Metabolomics, Proteomics, and Transcriptomics of Cannabis Sativa L

Total Page:16

File Type:pdf, Size:1020Kb

Metabolomics, Proteomics, and Transcriptomics of Cannabis Sativa L Metabolomics, Proteomics, and Transcriptomics of Cannabis sativa L. Trichomes Zur Erlangung des akademischen Grades eines Dr. rer. nat. von der Fakultät Bio- und Chemieingenieurwesen der Technischen Universität Dortmund Dissertation vorgelegt von Nizar Happyana, M.Sc. aus Bandung, Indonesien Tag der mündlichen Prüfung: 18.12.2014 1. Gutachter: Prof. Dr. Oliver Kayser 2. Gutachter: Prof. Dr. Robert Verpoorte Dortmund 2014 ii Acknowledgements Alhamdulillahirabilallamin. Foremost, I would like to express my deepest gratitude to my supervisor, Prof. Oliver Kayser. Dear Oliver, I am grateful to have an opportunity to conduct PhD study in your laboratory. It is a pleasure to work with you. Thank you very much for your guidance, patience, and all supports you have given to me during my PhD. I was very happy when you drove me to Veendam for collecting Cannabis. I also really enjoyed scientific and non-scientific discussion with you. I gratefully acknowledge the Directorate General of Higher Education, Ministry of National Education, Indonesia, for providing me the doctoral scholarship. I am deeply indebted to Tjalling Erkelens and Freerk Bruining from Bedrocan BV for supplying the plant material. Thank you very much for your hospitality when I came to Veendam. It was nice to have discussion with you both. I gratefully acknowledge to Prof. Robert Verpoorte from Leiden University, Prof. Sebastian Engell and Prof. Gabriele Sadowski from TU Dortmund for being my PhD Committee. I am utterly grateful to Prof. Jörn Kalinowski and Oliver Rupp from CEBITEC for helping us in analyzing the cDNA library. I would like to thank Prof. Bernd Schneider and Sara Agnolet from MPI (Chemical Ecology) for cryogenic NMR measurements. Many thanks to Annie Van Dam from Groningen University for the LCMS measurements. I would like to thank Remco Muntendam for fruitful discussions and sharing your research experience with me. I am deeply indebted to Fabian Real for driving me 4 times to Veendam for collecting the plant materials. I would like to thank Prof. Albert Sickmann and Stefan Loroch from ISAS for the collaboration in the proteomic project. I would like to thank Dr. Armin Quentmeier and Dr. Felix Stehle for all suggestions and comments regarding my research. Many thanks to Kristine Blase for the administrative supports. My special thanks to Jörg, Bettina, and Fabian for their helps during my laboratory works. I would like to thank all the current and former members of the Technical Biochemistry Department. Super thanks to Sayed, Marcello, Beer, Anna, and Parijat. Thank you so much for our friendship and for sure I am going to miss you all. Special thanks to Kathleen, Magda, Friederike, Torsten, Rike, Eva, Bastian, Joanna, Katharina, Alena, and the other students for the good atmosphere in our group. Most of all, I would like to thank my beloved family for their unconditional love, pray, and supports throughout my entire life. I have dedicated this thesis to you all. Kanggo Mama, Bapa, A Janjan, Teh Eros, Teh Eneng, A Yanto, Teh Euis, A Heri, Fajar, Risma, Agnes, Oki, Saskia, Marsya, Natya, Keisha, Milan sareng kulawargi sanesna, hatur nuhun pisan kana bantosanna, pidu’ana, dukunganna, sareng nu sanesna. Untuk Mama, Papa, dan Cesar, terima kasih banyak atas do’anya, dukungan moralnya, dan bantuan yang lainnya. Very super special thanks to my dearest wife Prita and my little angel, Tania. Simply, you both make me be a better man. i Table of Contents Acknowledgements ....................................................................................................................... i Table of Contents ......................................................................................................................... ii Abstract .................................................................................................................................. iii Zusammenfassung ........................................................................................................................ iv Chapter 1 Introduction and Scope of the Thesis ......................................................................... 1 Chapter 2 Metabolomics as Bioanalytical Tool for Characterization of Medicinal Plants and their Phytomedical Preparations ........................................................................................ 