WO 2017/100377 Al 15 June 2017 (15.06.2017) W P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/100377 Al 15 June 2017 (15.06.2017) W P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/100377 Al 15 June 2017 (15.06.2017) W P O P C T (51) International Patent Classification: land, California 94609 (US). FLASHMAN, Michael; 926 G06F 19/22 (201 1.01) C12N 15/10 (2006.01) 15th Street, Eureka, California 95501 (US). SHELLMAN, G06F 19/28 (201 1.01) Erin; 812 5th Avenue North, #207, Seattle, Washington 98109 (US). KIMBALL, Aaron; 33 Rosemont Place, San (21) International Application Number: Francisco, California 94103 (US). SZYJKA, Shawn; 2330 PCT/US20 16/065465 New Lake Place, Martinez, California 94553 (US). (22) International Filing Date: FREWEN, Barbara; 3017 Thompson Avenue, Alameda, 7 December 2016 (07.12.2016) California 94501 (US). TREYNOR, Thomas; 1370 Ada Street, Berkeley, California 94702 (US). (25) Filing Language: English (74) Agents: HOLLY, David C. et al; Cooley LLP, 1299 (26) Publication Language: English Pennsylvania Avenue, NW, Suite 700, Washington, Dis (30) Priority Data: trict of Columbia 20004 (US). 62/264,232 7 December 2015 (07. 12.2015) US (81) Designated States (unless otherwise indicated, for every 15/140,296 27 April 2016 (27.04.2016) US kind of national protection available): AE, AG, AL, AM, 62/368,786 29 July 2016 (29.07.2016) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (71) Applicant: ZYMERGEN, INC. [US/US]; 6121 Hollis BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, Street, Suite 700, Emeryville, California 94608 (US). DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (72) Inventors: SERBER, Zach; 100 Ebbtide Avenue, #230, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, Sausalito, California 94965 (US). DEAN, Erik Jed; 3392 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, Orchard Valley Lane, Lafayette, California 94549 (US). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, MANCHESTER, Shawn; 278 38th Street, Oakland, Cali SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, fornia 946 11 (US). GORA, Kasia; 649 60th Street, Oak [Continued on nextpage] (54) Title: MICROBIAL STRAIN IMPROVEMENT BY A HTP GENOMIC ENGINEERING PLATFORM (57) Abstract: The present disclosure provides a Fig. 5 HTP microbial genomic engineering platform that is computationally driven and integrates molecular bio logy, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest. W O 2017/100377 A l Illlll II lllll Hill Hill llll III III Hill Hill Hill Hill lllll llll llll i l llll TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, Declarations under Rule 4.17: zw. — as to applicant's entitlement to apply for and be granted (84) Designated States (unless otherwise indicated, for every a patent (Rule 4.1 7(H)) kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Published: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, — with international search report (Art. 21(3)) TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, — before the expiration of the t ne limit for amending the DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, claims and to be republished in the event of receipt of LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, amendments (Rule 48.2(h)) SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). — with sequence listing part of description (Rule 5.2(a)) IN THE UNITED STATES PATENT & TRADEMARK OFFICE PCT PATENT APPLICATION MICROBIAL STRAIN IMPROVEMENT BY A HTP GENOMIC ENGINEERING PLATFORM CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of priority to U.S. provisional application No. 62/264,232, filed on December 07, 2015, U.S. nonprovisional application No. 15/140,296, filed on April 27, 2016, and U.S. provisional application No. 62/368,786, filed on July 29, 2016, each of which are hereby incorporated by reference in their entirety, including all descriptions, references, figures, and claims for all purposes. FIELD [0002] The present disclosure is directed to high-throughput (HTP) microbial genomic engineering. The disclosed HTP genomic engineering platform is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. STATEMENT REGARDING SEQUENCE LISTING [0003] The Sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is ZYMR_001_01WO_SeqList_ST25.txt. The text file is ~ 5 KB, was created on December 7, 2016, and is being submitted electronically via EFS-Web. BACKGROUND [0004] Humans have been harnessing the power of microbial cellular biosynthetic pathways for millennia to produce products of interest, the oldest examples of which include alcohol, vinegar, cheese, and yogurt. These products are still in large demand today and have also been accompanied by an ever increasing repertoire of products producible by microbes. The advent of genetic engineering technology has enabled scientists to design and program novel biosynthetic pathways into a variety