Biochemical and Functional Characterization of Rhosap: a Rhogap of the Postsynaptic Density

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical and Functional Characterization of Rhosap: a Rhogap of the Postsynaptic Density Institut für Anatomie and Zellbiologie Direktor: Professor Dr. med. Tobias M. Böckers Biochemical and functional characterization of RhoSAP: A RhoGAP of the postsynaptic density Dissertation zur Erlangung des Doktorgrades Dr. biol. hum. der Medizinischen Fakultät der Universität Ulm Eingereicht von: Janine Dahl aus Ludwigslust 2008 Dekan: Prof. Dr. med. Klaus-Michael Debatin Erster Gutachter: Prof. Dr. med. Tobias M. Böckers Zweiter Gutachter: Prof. Dr. rer. nat. Dietmar Fischer Tag der Promotion: Abstract Biochemical and functional characterization of RhoSAP: A Rho GAP of the postsynaptic density By Janine Dahl Ulm University Glutamatergic synapses in the central nervous system are characterized by an electron dense network of proteins underneath the postsynaptic membrane including cell adhesion molecules, cytoskeletal proteins, scaffolding and adaptor proteins, membrane bound receptors and channels, G-proteins and a wide range of different signalling modulators and effectors. This so called postsynaptic density (PSD) resembles a highly complex signaling machinery. We performed a yeast two-hybrid (YTH) screen with the PDZ domain of the PSD scaffolding molecule ProSAP2/Shank3 as bait and identified a novel interacting protein. This molecule was named after its Rho GAP domain: RhoSAP (Rho GTPase Synapse Associated Protein), which was shown to be active for Cdc42 and Rac1 by a GAP activity assay. Besides its Rho GAP domain, RhoSAP contains an N-terminal BAR domain that might facilitate membrane curvature in endocytic processes. At the C-terminus RhoSAP codes for several proline rich motifs that could possibly act as SH3 binding regions. Therefore, a second YTH screen was carried out with RhoSAP’s proline rich C- terminus as bait to discover putative interacting proteins. As an interacting partner syndapin I, a molecule involved in vesicle endocytosis via direct interaction with dynamin I was found. Furthermore, syndapin I contains a C-terminal SH3 domain that is most likely the binding motif for RhoSAP’s proline rich region. This novel interaction as well as the interaction with the ProSAP2 PDZ domain was verified by pull-down assays and coimmunoprecipitations. Coming from the finding that RhoSAP is associated with an endocytosis molecule, an FM4-64 endocytosis assay was performed in cell line to delineate the molecule’s significance in endocytic processes in general. Taken together, RhoSAP is a novel ProSAP2/Shank3 interacting PSD protein, which displays several protein/protein interaction domains. Due to the N-terminal BAR domain, and the interaction with syndapin I, RhoSAP might act within endocytic processes of the postsynaptic membrane. to my family Contents Abbreviations 1 Introduction 1 1.1 The postsynaptic compartment 2 1.2 The Rho GTPases 6 1.3 Rho GTPases-activating proteins (RhoGAPs) 9 1.4 Rho GTPases effector proteins and signaling pathways 12 1.5 Rho GTPases in actin dynamics and membrane trafficking 13 1.6 Nadrin and Rich1 15 Aim 19 2 Materials and Methods 20 2.1 Declaration of suppliers and basic recipes 20 2.1.1 Materials 20 2.1.2 Recipes 22 2.2 Molecular biological methods 25 2.2.1 DNA/RNA concentration measurement 25 2.2.2 DNA preparation and purification 25 2.2.3 Plasmid DNA isolation from E.coli cell cultures 26 2.2.4 RNA purification, generation of cDNA and PCR 27 2.2.5 Generation of electrocompetent E. coli cells and 28 transformation of plasmids 2.2.6 TOPO cloning and restriction analysis 29 2.2.7 DNA sequencing 30 i 2.2.8 Northern blotting 30 2.2.9 in situ Hybridization 32 2.2.10 Yeast two-hybrid screen 34 2.3 Protein biochemical methods 42 2.3.1 Protein concentration measurement 42 2.3.2 Preparation of GST-tagged fusion protein lysate 43 from E. coli cell culture 2.3.3 Preparation of tissue and organ lysates 44 2.3.4 Subcellular fractionation of PSDs by differential centrifugation 45 2.3.5 SDS-PAGE, SDS gel staining and Western blotting 47 2.3.6 IgG purification of polyclonal antisera by (NH4)SO4 50 2.3.7 Coimmunoprecipitation and pull-down to analyse possible 51 protein-protein interactions 2.3.8 GAP activity assay 52 2.4 Cell biological methods 54 2.4.1 Cell passages of cell lines 54 2.4.2 Transient transfection of HeLa and COS-7 cells 55 2.4.3 Generation