5 Chapter 3 1H NMR-Based Metabolomics Differentiation and Real Time PCR Analysis of Medicinal Cannabis Organs ....................................................................................................... 31 Chapter 4 Monitoring and Differentiation of Metabolites of Medicinal Cannabis Trichomes during Flowering Period using 1H NMR-based Metabolomics ............................................... 55 Chapter 5 Proteomic Profiling of Medicinal Cannabis Trichomes ................................................ 99 Chapter 6 Transcriptome Analysis of Medicinal Cannabis Trichomes: Assembly, Annotation, and Elucidation of Biosynthetic Pathway of Secondary Metabolites ............................... 137 Chapter 7 Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR ..................................................................... 159 Chapter 8 General Discussion ................................................................................................. 181 References ............................................................................................................................... 193 Curriculum Vitae ....................................................................................................................... 206 Publications .............................................................................................................................. 207 Summary ............................................................................................................................... 209 Rangkuman ............................................................................................................................... 211 ii Abstract Cannabis sativa L. trichomes are the main site for synthesizing and storing cannabinoids and other secondary metabolites on this plant. Metabolomics, proteomics, and transcriptomics were applied in this research as analytical approaches in order to study secondary metabolites, proteins, and genes that are synthesized in the trichomes. The function of specific trichomes and their individual parts in the cannabinoid biosynthesis was investigated as well. 1H NMR- based metabolomics has been successfully applied for monitoring the production of metabolites, especially cannabinoids in the Cannabis trichomes during the last weeks of flowering period. Proteomics analysis of the Cannabis trichomes revealed that many enzymes corresponding in the biosynthesis of secondary metabolites, including cannabinoids, flavonoids, and terpenoids were successfully recorded. This finding supported the function of Cannabis trichomes as the main site of secondary metabolite production. Although there is no flavonoid reported from the trichomes, however the identification of enzymes related to its biosynthesis indicated that this compound might be present in this organ. Interestingly, identification of enzymes involved in the biosynthesis of cannabinoids, terpenoids, and flavonoids in the proteomic work has been also confirmed by the detection of their putative transcripts in the cDNA library of Cannabis trichomes. Analysis of cannabinoids in the laser- microdissected trichomes of Cannabis showed that these compounds were detected not only in the head of capitate-stalked trichomes but also in its stem part. This finding suggest that cannabinoid biosynthesis is not only limited to the expected head cells, but also the stems of Cannabis capitate-stalked trichomes might play a role in the cannabinoids biosynthesis. iii Zusammenfassung Cannabis sativa L. Trichome sind der hauptsächliche Ort der Cannabinoid-Biosynthese. Im Rahmen dieser Arbeiten wurden Techniken angewandt und verbessert, um das Metabolom, Transkriptom und Proteom der biosynthetisierenden Zellen der sezernierenden Trichome zu erforschen. Die Biosyntheleistung der drei Trichomtypen wurde mit Hilfe von LC-MS, Laser Dissection Mikroskopie und 1H-NMR Metabolomics untersucht, um die Biosynthese über 8 Wochen qualitativ und quantitativ zu erfassen. Weitere Analysen des Proteom zeigten auf, das Genexpression und Funktion biosynthetischer Proteine für Cannabinoide, Flavonoide und Terpene des ätherischen Öls ist stark abhängig von Alter und Blütenbildung ist. Analyse und Annotierung der Gene ist durch die eigens erstellte cDNA Bank ermöglicht worden. Die Ergebnisse zeigen, das eine Biosynthese in den sezernierenden Kopfzellen sehr stark aber auch in den Stielzellen zu finden ist. Auf Grund der Proteomuntersuchungen im ätherischen Öl ist eine Biotransformation im nicht wässrigen Milieu ausgeschlossen worden. Mit Hilfe von 1H-NMR Metabolomics und statistischer PCA-Analyse konnten Strategien entwickelt warden, um Zuchtlinien von Cannabis sativa zu identifizieren und auf Basis des metabolomischen Profil voneinander zu unterscheiden iv Chapter 1 Introduction and scope of the thesis Nizar Happyana 1 ---------------------------------------------------------------- Chapter 1 --------------------------------------------------------------- Since ancient time, human beings could not be separated from medicinal plants to fulfill their basic health needs. One of medicinal
