Assessment of Common Housekeeping Genes As Reference for Gene Expression Studies Using RT‑Qpcr in Mouse Choroid Plexus Kim Hoa Ho1,2 & Annarita Patrizi1*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Core Transcriptional Regulatory Circuitries in Cancer
Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage. -
Seq2pathway Vignette
seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Download Download
Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/) -
Hemopoietic Progenitors + Differentiation of Human CD34
The Vitamin D3/Hox-A10 Pathway Supports MafB Function during the Monocyte Differentiation of Human CD34+ Hemopoietic Progenitors This information is current as of September 26, 2021. Claudia Gemelli, Claudia Orlandi, Tommaso Zanocco Marani, Andrea Martello, Tatiana Vignudelli, Francesco Ferrari, Monica Montanari, Sandra Parenti, Anna Testa, Alexis Grande and Sergio Ferrari J Immunol 2008; 181:5660-5672; ; Downloaded from doi: 10.4049/jimmunol.181.8.5660 http://www.jimmunol.org/content/181/8/5660 http://www.jimmunol.org/ References This article cites 70 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/181/8/5660.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal -
The Role of the Rho Gtpases in Neuronal Development
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The role of the Rho GTPases in neuronal development Eve-Ellen Govek,1,2, Sarah E. Newey,1 and Linda Van Aelst1,2,3 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; 2Molecular and Cellular Biology Program, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA Our brain serves as a center for cognitive function and and an inactive GDP-bound state. Their activity is de- neurons within the brain relay and store information termined by the ratio of GTP to GDP in the cell and can about our surroundings and experiences. Modulation of be influenced by a number of different regulatory mol- this complex neuronal circuitry allows us to process that ecules. Guanine nucleotide exchange factors (GEFs) ac- information and respond appropriately. Proper develop- tivate GTPases by enhancing the exchange of bound ment of neurons is therefore vital to the mental health of GDP for GTP (Schmidt and Hall 2002); GTPase activat- an individual, and perturbations in their signaling or ing proteins (GAPs) act as negative regulators of GTPases morphology are likely to result in cognitive impairment. by enhancing the intrinsic rate of GTP hydrolysis of a The development of a neuron requires a series of steps GTPase (Bernards 2003; Bernards and Settleman 2004); that begins with migration from its birth place and ini- and guanine nucleotide dissociation inhibitors (GDIs) tiation of process outgrowth, and ultimately leads to dif- prevent exchange of GDP for GTP and also inhibit the ferentiation and the formation of connections that allow intrinsic GTPase activity of GTP-bound GTPases (Zalc- it to communicate with appropriate targets. -
Discovering Differences in Gender-Related Skeletal Muscle Aging Through the Majority Voting-Based Identification of Differently Expressed Genes
Northumbria Research Link Citation: Dreder, Abdouladeem, Tahir, Muhammad, Seker, Huseyin and Anwar, Naveed (2016) Discovering differences in gender-related skeletal muscle aging through the majority voting-based identification of differently expressed genes. International Journal on Bioinformatics & Biosciences, 6 (2). pp. 1-14. ISSN 1839-9614 Published by: WSP URL: http://wireilla.com/papers/ijbb/V6N2/6216ijbb01.pd... <http://wireilla.com/papers/ijbb/V6N2/6216ijbb01.pdf> This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/27774/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with -
Roles of Rho Gtpases in Intracellular Transport and Cellular Transformation
Int. J. Mol. Sci. 2013, 14, 7089-7108; doi:10.3390/ijms14047089 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Roles of Rho GTPases in Intracellular Transport and Cellular Transformation Xiaojuan Chi 1, Song Wang 2, Yifan Huang 1, Mark Stamnes 3 and Ji-Long Chen 1,2,* 1 College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: [email protected] (X.C.); [email protected] (Y.H.) 2 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail: [email protected] 3 Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-10-6480-7300; Fax: +86-10-6480-7980. Received: 21 February 2013; in revised form: 4 March 2013 / Accepted: 12 March 2013 / Published: 28 March 2013 Abstract: Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics. -
Retinoic Acid-Related Orphan Receptor Rorβ, Circadian Rhythm Abnormalities and Tumorigenesis (Review)