of organisms to produce a broad range of industrial, medical, and consumer products. Indeed, microbial cellular cultures are now used to produce products ranging from small molecules, antibiotics, vaccines, insecticides, enzymes, fuels, and industrial chemicals. [0005] Given the large number of products produced by modern industrial microbes, it comes as no surprise that engineers are under tremendous pressure to improve the speed and efficiency by which a given microorganism is able to produce a target product. [0006] A variety of approaches have been used to improve the economy of biologically -based industrial processes by "improving" the microorganism involved. For example, many pharmaceutical and chemical industries rely on microbial strain improvement programs in which the parent strains of a microbial culture are continuously mutated through exposure to chemicals or UV radiation and are subsequently screened for performance increases, such as in productivity, yield and titer. This mutagenesis process is extensively repeated until a strain demonstrates a suitable increase in product performance. The subsequent "improved" strain is then utilized in commercial production. [0007] As alluded to above, identification of improved industrial microbial strains through mutagenesis is time consuming and inefficient. The process, by its very nature, is haphazard and relies upon one stumbling upon a mutation that has a desirable outcome on product output. [0008] Not only are traditional microbial strain improvement programs inefficient, but the process can also lead to industrial strains with a high degree of detrimental mutagenic load. The accumulation of mutations in industrial strains subjected to these types of programs can become significant and may lead to an eventual stagnation in the rate of performance improvement. [0009] Thus, there is a great need in the art for new methods of engineering industrial microbes, which do not suffer from the aforementioned drawbacks inherent with traditional strain improvement programs and greatly accelerate the process of discovering and consolidating beneficial mutations. [0010] Further, there is an urgent need for a method by which to "rehabilitate" industrial strains that have been developed by the antiquated and deleterious processes currently employed in the field of microbial strain improvement. SUMMARY OF THE DISCLOSURE [0011] The present disclosure provides a high-throughput (HTP) microbial genomic engineering platform that does not suffer from the myriad of problems associated with traditional microbial strain improvement programs. [0012] Further, the HTP platform taught herein is able to rehabilitate industrial microbes that have accumulated non-beneficial mutations through decades of random mutagenesis-based strain improvement programs. [0013] The disclosed HTP genomic engineering platform is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. [0014] The taught HTP genetic design libraries function as drivers of the genomic engineering process, by providing libraries of particular genomic alterations for testing in a microbe. The microbes engineered utilizing a particular library, or combination of libraries, are efficiently screened in a HTP manner for a resultant outcome, e.g. production of a product of interest. This process of utilizing the HTP genetic design libraries to define
Recommended publications
  • Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas Sp
    microorganisms Article Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5 Karel Kopejtka 1 , Yonghui Zeng 1,2, David Kaftan 1,3 , Vadim Selyanin 1, Zdenko Gardian 3,4 , Jürgen Tomasch 5,† , Ruben Sommaruga 6 and Michal Koblížek 1,* 1 Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Tˇreboˇn,Czech Republic; [email protected] (K.K.); [email protected] (Y.Z.); [email protected] (D.K.); [email protected] (V.S.) 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark 3 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 4 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Ceskˇ é Budˇejovice,Czech Republic 5 Research Group Microbial Communication, Technical University of Braunschweig, 38106 Braunschweig, Germany; [email protected] 6 Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] † Present Address: Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, 38106 Braunschweig, Germany. Abstract: An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 Citation: Kopejtka, K.; Zeng, Y.; (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Ty- Kaftan, D.; Selyanin, V.; Gardian, Z.; rolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic Tomasch, J.; Sommaruga, R.; Koblížek, analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas M. Characterization of the Aerobic and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Anoxygenic Phototrophic Bacterium Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%).