of primary hippocampal neurons 56 2.4.4 Transfection of primary hippocampal neurons 57 2.4.5 Immunohistochemical staining for 57 confocal fluorescence microscopy 2.4.6 DAB staining for confocal light microscopy 58 2.4.7 Immunohistochemical staining for electronmicroscopy 59 (pre-embedding method) 2.4.8 Endocytosis assay and statistical analysis 59 ii 3 Results 61 3.1 Gene and protein structural characterization of RhoSAP 61 3.1.1 Identification of RhoSAP as a PDZ domain interacting protein 61 3.1.2 Gene and protein structure of RhoSAP 62 3.1.3 Sequence homologies of RhoSAP 64 3.1.4 Putative splice variants of RhoSAP 64 3.1.5 Generation and characterization of anti-RhoSAP antisera 66 3.1.6 Profiling RhoSAP’s expression in brain and other tissue 67 3.1.7 Recombinant expression of RhoSAP in COS7 cells 71 3.1.8 Localization of RhoSAP in hippocampal neurons 73 3.1.9 Subcellular distribution of RhoSAP in neurons 77 3.2 Isolation and analysis of RhoSAP's protein interaction partners 80 3.2.1 Verification of RhoSAP's association with ProSAP2Shank3 80 3.2.2 Identification of novel binding partners 81 by a yeast two-hybrid screen 3.2.3 Confirmation of RhoSAP’s interaction with syndapin I 82 3.3 Functional analysis of RhoSAP 83 3.3.1 Investigation of GAP activity 83 3.3.2 Investigation of endocytic activity 85 3.3.3 Investigation of intracellular membrane trafficking 89 3.3.4 Investigation of RhoSAP's effect on the cytoskeleton 90 in cell culture 4 Discussion 93 4.1 Neuronal localization of RhoSAP and Rho GTPase signaling 93 4.2. RhoSAP: membrane trafficking and actin dynamics 96 4.3. Hypothesis for the function of RhoSAP in neurons 99 iii 4.4 Conclusion 102 5 Summary 104 6 References 106 Acknowledgements 121 Curriculum Vitae 122 iv Abbreviations aa amino acid ab antibody AD activating domain AMPAR 1-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor Arp2/3 actin related protein 2/3 BD binding domain bp base pair CAZ cytomatrix at the active zone Cdc42 cell division cycle 42 CME clathrin-mediated endocytosis COT the COT1 fraction of human genomic DNA consisting of rapidly annealing repetitive elements Cortactin cortical actin binding domain d day DAB 2,3-deaminobenzidine DIV days in vitro DNA deoxynucleic acid GAP GTPase-activating protein GDI guanine nucleotide dissociation inhibitor GEF guanine nucleotide exchange factor GFP green fluorescent protein mGluR metabotropic glutamate receptor GST glutathione-S-transferase GTPase small GDP/GTP-binding protein IgG G-class of immunoglobulins v kDA kilo Dalton LTD long-term depression LTP long-term potentiation NMDAR N-methyl D-aspartate receptor PCR polymerase chain reaction PDZ PSD95/ Disc-large/ ZO-1 domain PI protease inhibitor PIP2 phosphatidylinositol-3-4-phosphate ProSAP proline rich synapse-associated protein PSD postsynaptic density PSD95 postsynaptic density protein 95 Rac Ras-related C3 botulinum toxin substrate Ras Roux avian sarcoma Rho Ras homologous member RNA ribonucleic acid RhoSAP RhoGAP synapse associated protein Shank SH3 domain and ankyrin repeat containing proteins SNARE soluble N-ethylmaleimide-sensitive component attachment protein receptor SOD superoxide dismutase TdT terminal deoxynucleotidyl transferase UAS upstream activating sequence WASP Wiskott-Aldrich syndrome protein WAVE WASP family verprolin-homologous Y2H yeast two-hybrid screen vi 1 Introduction 1 1 Introduction Information is integrated, processed and stored in the brain. Therefore, a complex network of trillions of neurons containing a variety of molecules, often unique and crucial to brain and its function, allows neurons to communicate with one another. Neurons are the largest and most complex cells in the body. They are highly polarized cells, with one axon housing the molecular machinery necessary for action potential propagation and neurotransmitter release and several dendrites containing receptors and signaling components that respond to neurotransmitter emitted. Neurons mostly communicate through highly specialized cell-cell junctions: the chemical synapses. At these sites, a specific cytoskeletal matrix is assembled at the active zone (CAZ) of an axon terminal organizing the synaptic vesicle release of neurotransmitter (Dresbach et al., 2001). It directly opposes dendritic protrusions called dendritic spines, which are located along the entire length of dendrites in most neurons. The synaptic membranes are separated by the synaptic cleft, a specialized extracellular