2016) DOI: 10.7763/IPCBEE. 2016. V91. 10 Geological Statistics Analysis of Population Distribution at Township Level in Henan Province, China Haixia Zhang, Wei Qu , Shuwen Niu, Jinghui Qi, Liqiong Ye, Guimei Zhang The College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China Abstract. Based on the sixth population census data at township level, this article analyzes the population distribution of Henan province, China by the geological statistics method. The result shows that population distribution of Henan province could be divided into three types: low density in mountain areas, medium density in plain areas, and high density in urban regions. The variation functions have similar trends in the four directions of E-W, N-S, NE-SW, and NW-SE. When the distance is over 80km, the anisotropy enhances. The exponential model has the best fitting effect for the variation function. The interpolation results represent the gradient change process of population density intuitively. Terrain condition is the basic factor influencing on the population spatial pattern. High population density in urban regions are the outcomes of mutual effects between the superior geographical condition and socioeconomic development. Keywords: population distribution, township level, geological statistics, variation function, Henan Province. 1. Introduction Population distribution is a reflection of the human-earth relationship in a special space-time background. Understanding the population distribution and what determines this distribution is fundamental to understanding the relationships between humans and the environment [1]. With the advancement of modern space technology and geographic information processing technology, the study on Chinese population distribution has experienced from qualitative analysis and simple quantitative to spatial-temporal modeling [2]-[4]. -
Qinghai WLAN Area 1/13
Qinghai WLAN area NO. SSID Location_Name Location_Type Location_Address City Province 1 ChinaNet Quality Supervision Mansion Business Building No.31 Xiguan Street Xining City Qinghai Province No.160 Yellow River Road 2 ChinaNet Victory Hotel Conference Center Convention Center Xining City Qinghai Province 3 ChinaNet Shangpin Space Recreation Bar No.16-36 Xiguan Street Xining City Qinghai Province 4 ChinaNet Business Building No.372 Qilian Road Xining City Qinghai Province Salt Mansion 5 ChinaNet Yatai Trade City Large Shopping Mall Dongguan Street Xining City Qinghai Province 6 ChinaNet Gome Large Shopping Mall No.72 Dongguan Street Xining City Qinghai Province 7 ChinaNet West Airport Office Building Business Building No.32 Bayi Road Xining City Qinghai Province Government Agencies 8 ChinaNet Chengdong District Government Xining City Qinghai Province and Other Institutions Delingha Road 9 ChinaNet Junjiao Mansion Business Building Xining City Qinghai Province Bayi Road Government Agencies 10 ChinaNet Higher Procuratortate Office Building Xining City Qinghai Province and Other Institutions Wusi West Road 11 ChinaNet Zijin Garden Business Building No.41, Wusi West Road Xining City Qinghai Province 12 ChinaNet Qingbai Shopping Mall Large Shopping Mall Xining City Qinghai Province No.39, Wusi Avenue 13 ChinaNet CYTS Mansion Business Building No.55-1 Shengli Road Xining City Qinghai Province 14 ChinaNet Chenxiong Mansion Business Building No.15 Shengli Road Xining City Qinghai Province 15 ChinaNet Platform Bridge Shoes City Large Shopping -
Li Xi 李希 Born 1956
Li Xi 李希 Born 1956 Current Positions • Party Secretary of Liaoning Province (2015–present) • Chairman of the Liaoning Provincial People’s Congress (2015–present) • Alternate member of the Central Committee of the CCP (2007–present) Personal and Professional Background Li was born on October 16, 1956, in Liangdang County, Gansu Province. Li joined the CCP in 1982. He received an undergraduate education in Chinese language and literature from Northwest Normal University in Lanzhou City, Gansu Province (1978–82), and an MBA from the School of Economics and Management at Tsinghua University in Beijing (2008–11). He was a “sent-down youth” at Yunping People’s Commune in Liangdang County, Gansu Province (1975–76).1 He served as a clerk at the Culture and Education Bureau and the Party Committee of Liangdang County (1976–78). After graduating from college in 1982, he worked as a mishu (personal assistant) in the Department of Propaganda of the Gansu Provincial Party Committee (1982–85) and as a mishu in the office of Gansu Party Secretary Li Ziqi (1985–86). Li Xi worked as an official (1986–87), deputy division head (1987–90), and division head (1990–95) in the Organization Department of the Gansu Provincial Party Committee. He served as party secretary of Xigu District, Lanzhou City (1995– 96). After that, he served as director of the Organization Department (1996–99) and, concurrently, as deputy party secretary (1999–2001) of the Lanzhou Municipal Party Committee. He served as party secretary of the Zhangyi Prefecture Party Committee (2001–04), during which time he attended a four- month, mid-career training program at the Central Party School (2004). -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility -
Report on the Butterflies Collected from Chongqing, Shaanxi and Gansu
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2016 Band/Volume: 47 Autor(en)/Author(s): Huang Si-Yao Artikel/Article: Report on the butterflies collected from Chongqing, Shaanxi and Gansu, China in 2015 (Lepidoptera: Papilionoidea, Hesperoidea) 241-248 Atalanta 47 (1/2): 241-248, Marktleuthen (Juli 2016), ISSN 0171-0079 Report on the butterflies collected from Chongqing, Shaanxi and Gansu, China in 2015 (Lepidoptera: Papilionoidea, Hesperoidea) by SI-YAO HUANG received 30.III.2016 Abstract: A list of the butterflies collected by the author and his colleague in the Chinese Provinces of Chongqing, S. Shaanxi and S. Gansu in the summer of 2015 is presented. In the summer of 2015, the author accomplished a survey on butterflies at the following localities (fig. A): Chongqing Province: Simianshan, 4th-9thJuly. Shaanxi Province: Liping Natural Reserve, Nanzheng County: 12th-14th July; Danangou, Fengxian County: 31st July; Dongshan, Taibai County: 1st August; Miaowangshan, Fengxian County: 2nd August; Xiaonangou, Fengxian County: 3rd-5th August; Zhufeng, Fengxian County: 5th August. Gansu Province: Xiongmaogou, Xiahe County: 16th-18th July; Laolonggou, Diebu County: 20th July; Meilugou, Die- bu County: 21st July; Tiechiliang, Diebu County: 22nd July; Lazikou, Diebu County: 23rd July; Tiangangou, Zhouqu County: 25th-26th July; Pianpiangou, Zhouqu County: 28th-29th July. A checklist of butterflies collected from Chongqing, Shaanxi and Gansu in 2015 Hesperiidae Coeliadinae 1. Hasora tarminatus (HÜBNER, 1818): 1 † 7-VII, Simianshan, leg. & coll. GUO-XI XUE. Pyrginae 2. Gerosis phisara (MOORE, 1884): 1 †, 6-VII, Simianshan. 3. Celaenorrhinus maculosus (C. & R. -
Co-Seismic and Cumulative Offsets of the Recent Earthquakes Along The
Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet Haibing Li, Jerome van der Woerd, Zhiming Sun, Jialiang Si, Paul Tapponnier, Jiawei Pan, Dongliang Liu, Marie-Luce Chevalier To cite this version: Haibing Li, Jerome van der Woerd, Zhiming Sun, Jialiang Si, Paul Tapponnier, et al.. Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault inwestern Tibet. Gondwana Research, Elsevier, 2011, 21, pp.64-87. 10.1016/j.gr.2011.07.025. hal-00683742 HAL Id: hal-00683742 https://hal.archives-ouvertes.fr/hal-00683742 Submitted on 29 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACCEPTED MANUSCRIPT Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet Haibing Li a,b,*, Jérôme Van der Woerd c, Zhiming Sun d, Jialiang Si a,b, Paul Tapponniere,f, Jiawei Pan a,b, Dongliang Liu a,b, Marie-Luce Chevaliera,b a State Key Laboratory of Continental Tectonic and Dynamics b Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P.R. -
Downloaded from Brill.Com10/07/2021 12:04:04PM Via Free Access © Koninklijke Brill NV, Leiden, 2017
Amphibia-Reptilia 38 (2017): 517-532 A new moth-preying alpine pit viper species from Qinghai-Tibetan Plateau (Viperidae, Crotalinae) Jingsong Shi1,2,∗, Gang Wang3, Xi’er Chen4, Yihao Fang5,LiDing6, Song Huang7,MianHou8,9, Jun Liu1,2, Pipeng Li9 Abstract. The Sanjiangyuan region of Qinghai-Tibetan Plateau is recognized as a biodiversity hotspot of alpine mammals but a barren area in terms of amphibians and reptiles. Here, we describe a new pit viper species, Gloydius rubromaculatus sp. n. Shi, Li and Liu, 2017 that was discovered in this region, with a brief taxonomic revision of the genus Gloydius.The new species can be distinguished from the other congeneric species by the following characteristics: cardinal crossbands on the back, indistinct canthus rostralis, glossy dorsal scales, colubrid-like oval head shape, irregular small black spots on the head scales, black eyes and high altitude distribution (3300-4770 m above sea level). The mitochondrial phylogenetic reconstruction supported the validity of the new species and furthermore reaffirms that G. intermedius changdaoensis, G. halys cognatus, G. h. caraganus and G. h. stejnegeri should be elevated as full species. Gloydius rubromaculatus sp. n. was found to be insectivorous: preying on moths (Lepidoptera, Noctuidae, Sideridis sp.) in the wild. This unusual diet may be one of the key factors to the survival of this species in such a harsh alpine environment. Keywords: Gloydius rubromaculatus sp. n., insectivorous, new species, Sanjiangyuan region. Introduction leopards (Uncia uncia), wild yaks (Bos grun- niens) and Tibetan antelopes (Pantholops hodg- The Sanjiangyuan region (the Source of Three sonii) (Shen and Tan, 2012).