<<

6.776 High Speed Communication Circuits Lecture 2 Transceiver Architectures

Massachusetts Institute of Technology February 3, 2005

Copyright © 2005 by H.-S. Lee and M. H. Perrott Transceivers for Amplitude

H.-S. Lee & M.H. Perrott MIT OCW Review

Transmitter Output

0 x(t) y(t)

π 2cos(2 fot)

ƒ Vary the amplitude of a sine wave at carrier frequency fo according to a modulation signal x'(t) = (1+ mx(t)) ƒ DC component of baseband modulation signal influences transmit signal and receiver possibilities - DC value greater than signal amplitude shown above ƒ Allows simple envelope for receiver ƒ Creates spurious tone at carrier frequency (wasted power) H.-S. Lee & M.H. Perrott MIT OCW Amplitude Modulation: Switching Modulator

LPF or X BPF

1

-1

H.-S. Lee & M.H. Perrott MIT OCW Switching Modulator Example

i1 i2

V1

-V1

For full switching

H.-S. Lee & M.H. Perrott MIT OCW Amplitude Modulation – Gilbert Multiplier

Since b must be positive, the resulting output is AM

ƒ Advantage: low harmonics, output filter does not have to be very selective ƒ Disadvantage: higher DC power

H.-S. Lee & M.H. Perrott MIT OCW DSB Transmitter: Balanced Modulator

Gilbert Gilbert Multiplier Multiplier

ƒ Carrier component is removed ƒ Improves modulation linearity (2nd harmonic distortion is cancelled) H.-S. Lee & M.H. Perrott MIT OCW QAM Transmitter

Balanced Power modulator Amp

+ RF Filter -90o phase shifter QAM

Balanced modulator

H.-S. Lee & M.H. Perrott MIT OCW SSB Transmitter I

ƒ Phase-shift SSB Modulator

Balanced Power modulator Amp

+ RF Filter -90o phase shifter SSB

-90o phase Balanced shifter modulator

ƒ Sideband removal depends on phase and amplitude matching H.-S. Lee & M.H. Perrott MIT OCW Frequency Domain View of Phase-Shift SSB Modulator

H.-S. Lee & M.H. Perrott MIT OCW SSB Transmitter II

ƒ Heterodyne SSB Modulator

Power Amp

-fIF fIF

Balanced IF Balanced RF Modulator (IF) SSB Filter Modulator (RF) Filter

IF RF Oscillator fc-fIF Oscillator fIF

-fIF -fc fc fIF

H.-S. Lee & M.H. Perrott MIT OCW Heterodyne Transmitter

ƒ Sideband filtering requires high selectivity ƒ Sideband filtering is thus easier at lower IF frequency than at RF freqeuency (for example, at IF frequencies, SAW filters offer very high selectivity, low insertion loss, and low noise figure. They are relatively cheap, too) ƒ Same issues apply to receivers (not just for SSB receiever for that matter). ‘Superheterodyne’ receivers have been dominant for decades for the same reason. ƒ Requires two oscillators

H.-S. Lee & M.H. Perrott MIT OCW Rudimentary AM Receiver: Envelope Detector

RF Filter Envelope High efficiency (Tunable LC) Detector Crystal (piezo) Earpiece

ƒ Applicable only to standard AM signals (DC shifted baseband) ƒ No active component: very simple and cheap ƒ Low sensitivity: only strong stations can be tuned in ƒ Poor selectivity (single RF filter) ƒ Low baseband output power: can only drive high efficiency crystal earpiece

H.-S. Lee & M.H. Perrott MIT OCW Envelope Detector Example

vin

C2 v1

vin R2 vout v1 R1 C1

vout

H.-S. Lee & M.H. Perrott MIT OCW AM Receiver: Amplified Receiver

RF Filter RF Envelope Audio Freq. (Tunable LC) Detector (AF) Amplifier

ƒ Better sensitivity (RF Amp) ƒ Can drive loudspeaker (AF Amp) ƒ RF selectivity is still an issue ƒ Expensive when active devices were very expensive (requires two active devices)

H.-S. Lee & M.H. Perrott MIT OCW Reflex Receiver

RF Filter + RF/AF High-Pass Envelope (Tunable LC) Amplifier Filter Detector

ƒ Same properties as amplified AM receiver ƒ Single active device amplifies both RF and AF signals

H.-S. Lee & M.H. Perrott MIT OCW Multi-Stage RF Amplified Receiver

RF Filter Tuned Tuned (Tunable LC) RF Amplifier RF Amplifier

Envelope Audio Freq. Detector (AF) Amplifier

ƒ High sensitivity (Multi-stage RF Amp) ƒ High selectivity is a necessity due to high amplification factor: high-Q tuned circuits ƒ Separate tuning of each stage by trial and error (very tedious)