Recommended publications
  • Molecular Regulation of Plant Monoterpene Biosynthesis in Relation to Fragrance
    Molecular Regulation of Plant Monoterpene Biosynthesis In Relation To Fragrance Mazen K. El Tamer Promotor: Prof. Dr. A.G.J Voragen, hoogleraar in de Levensmiddelenchemie, Wageningen Universiteit Co-promotoren: Dr. ir. H.J Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Dr. ir. J.P Roozen, departement Agrotechnologie en Voedingswetenschappen, Wageningen Universiteit Promotiecommissie: Dr. M.C.R Franssen, Wageningen Universiteit Prof. Dr. J.H.A Kroeze, Wageningen Universiteit Prof. Dr. A.J van Tunen, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam. Prof. Dr. R.G.F Visser, Wageningen Universiteit Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op woensdag 27 november 2002 des namiddags te vier uur in de Aula Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift Wageningen Universiteit ISBN 90-5808-752-2 Cover and Invitation Design: Zeina K. El Tamer This thesis is dedicated to my Family & Friends Contents Abbreviations Chapter 1 General introduction and scope of the thesis 1 Chapter 2 Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation 21 and functional analysis of four monoterpene synthases Chapter 3 Domain swapping of Citrus limon monoterpene synthases: Impact 57 on enzymatic activity and
    [Show full text]
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • The Seed of Industrial Hemp (Cannabis Sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition
    nutrients Review The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition Barbara Farinon * , Romina Molinari , Lara Costantini and Nicolò Merendino * Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; [email protected] (R.M.); [email protected] (L.C.) * Correspondence: [email protected] (B.F.); [email protected] (N.M.) Received: 25 May 2020; Accepted: 23 June 2020; Published: 29 June 2020 Abstract: Hempseeds, the edible fruits of the Cannabis sativa L. plant, were initially considered a by-product of the hemp technical fibre industry. Nowadays, following the restorationing of the cultivation of C. sativa L. plants containing an amount of delta-9-tetrahydrocannabinol (THC) <0.3% or 0.2% (industrial hemp) there is a growing interest for the hempseeds production due to their high nutritional value and functional features. The goal of this review is to examine the scientific literature concerning the nutritional and functional properties of hempseeds. Furthermore, we revised the scientific literature regarding the potential use of hempseeds and their derivatives as a dietary supplement for the prevention and treatment of inflammatory and chronic-degenerative diseases on animal models and humans too. In the first part of the work, we provide information regarding the genetic, biochemical, and legislative aspects of this plant that are, in our opinion essential to understand the difference between “industrial” and “drug-type” hemp. In the final part of the review, the employment of hempseeds by the food industry as livestock feed supplement and as ingredient to enrich or fortify daily foods has also revised.
    [Show full text]
  • Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: from Structure, Functions to Applications
    International Journal of Molecular Sciences Review Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications Kai Hong , Limin Wang, Agbaka Johnpaul , Chenyan Lv * and Changwei Ma * College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; [email protected] (K.H.); [email protected] (L.W.); [email protected] (A.J.) * Correspondence: [email protected] (C.L.); [email protected] (C.M.); Tel./Fax: +86-10-62737643 (C.M.) Abstract: Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol deriva- tives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydroge- nase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate Citation: Hong, K.; Wang, L.; 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), Johnpaul, A.; Lv, C.; Ma, C.