space typically about 20-30 nm in width (Gundelfinger & tom Dieck, 2000). The dendritic spines harbor the postsynaptic densities (PSD) that contain a multiprotein complex responsible for anchoring neurotransmitter receptors near sites of neurotransmitter release. Thus, synaptic transmission occurs directionally over the synaptic cleft from the pre- to the postsynaptic compartment. In excitatory synapses, glutamate is the predominant neurotransmitter, in contrast to inhibitory synapses which do not show spiny dendrites and release mainly glycine or GABA as neurotransmitter. Excitatory synapses are mainly associated with dendritic spine structures, whereas inhibitory synapses are localized on the somata or dendritic shafts of neurons (Kreienkamp & Dityatev, 2004). In most regions of the developing brain, the formation of dendritic spines coincides with synaptogenesis in the first weeks after birth. Spine formation, morphogenesis and remodeling induced through synaptic activity, learning and memory or hormonal fluctuations remain a phenomenon, not only restricted to young neurons. Dendritic spines and synapses remain plastic in the adult brain as well (Ethell & Pasquale, 2005). Consequently, synaptic plasticity depends upon maturation and maintenance of the synapse which in turn, is based on multifaceted protein-protein and protein-lipid interactions within dynamic macromolecular complexes at both, the presynaptic and the postsynaptic side (Gundelfinger et al., 2003; Ziv & Garner, 2004; Kim & Sheng 2004).
Recommended publications
  • GLUTATHIONE TRANSFERASE N STRUCTURE and GENE REGULATION
    GLUTATHIONE TRANSFERASE n STRUCTURE AND GENE REGULATION By Chu-Lin Xia This report is in part-fulfillment of the requirements for the degree of doctor of philosophy in the University of London University College, University of London January 1992 ProQuest Number: 10609162 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609162 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT In the early stage of this research, amino acid residues that are essential for the activity of human pi class glutathione transferase (GST n) were identified using chemical modification with group-specific reagents. Protection from inactivation by substrates, substrate analogues and inhibitors was used as the criterion for active site specificity. The results suggested the apparent involvement of one cysteine (Cys), one lysine (Lys), one arginine (Arg), one histidine (His) or tyrosine (Tyr) or both, one aspartate (Asp) or glutamate (Glu) and tryptophan (Trp) residues in the glutathione binding site (G-site) of GSTtc. It was concluded that without the knowledge of the three-dimensional structure of GST 7i, further work in this area would not be profitable and therefore, attention was turned to the regulation of GST n gene expression.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,869,438 Svendsen Et Al
    USOO5869438A United States Patent (19) 11 Patent Number: 5,869,438 Svendsen et al. (45) Date of Patent: Feb. 9, 1999 54) LIPASE WARIANTS 52 U.S. Cl. ......................... 510/226; 435/198; 435/69.1; 435/252.3; 435/320.1; 435/196; 536/23.2; 75 Inventors: Allan Svendsen, Birkerød; Shamkant 536/23.7; 530/350; 510/392; 510/305 Anant Patkar, Lyngby; Erik Gormsen, 58 Field of Search ..................................... 435/198, 196, Virum; Jens Sigurd Okkels; Marianne 435/187-188, 69.1, 252.3, 320.1, 71.1; Thellersen, both of Frederiksberg, all of 424/94.1; 536/22.2, 23.7; 510/305, 226, Denmark 392 73 Assignee: Novo Nordisk A/S, Bagsvaerd, 56) References Cited Denmark FOREIGN PATENT DOCUMENTS 21 Appl. No.: 479,275 O305 216 A1 3/1989 European Pat. Off.. O 407 225A1 1/1991 European Pat. Off.. 22 Filed: Jun. 7, 1995 WO95/09909 4/1995 WIPO. Related U.S. Application Data Primary Examiner Robert A. Wax ASSistant Examiner Tekchand Saidha 63 Continuation-in-part of PCT/DK94/00162, Apr. 22, 1994, which is a continuation-in-part of PCT/DK95/00079, Feb. Attorney, Agent, or Firm-Steve T. Belson; Elias J. 27, 1995, which is a continuation-in-part of Ser. No. 434, Lambiris 904, May 1, 1995, abandoned, which is a continuation of Ser. No. 977,429, which is a continuation of PCT/DK91/ 57 ABSTRACT 00271, Sep. 13, 1991, abandoned. The present invention relates to lipase variants which exhibit 30 Foreign Application Priority Data improved properties, detergent compositions comprising Said lipase variants, DNA constructs coding for Said lipase Sep.