    [Show full text]
  • Cancer-Milestones December 2020
    www.nature.com/collections/cancer-milestones December 2020 Cancer Produced by: With support from: Nature Genetics and Nature Medicine Cancer MILESTONES S2 Foreword S3 Timeline S4 Routes to resistance S5 Tracking cancer in liquid biopsies S6 When cancer prevention went viral S7 A licence to kill S8 Sitting on the fence S9 Not a simple switch S10 Sequencing the secrets of the cancer genome S11 Unleashing the immune system against cancer S12 Engineering armed T cells for the fight S13 Oncohistones: epigenetic drivers of cancer S14 Tumour evolution: from linear paths to branched trees S15 Undruggable? Inconceivable S16 Good bacteria make for good cancer therapy S17 The AI revolution in cancer Credit: S.Fenwick/Springer Nature Limited CITING THE MILESTONES VISIT THE SUPPLEMENT ONLINE SUBSCRIPTIONS AND CUSTOMER SERVICES Nature Milestones in Cancer includes Milestone articles written The Nature Milestones in Cancer supplement can be found at Springer Nature, Subscriptions, by our editors and an online Collection of previously published www.nature.com/collections/cancer-milestones Cromwell Place, Hampshire International Business Park, material. To cite the full project, please use Nature Milestones: Lime Tree Way, Basingstoke, Cancer https://www.nature.com/collections/cancer-milestones CONTRIBUTING JOURNALS Hampshire RG24 8YJ, UK (2020). Should you wish to cite any of the individual Milestones, BMC Cancer, Nature, Nature Cancer, Nature Communications, Tel: +44 (0) 1256 329242 please list Author, A. Title. Nature Milestones: Cancer <Article URL> Nature Genetics, Nature Medicine, Nature Reviews Cancer, [email protected] (2020). For example, Milestone 1 is Valtierra, I. Routes to resistance. Nature Reviews Clinical Oncology, Nature Reviews Drug Discovery, Customer serviCes: www.nature.com/help Nature Milestones: Cancer https://www.nature.com/articles/ Nature Reviews Gastroenterology & Hepatology, d42859-020-00069-6 (2020).
    [Show full text]
  • Understanding Biological Design from Synthetic Circuits
    REVIEWS MODELLING Synthetic biology: understanding biological design from synthetic circuits Shankar Mukherji* and Alexander van Oudenaarden‡ Abstract | An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics. 10–12 Modularity One of the most astounding findings of the Human potential clinical applications . In this Review, however, A property of a system such Genome Project was that our genome contains as many we focus on how synthetic circuits help us to under- that it can be broken down into genes as that of Drosophila melanogaster. This finding stand how natural biological systems are genetically discrete subparts that perform begged the question: how do you get one organism to assembled and how they operate in organisms from specific tasks independently of look like a fly and another like a human with the same microbes to mammalian cells. In this light, synthetic the other subparts. number of genes? One possibility is that the rich rep- circuits have been crucial as simplified test beds in Bioremediation ertoire of non-protein-coding sequences found in the which to refine our ideas of how similarly structured The treatment of pollution with genomes of complex organisms adds many new parts natural networks function, and they have served as microorganisms.