    [Show full text]
  • The Web That Has No Weaver
    THE WEB THAT HAS NO WEAVER Understanding Chinese Medicine “The Web That Has No Weaver opens the great door of understanding to the profoundness of Chinese medicine.” —People’s Daily, Beijing, China “The Web That Has No Weaver with its manifold merits … is a successful introduction to Chinese medicine. We recommend it to our colleagues in China.” —Chinese Journal of Integrated Traditional and Chinese Medicine, Beijing, China “Ted Kaptchuk’s book [has] something for practically everyone . Kaptchuk, himself an extraordinary combination of elements, is a thinker whose writing is more accessible than that of Joseph Needham or Manfred Porkert with no less scholarship. There is more here to think about, chew over, ponder or reflect upon than you are liable to find elsewhere. This may sound like a rave review: it is.” —Journal of Traditional Acupuncture “The Web That Has No Weaver is an encyclopedia of how to tell from the Eastern perspective ‘what is wrong.’” —Larry Dossey, author of Space, Time, and Medicine “Valuable as a compendium of traditional Chinese medical doctrine.” —Joseph Needham, author of Science and Civilization in China “The only approximation for authenticity is The Barefoot Doctor’s Manual, and this will take readers much further.” —The Kirkus Reviews “Kaptchuk has become a lyricist for the art of healing. And the more he tells us about traditional Chinese medicine, the more clearly we see the link between philosophy, art, and the physician’s craft.” —Houston Chronicle “Ted Kaptchuk’s book was inspirational in the development of my acupuncture practice and gave me a deep understanding of traditional Chinese medicine.
    [Show full text]
  • A Polyketoacyl-Coa Thiolase-Dependent Pathway for the Synthesis of Polyketide Backbones
    ARTICLES https://doi.org/10.1038/s41929-020-0471-8 A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones Zaigao Tan1,3, James M. Clomburg1,2, Seokjung Cheong1, Shuai Qian1 and Ramon Gonzalez 1,2 ✉ Polyketides found in nature originate from backbones synthesized through iterative decarboxylative Claisen condensations catalysed by polyketide synthases (PKSs). However, PKSs suffer from complicated architecture, energy inefficiencies, complex regulation, and competition with essential metabolic pathways for extender unit malonyl-CoA, all combining to limit the flux of polyketide biosynthesis. Here we show that certain thiolases, which we term polyketoacyl-CoA thiolases (PKTs), catalyse polyketide backbone formation via iterative non-decarboxylative Claisen condensations, hence offering a synthetic and effi- cient alternative to PKSs. We show that PKTs can synthesize polyketide backbones for representative lactone, alkylresorcinolic acid, alkylresorcinol, hydroxybenzoic acid and alkylphenol polyketide families, and elucidate the basic catalytic mechanism and structural features enabling this previously unknown activity. PKT-catalysed reactions offer a route to polyketide formation that leverages the simple architecture of thiolases to achieve higher ATP efficiencies and reduced competition with essential metabolic pathways, all of which circumvent intrinsic inefficiencies of PKSs for polyketide product synthesis. olyketides represent a large class of secondary metabolites that Here we show that enzymes other
    [Show full text]
  • Multi-Substrate Terpene Synthases: Their Occurrence and Physiological
    FOCUSED REVIEW published: 12 July 2016 doi: 10.3389/fpls.2016.01019 Multi-Substrate Terpene Synthases: Edited by: Joshua L. Heazlewood, The University of Melbourne, Australia Their Occurrence and Physiological Reviewed by: Maaria Rosenkranz, Significance Helmholtz Zentrum München, Germany Leila Pazouki 1* and Ülo Niinemets 1, 2* Sandra Irmisch, University of British Columbia (UBC), 1 Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Canada Tartu, Estonia, 2 Estonian Academy of Sciences, Tallinn, Estonia Pengxiang Fan, Michigan State University, USA Terpene synthases are responsible for synthesis of a large number of terpenes *Correspondence: in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Leila Pazouki did her undergraduate Recent advances in characterization of genes and enzymes responsible for substrate and degree at the University of Tehran and master degree in Plant Biotechnology end product biosynthesis as well as efforts in metabolic engineering have demonstrated at the University of Bu Ali Sina in Iran. existence of a number of multi-substrate terpene synthases. This review summarizes the She worked as a researcher at the progress in the characterization of such multi-substrate terpene synthases and suggests Agricultural Biotechnology Research Institute of Iran (ABRII) for four years. that the presence of multi-substrate use might have been significantly underestimated.