    [Show full text]
  • The Role of the Rho Gtpases in Neuronal Development
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The role of the Rho GTPases in neuronal development Eve-Ellen Govek,1,2, Sarah E. Newey,1 and Linda Van Aelst1,2,3 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; 2Molecular and Cellular Biology Program, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA Our brain serves as a center for cognitive function and and an inactive GDP-bound state. Their activity is de- neurons within the brain relay and store information termined by the ratio of GTP to GDP in the cell and can about our surroundings and experiences. Modulation of be influenced by a number of different regulatory mol- this complex neuronal circuitry allows us to process that ecules. Guanine nucleotide exchange factors (GEFs) ac- information and respond appropriately. Proper develop- tivate GTPases by enhancing the exchange of bound ment of neurons is therefore vital to the mental health of GDP for GTP (Schmidt and Hall 2002); GTPase activat- an individual, and perturbations in their signaling or ing proteins (GAPs) act as negative regulators of GTPases morphology are likely to result in cognitive impairment. by enhancing the intrinsic rate of GTP hydrolysis of a The development of a neuron requires a series of steps GTPase (Bernards 2003; Bernards and Settleman 2004); that begins with migration from its birth place and ini- and guanine nucleotide dissociation inhibitors (GDIs) tiation of process outgrowth, and ultimately leads to dif- prevent exchange of GDP for GTP and also inhibit the ferentiation and the formation of connections that allow intrinsic GTPase activity of GTP-bound GTPases (Zalc- it to communicate with appropriate targets.
    [Show full text]
  • Roles of Rho Gtpases in Intracellular Transport and Cellular Transformation
    Int. J. Mol. Sci. 2013, 14, 7089-7108; doi:10.3390/ijms14047089 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Roles of Rho GTPases in Intracellular Transport and Cellular Transformation Xiaojuan Chi 1, Song Wang 2, Yifan Huang 1, Mark Stamnes 3 and Ji-Long Chen 1,2,* 1 College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: [email protected] (X.C.); [email protected] (Y.H.) 2 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail: [email protected] 3 Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-10-6480-7300; Fax: +86-10-6480-7980. Received: 21 February 2013; in revised form: 4 March 2013 / Accepted: 12 March 2013 / Published: 28 March 2013 Abstract: Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics.
    [Show full text]
  • ROLE of BRAIN SOLUBLE EPOXIDE HYDROLASE in CARDIOVASCULAR FUNCTION by KATHLEEN WALWORTH SELLERS a DISSERTATION PRESENTED TO
    ROLE OF BRAIN SOLUBLE EPOXIDE HYDROLASE IN CARDIOVASCULAR FUNCTION By KATHLEEN WALWORTH SELLERS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Kathleen Walworth Sellers This work is dedicated to my family, who has taught me to embrace life with love, perseverance, and grace. ACKNOWLEDGMENTS I could not have completed this work without the assistance from many colleagues and friends. First and foremost, I would like to thank my mentor, Dr. Mohan Raizada, who has consistently supported and encouraged me these last several years. It was by chance that I worked in his research group before starting my graduate program, and I could not have found a better group with which to work. Dr. Raizada’s excitement and fervor for new ideas have helped shape my appreciation for scientific research and the pursuit of knowledge. I also want to acknowledge all of the members of the Raizada research group, past and present. I am fortunate to work in such a friendly and intellectually-stimulating environment. Specifically, I want to thank Drs. Beverly Falcon and Matthew Huentelman, the two graduate students in our research group who both helped me tremendously. In addition, I would like to thank Drs. Carlos Diez, Cheng-wen Sun, Jorge Vazquez, Shereeni Veerasingham and Hong Yang for all of their intellectual guidance. I greatly acknowledge the members of my committee, Drs. Michael Katovich, Gerard Shaw, Colin Sumners and Charles Wood. Each has provided me with unique experience and expertise to further my research and career.