    [Show full text]
  • Applications of Novosphingobium Puteolanum Pp1y
    A STUDY OF THE BIOTECHNOLOGICAL APPLICATIONS OF NOVOSPHINGOBIUM PUTEOLANUM PP1Y. Dr. Luca Troncone Dottorato in Scienze Biotecnologiche – XXIV° ciclo Indirizzo Biotecnologie Industriali e Molecolari Università di Napoli Federico II Dottorato in Scienze Biotecnologiche – XXIV° ciclo Indirizzo Biotecnologie Industriali e Molecolari Università di Napoli Federico II A STUDY OF THE BIOTECHNOLOGICAL APPLICATIONS OF NOVOSPHINGOBIUM PUTEOLANUM PP1Y. Dr. Luca Troncone Dottorando: Dr. Luca Troncone Relatore: Prof. Alberto Di Donato Coordinatore: Prof. Giovanni Sannia A zia Nanna Index INDEX RIASSUNTO pag. 3 SUMMARY pag. 8 I. INTRODUCTION pag. 9 1.1. Antropic pollution and bioremediation. 1.2. Microbial biofilm. 1.3. Bioremediation and biofilm. 1.4. Novosphingobium puteolanum PP1Y. 1.5. Aim of the project. II. MATERIALS & METHODS pag. 23 2.1. Culture Media. 2.2. PAH-Agar Plates. 2.3. Optimal Salt Concentration, pH and Temperature for Growth of Strain PP1Y. 2.4. Growth on Fuels. 2.5. Growth on Single Hydrocarbons. 2.6. Phase Contrast Microscopy. 2.7. Removal of Oil-Dissolved Aromatic Hydrocarbons by Strain PP1Y. 2.8. Removal of Aromatic Hydrocarbons from polluted soils: 2.8.1. Growing conditions; 2.8.2. Preparation of microcosms; 2.8.3. Removal of aromatic hydrocarbons from soil by strain PP1Y. 2.9. Heavy metals resistance. 2.10. Analysis of the Extracellular Products: 2.10.1. Proteins analysis: 2.10.1.1. Mass spectrometric analysis. 2.10.2. Carbohydrate analysis: 2.10.2.1. Acetylated methyl glycosides. 2.10.3. Emulsification procedures. 2.11. Genome Analysis. 1 Index 2.12. Other Methods. III. RESULTS & DISCUSSION pag. 31 3.1. Characterization of Novosphingobium puteolanum PP1Y.
    [Show full text]
  • Michael Lynch
    1 Michael Lynch Center for Mechanisms of Evolution, Biodesign Institute Arizona State University Tempe, AZ 85287 Phone: 480-965-0868 Email: [email protected] Birth: 6 December 1951, Auburn, New York Undergraduate education: St. Bonaventure University, Biology - B.S., 1973. Graduate education: University of Minnesota, Ecology and Behavioral Biology - Ph.D., 1977 (advisor: J. Shapiro). Areas of Interest and Research: The integration of molecular and cellular biology, genetics, and evolution; population and quantitative genetics; molecular, genomic, and phenotypic evolution. Select Professional Activities and Service: Director, Biodesign Center for Mechanisms of Evolution, Arizona State University, 2017 – present. Professor, School of Life Sciences, Arizona State University, 2017 – present. Class of 1954 Professor, 2011 – 2017. Distinguished Professor, Indiana University, 2005 – 2017. Professor; Biology, Indiana University, 2001 – 2004. Adjunct Professor, Computer Science, Indiana University, 2014 – 2017. Adjunct Professor, Physics, Indiana University, 2015 – 2017. Professor; Biology, University of Oregon, 1989 – 2001. Director, Ecology and Evolution Program, Univ. of Oregon, 1989 – 1993, 1996 – 2000. Asst., Assoc., Full Professor; Ecology, Ethology, and Evolution; University of Illinois, 1977 – 1989. Co-director, NSF IGERT Training Grant in Evolution, Development, and Genomics, 1999 – 2004. Director, NSF Genetic Mechanisms of Evolution Training Grant, 1990 – 2000. President, Genetics Society of America, 2013. President, Society for Molecular Biology and Evolution, 2009. President, American Genetic Association, 2007. President, Society for the Study of Evolution, 2000. Chair-elect, Section on Biological Sciences American Association for the Advancement of Science, 2017-2020. Vice-president, Genetics Society of America, 2012. Vice-president, Society for the Study of Evolution, 1994. Council Member, Society for the Study of Evolution, 1991 – 1993.