    [Show full text]
  • Determination of Aconitine in Body Fluids by Lc/Ms/Ms
    [ A APPLICATIONPPLICATION NOTENOTE ] DETERMINATION OF ACONITINE IN BODY FLUIDS BY LC/MS/MS Justus Beike1, Lara Frommherz1, Michelle Wood2, Bernd Brinkmann1 and Helga Köhler1 1 Institute of Legal Medicine, University Hospital Münster, Röntgenstrasse, Münster, Germany 2 Clinical Applications Group, Waters Corporation, Simonsway, Manchester M22 5PP, UK. INTRODUCTION The method was fully validated for the determination of aconitine from whole blood samples and applied in two cases of fatal poisoning. Plants of the genus Aconitum L (family of Ranunculaceae) are known to be among the most toxic plants of the Northern Hemisphere and are widespread across Europe, Northern Asia and North America. Two plants from this genus are of particular importance: the blue-blooded Aconitum napellus L. (monkshood) which is cultivated as an ornamental plant in Europe and the yellow-blooded Aconitum vulparia Reich. (wolfsbane) which is commonly used in Asian herbal medicine1 (Figure 1). Many of the traditional Asian medicine preparations utilise both the aconite tubers and their processed products for their pharmaceutical properties, which include anti-inflammatory, analgesic and cardio- Figure 1: Aconitum napellus (monkshood) (A) and tonic effects2-4. These effects can be attributed to the presence of Aconitum vulparia (wolfsbane) (B). the alkaloids; the principal alkaloids are aconitine, mesaconitine, hypaconitine and jesaconitine. The use of the alkaloids as a homicidal agent has been known for METHODS AND INSTRUMENTATION more than 2000 years. Although intoxications by aconitine are rare in the Western Hemisphere, in traditional Chinese medicine, the Sample preparation use of aconite-based preparations is common and poisoning has Biological samples were prepared for LC/MS/MS by means of a been frequently reported.
    [Show full text]
  • Aldrich Raman
    Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'-
    [Show full text]
  • Phytocannabinoids: Origins and Biosynthesis
    Phytocannabinoids Origins and Biosynthesis Gülck, Thies; Møller, Birger Lindberg Published in: Trends in Plant Science DOI: 10.1016/j.tplants.2020.05.005 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Gülck, T., & Møller, B. L. (2020). Phytocannabinoids: Origins and Biosynthesis. Trends in Plant Science, 25(10), 985-1004. https://doi.org/10.1016/j.tplants.2020.05.005 Download date: 05. okt.. 2021 Trends in Plant Science Feature Review Phytocannabinoids: Origins and Biosynthesis Thies Gülck1,2,3,* and Birger Lindberg Møller1,2,3,* Phytocannabinoids are bioactive natural products found in some flowering Highlights plants, liverworts, and fungi that can be beneficial for the treatment of human Phytocannabinoids are bioactive terpe- ailments such as pain, anxiety, and cachexia. Targeted biosynthesis of cannabi- noids that were thought to be exclusive noids with desirable properties requires identification of the underlying genes to Cannabis sativa, but have now also been discovered in Rhododendron spe- and their expression in a suitable heterologous host. We provide an overview cies, some legumes, the liverwort genus of the structural classification of phytocannabinoids based on their decorated Radula,andsomefungi. resorcinol core and the bioactivities of naturally occurring cannabinoids, and we review current knowledge of phytocannabinoid biosynthesis in Cannabis, Many cannabinoids display promising non-hallucinogenic bioactivities that are Rhododendron,andRadula species. We also highlight the potential in planta determined by the variable nature of the roles of phytocannabinoids and the opportunity for synthetic biology approaches side chain and prenyl group defined by based on combinatorial biochemistry and protein engineering to produce canna- the enzymes involved in their synthesis.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,115,366 B2 Tissier Et Al