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1493-1500, 2015 Retinoic acid-related orphan receptor RORβ, circadian rhythm abnormalities and tumorigenesis (Review) SHUJIONG FENG1, SONG XU1, ZHENZHEN WEN1 and YONGLIANG ZHU1,2 1Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University, School of Medicine; 2Cancer Institute and Education Ministry Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China Received August 8, 2014; Accepted March 12, 2015 DOI: 10.3892/ijmm.2015.2155 Abstract. Nuclear receptors are a superfamily of transcription and have important physiological functions in cell develop- factors including the steroid hormone receptors, non-steroid ment and differentiation, circadian rhythm, metabolism and hormone receptors and the orphan nuclear receptor family. immune regulation. NRs consist of three components: the Retinoic acid-related orphan receptor (ROR)β, as a member of steroid hormone receptors, non-steroid hormone receptors the orphan nuclear receptor family, plays an important regula- and the orphan nuclear receptor family. Steroid and non- tory role in the maintenance of a variety of physiological and steroid hormone receptors have specific ligands, including pathological processes. RORβ has been determined to act as steroid hormones, thyroid hormones, retinoic acids and fatty an osteogenic repressor in regulating bone formation, and is acids. Ligands for orphan NRs have not yet been determined. involved in regulating circadian rhythm. The findings of recent Retinoic acid-related orphan receptors (RORs), also known studies concerning the association between tumorigenesis as nuclear receptor subfamily 1 group F members (NR1F), and circadian rhythm have shown that an aberrant circadian are specified by gene sequences, which are homologous to rhythm may promote tumorigenesis and tumor progression. -
Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation
BASIC RESEARCH www.jasn.org Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation Sébastien J. Dumas,1,2 Elda Meta,1,2 Mila Borri,1,2 Jermaine Goveia,1,2 Katerina Rohlenova ,1,2 Nadine V. Conchinha,1,2 Kim Falkenberg,1,2 Laure-Anne Teuwen,1,2 Laura de Rooij,1,2 Joanna Kalucka,1,2 Rongyuan Chen,3 Shawez Khan,1,2 Federico Taverna,1,2 Weisi Lu,3 Magdalena Parys,1,2 Carla De Legher,1,2 Stefan Vinckier,1,2 Tobias K. Karakach ,1,2 Luc Schoonjans,1,2,3 Lin Lin,4,5 Lars Bolund,4,5 Mieke Dewerchin,1,2 Guy Eelen,1,2 Ton J. Rabelink,6 Xuri Li,3 Yonglun Luo,4,5,7,8 and Peter Carmeliet1,2,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Renal endothelial cells from glomerular, cortical, and medullary kidney compartments are exposed to different microenvironmental conditions and support specific kidney processes. However, the heterogeneous phenotypes of these cells remain incompletely inventoried. Osmotic homeostasis is vitally important for regulating cell volume and function, and in mammals, osmotic equilibrium is regulated through the countercurrent system in the renal medulla, where water exchange through endothelium occurs against an osmotic pressure gradient. Dehydration exposes medullary renal endothelial cells to extreme hyperosmolarity, and how these cells adapt to and survive in this hypertonic milieu is unknown. Methods We inventoried renal endothelial cell heterogeneity by single-cell RNA sequencing .40,000 mouse renal endothelial cells, and studied transcriptome changes during osmotic adaptation upon water deprivation. -
The Development of Cisplatin Resistance in Neuroblastoma Is
Cancer Letters 364 (2015) 142–155 Contents lists available at ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet Original Articles The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro Olga Piskareva a,b,*, Harry Harvey a,b, John Nolan a,b, Ross Conlon a,b, Leah Alcock a, Patrick Buckley c, Paul Dowling d,e, Michael Henry e, Finbarr O’Sullivan e, Isabella Bray a,b, Raymond L. Stallings a,b a Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland b Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin 12, Ireland c Molecular Pathology Laboratory, Beaumont Hospital, Dublin 9, Ireland d Department of Biology, The National University of Ireland Maynooth, Maynooth, County Kildare, Ireland e National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland ARTICLE INFO ABSTRACT Article history: Neuroblastoma is a challenging childhood malignancy, with a very high percentage of patients relaps- Received 18 February 2015 ing following acquisition of drug resistance, thereby necessitating the identification of mechanisms of Received in revised form 10 April 2015 drug resistance as well as new biological targets contributing to the aggressive pathogenicity of the disease. Accepted 4 May 2015 In order to investigate the molecular pathways that are involved with drug resistance in neuroblas- toma, we have developed and characterised cisplatin resistant sublines SK-N-ASCis24, KellyCis83 and CHP- Keywords: 212Cis100, integrating data of cell behaviour, cytotoxicity, genomic alterations and modulation of protein Neuroblastoma expression. All three cisplatin resistant cell lines demonstrated cross resistance to temozolomide, etoposide Proteomics Cisplatin and irinotecan, all of which are drugs in re-initiation therapy. -
Mitochondrial Protection by the Mixed Muscarinic/O1 Ligand ANAVEX2-73
Mitochondrial protection by the mixed muscarinic/o1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer’s disease model Valentine Lahmy, Romain Long, Didier Morin, Vanessa Villard, Tangui Maurice To cite this version: Valentine Lahmy, Romain Long, Didier Morin, Vanessa Villard, Tangui Maurice. Mitochondrial pro- tection by the mixed muscarinic/o1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer’s disease model. Frontiers in Cellular Neuroscience, Frontiers, 2015, 8, 10.3389/fncel.2014.00463. hal-01922607 HAL Id: hal-01922607 https://hal.archives-ouvertes.fr/hal-01922607 Submitted on 27 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH ARTICLE published: 20 January 2015 CELLULAR NEUROSCIENCE doi: 10.3389/fncel.2014.00463 Mitochondrial protection by the mixed muscarinic/s1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Ab25–35 peptide-injected