    [Show full text]
  • Towards Population-Scale Long-Read Sequencing
    REVIEWS Towards population-scale long-read sequencing Wouter De Coster 1,2,5, Matthias H. Weissensteiner3,5 and Fritz J. Sedlazeck 4 ✉ Abstract | Long-read sequencing technologies have now reached a level of accuracy and yield that allows their application to variant detection at a scale of tens to thousands of samples. Concomitant with the development of new computational tools, the first population-scale studies involving long-read sequencing have emerged over the past 2 years and, given the continuous advancement of the field, many more are likely to follow. In this Review, we survey recent developments in population-scale long-read sequencing, highlight potential challenges of a scaled-up approach and provide guidance regarding experimental design. We provide an overview of current long-read sequencing platforms, variant calling methodologies and approaches for de novo assemblies and reference-based mapping approaches. Furthermore, we summarize strategies for variant validation, genotyping and predicting functional impact and emphasize challenges remaining in achieving long-read sequencing at a population scale. Genome-wide association Sequencing the DNA or mRNA of multiple individuals These studies highlighted that a substantial proportion studies of one or more species (that is, population-scale sequenc- of hidden variation can be discovered with long-read (GWAS). Studies involving a ing) aims to identify genetic variation at a population sequencing. Indeed, recent long-read sequencing stud- statistical approach in genetics level to address questions in the fields of evolutionary, ies of Icelandic and Chinese populations have already to identify variants that correlate with a certain agricultural and medical research. Previous popula- identified previously undetected variants associated with 11,12 phenotype (for example, a tion studies, including genome-wide association studies height, cholesterol level and anaemia .
    [Show full text]
  • How We Are Evolving New Analyses Suggest That Recent Human Evolution Has Followed a Di!Erent Course Than Biologists Would Have Expected
    XXXXXXXX 40 Scientific American, October 2010 Photograph/Illustration by Artist Name © 2010 Scientific American Jonathan K. Pritchard is professor of human genetics at the University of Chicago and a Howard Hughes Medical Institute investigator. He studies genetic variation within and between human populations and the processes that led to this variation. E VO LU T I O N How We Are Evolving New analyses suggest that recent human evolution has followed a di!erent course than biologists would have expected By Jonathan K. Pritchard IN BRIEF As early Homo sapiens spread out from Many scientists thus expected that sur- ural selection—that is, because those nome contains some examples of very Africa starting around 60,000 years ago, veys of our genomes would reveal con- who carry the mutations have greater strong, rapid natural selection, most of they encountered environmental chal- siderable evidence of novel genetic mu- numbers of healthy babies than those the detectable natural selection appears lenges that they could not overcome tations that have recently spread quickly who do not. to have occurred at a far slower pace with prehistoric technology. ïà¹ù¹ùïmyày´ïȹÈù¨Dï¹´åUĂ´Dï- But it turns out that although the ge- than researchers had envisioned. Illustrations by Owen Gildersleeve October 2010, ScientificAmerican.com 41 © 2010 Scientific American !"#$%&'$ "( )*%+$ %," !#-%&$ -".*' ("+ /!* in technologies for studying genetic variation, we were able to first time into the Tibetan plateau, a vast ex- begin to address these questions. panse of steppelands that towers some 14,000 The work is still under way, but the preliminary findings have feet above sea level.
    [Show full text]
  • Measuring the Societal Impact of Open Science – Presentation of a Research Project
    InformaatiotutkimusKATSAUS 34(4), 2015 Holmberg et al: Measuring... 1 Holmberg, K.*,1, Didegah, F. 1, Bowman, S. 1, Bowman, T.D. 1, & Kortelainen, T.2 Measuring the societal impact of open science – Presentation of a research project Address: 1Research Unit for the Sociology of Education, University of Turku 2Information Studies, University of Oulu Email: *[email protected] Introduction data, and 2) investigate novel quantitative indica- tors of research impact to incentivize researchers Research assessment has become increasingly in adopting the open science movement. important—especially in these economically challenging times—as funders of research try to Assessing impact of research identify researchers, research groups, and uni- versities that are most deserving of the limited Two approaches have traditionally been used to funds. The goal of any research assessment is to assess research impact: (1) assessments based on discover research that is of the highest quality and citations and (2) assessments based on publica- therefore more deserving of funding. As quality is tion venues. Both approaches have issues that are very difficult and time-consuming to assess and well-documented (e.g., Vanclay, 2012). Citations can be highly subjective, other approaches have have been found to not always reflect quality or been preferred for assessment purposes (especially intellectual debt as they can be created for many when assessing big data). Research assessments different reasons, some of which do not reflect usually focus on evaluating the level of impact a the scientific value of the cited article (Borgman research product has made; impact is therefore & Furner, 2002). In addition citations can take a used as a proxy for quality.