    [Show full text]
  • Rho Gtpases of the Rhobtb Subfamily and Tumorigenesis1
    Acta Pharmacol Sin 2008 Mar; 29 (3): 285–295 Invited review Rho GTPases of the RhoBTB subfamily and tumorigenesis1 Jessica BERTHOLD2, Kristína SCHENKOVÁ2, Francisco RIVERO2,3,4 2Centers for Biochemistry and Molecular Medicine, University of Cologne, Cologne, Germany; 3The Hull York Medical School, University of Hull, Hull HU6 7RX, UK Key words Abstract Rho guanosine triphosphatase; RhoBTB; RhoBTB proteins constitute a subfamily of atypical members within the Rho fa- DBC2; cullin; neoplasm mily of small guanosine triphosphatases (GTPases). Their most salient feature 1This work was supported by grants from the is their domain architecture: a GTPase domain (in most cases, non-functional) Center for Molecular Medicine Cologne, the is followed by a proline-rich region, a tandem of 2 broad-complex, tramtrack, Deutsche Forschungsgemeinschaft, and the bric à brac (BTB) domains, and a conserved C-terminal region. In humans, Köln Fortune Program of the Medical Faculty, University of Cologne. the RhoBTB subfamily consists of 3 isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. Orthologs are present in several other eukaryotes, such as Drosophi- 4 Correspondence to Dr Francisco RIVERO. la and Dictyostelium, but have been lost in plants and fungi. Interest in RhoBTB Phn 49-221-478-6987. Fax 49-221-478-6979. arose when RHOBTB2 was identified as the gene homozygously deleted in E-mail [email protected] breast cancer samples and was proposed as a candidate tumor suppressor gene, a property that has been extended to RHOBTB1. The functions of RhoBTB pro- Received 2007-11-17 Accepted 2007-12-16 teins have not been defined yet, but may be related to the roles of BTB domains in the recruitment of cullin3, a component of a family of ubiquitin ligases.
    [Show full text]
  • The Development of Cisplatin Resistance in Neuroblastoma Is
    Cancer Letters 364 (2015) 142–155 Contents lists available at ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet Original Articles The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro Olga Piskareva a,b,*, Harry Harvey a,b, John Nolan a,b, Ross Conlon a,b, Leah Alcock a, Patrick Buckley c, Paul Dowling d,e, Michael Henry e, Finbarr O’Sullivan e, Isabella Bray a,b, Raymond L. Stallings a,b a Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland b Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin 12, Ireland c Molecular Pathology Laboratory, Beaumont Hospital, Dublin 9, Ireland d Department of Biology, The National University of Ireland Maynooth, Maynooth, County Kildare, Ireland e National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland ARTICLE INFO ABSTRACT Article history: Neuroblastoma is a challenging childhood malignancy, with a very high percentage of patients relaps- Received 18 February 2015 ing following acquisition of drug resistance, thereby necessitating the identification of mechanisms of Received in revised form 10 April 2015 drug resistance as well as new biological targets contributing to the aggressive pathogenicity of the disease. Accepted 4 May 2015 In order to investigate the molecular pathways that are involved with drug resistance in neuroblas- toma, we have developed and characterised cisplatin resistant sublines SK-N-ASCis24, KellyCis83 and CHP- Keywords: 212Cis100, integrating data of cell behaviour, cytotoxicity, genomic alterations and modulation of protein Neuroblastoma expression. All three cisplatin resistant cell lines demonstrated cross resistance to temozolomide, etoposide Proteomics Cisplatin and irinotecan, all of which are drugs in re-initiation therapy.