    USOO9115366B2 (12) United States Patent (10) Patent No.: US 9,115,366 B2 Tissier et al. (45) Date of Patent: *Aug. 25, 2015 (54) SYSTEM FOR PRODUCING TERPENOIDS IN WO WO99,38957 * 8, 1999 .......... C12N 15/82 PLANTS WO WO99,38957 A1 8/1999 WO WOOOf 17327 A3 3.2000 Fre WO WO 01/20008 A2 3, 2001 (75) Inventors: Alain Tissier, Pertuis (FR); Christophe WO WO 2004/111183 A2 12/2004 Sallaud, Montpellier (FR); Denis WO WO 2006/04.0479 4/2006 Rontein,ontein, GreouxG les Bains (FR(FR) OTHER PUBLICATIONS (73) Assignee: PHILIP MORRIS PRODUCTS S.A., Aharoni, Aetal. The Plant Cell (Dec. 2003), vol. 15: pp. 2866-2884.* Neuchatel (CH) Besumbes, O. et al. Biotechnology and Bioengineering; Oct. 20. 2004; vol. 88, No. 2: pp. 168-175.* (*) Notice: Subject to any disclaimer, the term of this Wang, E. et al. Nature Biotechnology, Apr. 2001; vol. 19, pp. 371 patent is extended or adjusted under 35 37.4% U.S.C. 154(b) by 900 days. Wang, E. et al. Journal of Experimental Botany, Sep. 2002, vol. 53, No. 376; pp. 1891-1897.* This patent is Subject to a terminal dis Walker K. et al. Phytochemistry (2001) vol. 58; pp. 1-7.* claimer. Gutiérrez-Alcalá et al., A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants, 56 J of Exp Botany No. 419, 2487-2494 (2005).* (21) Appl. No.: 11/814,943 Besumbes et al. (Metabolic Engineering of Isoprenoid Biosynthesis in Arabidopsis for the Production of Taxadiene, the First Committed (22) PCT Filed: Jan.
    [Show full text]
  • Ethnoveterinary Medicinal Uses of Some Plant Species
    Vol. 20, Special Issue (AIAAS-2020), 2020 pp. 29-31 ETHNOVETERINARY MEDICINAL USES OF SOME PLANT SPECIES BY THE MIGRATORY SHEPHERDS OF THE WESTERN HIMALAYA Radha* and Sunil Puri School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (H.P.)-173229, India Abstract Livestock rearing is avital pursuit in western Himalayan region and it plays asignificant role in the economy of the tribal migratory shepherds. The present study was aimed to identify and document the ethnoveterinaryplants used by tribal migratory shepherds in high hills of Chitkul range in Kinnaur district of Himachal Pradesh located in western Himalayas. In high hills of Chitkul range a total of 33 ethnoveterinary plants (herbs 11, shrubs 6, trees 4, climber 1 and grasses 11) were used by shepherds. The commonly used plant species were Abies spectabilis, Asparagus filcinus, Aconitum heterophyllum, Betula utilis, Cannabis sativa, Ephedra gerardiana, Rhododendron anthopogon, Thymus serphyllum and Trillium govanianum etc. It was found that more scientific studies should be carried out to determine the effectiveness of identified plant species used in primary healthcare of livestock by tribal migratory shepherds. Kew words: Shepherds, Ethnoveterinary medicines, Livestock, western Himalaya. Introduction 1986). Historically tribal people have been using herbs growing in their surroundings for the cureand maintenance of Medicinal plant species have a long history of use their livestock (Ahmad et al., 2017). In current times, both in traditional health care systems and numerous cultures around developed and developing countries of the World, research the World still rely on plants for their primary health care. surveys focusing on the identification documentation of Since the advent of civilization Humans have used herbal ethnoveterinary practices of plants, have been carried out remediesfor curing different illnesses in their domesticated (Mishra, 2013; Radha and Puri, 2019).
    [Show full text]