    [Show full text]
  • Denkanstöße 5/2021
    Denkanstöße 5 aus der Akademie Juli/2021 Eine Schriftenreihe der Berlin-Brandenburgischen Akademie der Wissenschaften Andreas Radbruch und Konrad Reinhart (Hrsg.) NACHHALTIGE MEDIZIN Berlin-Brandenburgische Akademie der Wissenschaften (BBAW) NACHHALTIGE MEDIZIN NACHHALTIGE MEDIZIN Andreas Radbruch und Konrad Reinhart (Hrsg.) Denkanstöße 5/Juli 2021 Herausgeber: Der Präsident der Berlin-Brandenburgischen Akademie der Wissenschaften Redaktion: Elke Luger, Roman Marek und Ute Tintemann Grafik: angenehme gestaltung/Thorsten Probst Druck: PIEREG Druckcenter Berlin GmbH © Berlin-Brandenburgische Akademie der Wissenschaften, 2021 Jägerstraße 22–23, 10117 Berlin, www.bbaw.de Lizenz: CC-BY-NC-SA ISBN: 978-3-949455-00-1 INHALTSVERZEICHNIS Vorwort ....................................................................... 7 Christoph Markschies Einführung in das Thema ...................................................... 9 Britta Siegmund, Max Löhning, Detlev Ganten und Roman M. Marek Einleitung – Wie kann Medizin „nachhaltig“ sein? ............................15 Andreas Radbruch und Konrad Reinhart NACHHALTIGE BIOMEDIZINISCHE FORSCHUNG Nachhaltigkeit in der Medizin: Einzelzellanalysen in Diagnostik und Therapie ................................20 Nikolaus Rajewsky Regenerative Therapien ......................................................26 Hans-Dieter Volk und Petra Reinke ‚genomDE’ – Eine Chance für die deutsche Genommedizin und -forschung ...............................................32 Karl Sperling und Hans-Hilger Ropers Gesundheit neu denken:
    [Show full text]
  • Prof. Lori B. Andrews
    LORI B. ANDREWS, J.D. IIT Chicago-Kent College of Law • 565 West Adams Street • Chicago, Illinois 60661 312-906-5359 (phone) • 312-906-5388 (fax) • [email protected] EMPLOYMENT: CHICAGO-KENT COLLEGE OF LAW, ILLINOIS INSTITUTE OF TECHNOLOGY, August 1993 – Present Distinguished Professor of Law, 2000 – Present Professor of Law, 1993 – 2000 ILLINOIS INSTITUTE OF TECHNOLOGY INSTITUTE FOR SCIENCE, LAW AND TECHNOLOGY Director, June 1998 – present ILLINOIS INSTITUTE OF TECHNOLOGY Associate Vice President, June 1998 – June 2012 PRINCETON UNIVERSITY, January 2002 – May 2002 Visiting Professor, Public and International Affairs UNIVERSITY OF CHICAGO Senior Scholar, Center for Clinical Medical Ethics, July 1987 – June 2001 Adjunct Professor, School of Law and Graduate School of Business, at various points between 1980 and 1993. CASE WESTERN RESERVE UNIVERSITY SCHOOL OF LAW, January 2000 – June 2000 Ben C. Green Visiting Professor AMERICAN BAR FOUNDATION, April 1980 – September 1997 Research Fellow UNIVERSITY OF HOUSTON LAW CENTER, January 1992 Visiting Professor (taught a three-credit genetics and law course over intersession) AMERICAN BAR ASSOCIATION, September 1978 – April 1980 Assistant Director, Legal Services Group EDUCATION: YALE LAW SCHOOL–Juris Doctor, 1978 Teaching Assistant, Constitutional Law with Professor Eugene Rostow Summer Associate, Cravath, Swaine & Moore, New York YALE UNIVERSITY–Bachelor of Arts, summa cum laude, 1975 Phi Beta Kappa Departmental Honors in Psychology Lori B. Andrews - 2 BOOKS: I Know Who You Are and I Saw What You Did: Social Networks and the Death of Privacy (Simon and Schuster 2012, paperback 2013). Published in Japanese (East Press Co. Ltd., 2013), Arabic (Obeikan Research & Development, 2015), Korean (Youngjin, 2016), and Chinese (Hangzhou Blue Lion Cultural & Creative, 2016).