    [Show full text]
  • Mitochondrial Protection by the Mixed Muscarinic/O1 Ligand ANAVEX2-73
    Mitochondrial protection by the mixed muscarinic/o1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer’s disease model Valentine Lahmy, Romain Long, Didier Morin, Vanessa Villard, Tangui Maurice To cite this version: Valentine Lahmy, Romain Long, Didier Morin, Vanessa Villard, Tangui Maurice. Mitochondrial pro- tection by the mixed muscarinic/o1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer’s disease model. Frontiers in Cellular Neuroscience, Frontiers, 2015, 8, 10.3389/fncel.2014.00463. hal-01922607 HAL Id: hal-01922607 https://hal.archives-ouvertes.fr/hal-01922607 Submitted on 27 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH ARTICLE published: 20 January 2015 CELLULAR NEUROSCIENCE doi: 10.3389/fncel.2014.00463 Mitochondrial protection by the mixed muscarinic/s1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Ab25–35 peptide-injected
    [Show full text]
  • The P110 Isoform of Phosphoinositide 3-Kinase Signals Downstream of G
    The p110␤ isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110␥ Julie Guillermet-Guibert*, Katja Bjorklof*, Ashreena Salpekar*, Cristiano Gonella*, Faruk Ramadani†, Antonio Bilancio*, Stephen Meek‡, Andrew J. H. Smith‡, Klaus Okkenhaug†, and Bart Vanhaesebroeck*§ *Center for Cell Signaling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; †Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge CB2 3AT, United Kingdom; and ‡Gene Targeting Laboratory, The Institute for Stem Cell Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JQ, United Kingdom Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved April 7, 2008 (received for review August 16, 2007) The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely embryonic lethality of the p110␤ KO mice and the fact that regulated by extracellular stimuli. The class IA PI3K catalytic sub- proliferating cells could not be derived from these embryos (2). units (p110␣, p110␤, and p110␦) occur in complex with a Src Recent progress has been made by the generation of small- homology 2 (SH2) domain-containing p85 regulatory subunit, molecule inhibitors with selectivity for p110␤, allowing scientists which has been shown to link p110␣ and p110␦ to Tyr kinase to define a role for p110␤ in platelet function and thrombus signaling pathways. The p84/p101 regulatory subunits of the formation (3). Some evidence has also been presented for the p110␥ class IB PI3K lack SH2 domains and instead couple p110␥ to coupling of p110␤ to GPCRs, either by in vitro studies that G protein-coupled receptors (GPCRs).
    [Show full text]
  • Plant Stress Tolerance Methods and Protocols Second Edition M E T H O D S I N M O L E C U L a R B I O L O G Y
    Methods in Molecular Biology 1631 Ramanjulu Sunkar Editor Plant Stress Tolerance Methods and Protocols Second Edition M ETHODS IN M OLECULAR B IOLOGY Series Editor John M. Walker School of Life and Medical Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Plant Stress Tolerance Methods and Protocols Second Edition Edited by Ramanjulu Sunkar Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA Editor Ramanjulu Sunkar Department of Biochemistry and Molecular Biology Oklahoma State University Stillwater, OK, USA ISSN 1064-3745 ISSN 1940-6029 (electronic) Methods in Molecular Biology ISBN 978-1-4939-7134-3 ISBN 978-1-4939-7136-7 (eBook) DOI 10.1007/978-1-4939-7136-7 Library of Congress Control Number: 2017942931 © Springer Science+Business Media LLC 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Chp, a Homologue of the Gtpase Cdc42hs, Activates the JNK Pathway and Is Implicated in Reorganizing the Actin Cytoskeleton Ami Aronheim*, Yehoshua C
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Brief Communication 1125 Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton Ami Aronheim*, Yehoshua C. Broder*, Aviva Cohen*, Alexandra Fritsch†, Barbara Belisle† and Arie Abo† The p21-activated protein kinases (PAKs) are Results and discussion activated through direct interaction with the GTPases Isolation of a Cdc42Hs homologue that interacts Rac and Cdc42Hs, which are implicated in the control specifically with Pak65 of the mitogen-activated protein kinase (MAP kinase) To identify proteins that interact with Pak65, we used a c-Jun N-terminal kinase (JNK) and the reorganization modified form of the Sos recruitment system (SRS) [4,5]. of the actin cytoskeleton [1–3]. The exact role of the The Pak2 regulatory domain (PakR) was fused to the car- PAK proteins in these signaling pathways is not boxyl terminus of RasL61 devoid of its membrane attach- entirely clear. To elucidate the biological function of ment signals (Ras(L61)∆F–PakR) and used to cotransform Pak2 and to identify its molecular targets, we used a cdc25-2 cells with a pituitary cDNA library containing the novel two-hybrid system, the Ras recruitment system v-Src myristoylation sequence as previously described [5]. (RRS), that aims to detect protein–protein Five galactose-dependent clones were isolated and the interactions at the inner surface of the plasma specificity of the interaction examined. Clones #1, #2, #5 membrane (described in the accompanying paper by and #6 were able to grow at 36°C when cotransformed Broder et al.
    [Show full text]