    [Show full text]
  • Integrating Inclusive Inheritance Into an Extended Theory of Evolution
    REVIEWS Beyond DNA: integrating inclusive inheritance into an extended theory of evolution Étienne Danchin*‡, Anne Charmantier§, Frances A. Champagne||, Alex Mesoudi¶, Benoit Pujol*‡ and Simon Blanchet*# Abstract | Many biologists are calling for an ‘extended evolutionary synthesis’ that would ‘modernize the modern synthesis’ of evolution. Biological information is typically considered as being transmitted across generations by the DNA sequence alone, but accumulating evidence indicates that both genetic and non-genetic inheritance, and the interactions between them, have important effects on evolutionary outcomes. We review the evidence for such effects of epigenetic, ecological and cultural inheritance and parental effects, and outline methods that quantify the relative contributions of genetic and non-genetic heritability to the transmission of phenotypic variation across generations. These issues have implications for diverse areas, from the question of missing heritability in human complex-trait genetics to the basis of major evolutionary transitions. Modern synthesis When Charles Darwin was born in 1809, the idea causes, one of which is that heritability estimates are 10 The merging of Darwinism with that species change over time — that is, evolve — had incorrect , or at least misinterpreted, mainly because genetics that occurred from already emerged1. However, it was only half a century non-genetic heritability is often confounded with the 1930s to the 1950s. later, when Darwin published On the Origin of Species2, purely genetic effects. There is increasing awareness that the theory of evolution profoundly transformed that non-genetic information can also be inherited our understanding of life. Darwin understood that across generations (reviewed in REFS 8,11–13). The natural selection can only affect traits in which there is concepts of ‘general heritability’ (REF.
    [Show full text]
  • Ambiguity and Scientific Authority: Population Classification In
    ASRXXX10.1177/0003122416685812American Sociological ReviewPanofsky and Bliss 6858122017 American Sociological Review 2017, Vol. 82(1) 59 –87 Ambiguity and Scientific © American Sociological Association 2017 DOI: 10.1177/0003122416685812 Authority: Population journals.sagepub.com/home/asr Classification in Genomic Science Aaron Panofskya and Catherine Blissb Abstract The molecularization of race thesis suggests geneticists are gaining greater authority to define human populations and differences, and they are doing so by increasingly defining them in terms of U.S. racial categories. Using a mixed methodology of a content analysis of articles published in Nature Genetics (in 1993, 2001, and 2009) and interviews, we explore geneticists’ population labeling practices. Geneticists use eight classification systems that follow racial, geographic, and ethnic logics of definition. We find limited support for racialization of classification. Use of quasi-racial “continental” terms has grown over time, but more surprising is the persistent and indiscriminate blending of classification schemes at the field level, the article level, and within-population labels. This blending has led the practical definition of “population” to become more ambiguous rather than standardized over time. Classificatory ambiguity serves several functions: it helps geneticists negotiate collaborations among researchers with competing demands, resist bureaucratic oversight, and build accountability with study populations. Far from being dysfunctional, we show the ambiguity of population definition is linked to geneticists’ efforts to build scientific authority. Our findings revise the long-standing theoretical link between scientific authority and standardization and social order. We find that scientific ambiguity can function to produce scientific authority. Keywords genetics, race, ethnicity, geography, standardization, ambiguity, authority One of the most commented upon puzzles of genetics shows race not to be a scientific con- the postgenomic era is the paradox of race.
    [Show full text]