H.-S. Lee & M.H. Perrott MIT OCW Super-regeneration Receiver

Envelope -R 2 Detector R1 Audio out

Quench

ƒ Quench circuit is either an oscillator (quenching at regular intervals) or amplitude detector (quenches when predetermined amplitude is reached) ƒ Large effective RF gain can be achieved by a single stage (cheap) ƒ Generates characteristic hissing due to amplification of thermal noise in the absence of signal H.-S. Lee & M.H. Perrott MIT OCW Heterodyne Receiver

RF Filter RF Amplifier Frequency (Tunable LC) Converter

IF IF Envelope Audio Freq. Filter Amplifier Detector (AF) Amplifier

ƒ Frequency converter mixes RF down to lower IF frequency – better selectivity is obtained at the lower frequency IF filter ƒ Excellent selectivity due to the additional IF filtering ƒ Better sensitivity by additional IF amplification

H.-S. Lee & M.H. Perrott MIT OCW

RF Filter RF Amplifier Mixer (Tunable LC)

Tunable Local Oscillator

IF IF Envelope Audio Freq. Filter Amplifier Detector (AF) Amplifier ƒ Uses LO frequency higher than carrier, hence ‘super’ heterodyne ƒ Local oscillator frequency tracks the RF filter frequency by a ‘ganged’ variable H.-S. Lee & M.H. Perrott MIT OCW Superheterodyne Receiver Example

Speaker

Q4

IF

Q Q Mixer/LO Q2 3 5 Ant Coil Env det

AF Q1 Vol + 9V AVC

ƒ Local oscillator frequency tracks the RF filter Figure by MIT OCW. frequency by a ‘ganged’ variable capacitor H.-S. Lee & M.H. Perrott MIT OCW Superheterodyne Receiver Spectra

H.-S. Lee & M.H. Perrott MIT OCW Image Rejection in Superheterodyne Receivers

ƒ Key Point: image signal at equidistance from flo converts to the same IF band ƒ The RF filter must remove image! (image reject filter)

ƒ Want high IF frequency for easy image rejection (the distance between the desired signal and the image

is 2fIF) ƒ But, want low IF for easy IF filtering (lower fractional bandwidth

ƒ Typically fIF is selected about half the RF band (e.g. AM 500-1700kHz or FM 88-108MHz) as a compromise ƒ The alternative is to employ image reject mixer

H.-S. Lee & M.H. Perrott MIT OCW Image Reject Mixer

RF y(t) r(t) Balanced modulator

+ LPF or Local Oscillator BPF -90o phase shifter IF Output

Balanced -90o phase modulator shifter ^ z(t) z(t) ƒ Image rejected by similar method to SSB generation ƒ Image rejection limited by amplitude and phase matching of RF and LO paths. 40 dB image suppression is typical ƒ RF filter can reduce the image further if necessary, otherwise the RF image reject filter can be omitted. H.-S. Lee & M.H. Perrott MIT OCW Frequency Domain View of Image Reject Mixer

H.-S. Lee & M.H. Perrott MIT OCW Frequency Domain View of Image Reject Mixer, Cnt’d

H.-S. Lee & M.H. Perrott MIT OCW Homodyne Receiver (Coherent Receiver)

RF Filter RF Amplifier Mixer (Tunable LC)

Pilot Carrier Extractor or LO

Audio Freq. LPF (AF) Amplifier

ƒ Mixes RF signal with the carrier frequency down directly to baseband: no image to reject H.-S. Lee & M.H. Perrott MIT OCW Homodyne Receiver Cont’d

ƒ No local oscillator if pilot carrier is present – carrier extracted from the transmitted signal (carrier needs to be inserted in DSB or SSB, so not compatible with standard DSB or SSB transmission) ƒ Otherwise, a local oscillator at carrier frequency is needed (see direct conversion receiver later) ƒ Carrier extractor can be a narrowband filter, PLL, or an oscillator synchronized by the carrier signal ƒ A form of a direct conversion receiver: same advantages and issues

H.-S. Lee & M.H. Perrott MIT OCW Homodyne Receiver Spectra

H.-S. Lee & M.H. Perrott MIT OCW Direct Conversion (Zero-IF) Receiver

RF Filter RF Amplifier Quadrature (Fixed (LNA) Mixer frequency) Q

Frequency I/Q

Baseband Baseband A/D converter I Filter Amplifier DSP Q Baseband Baseband A/D converter Filter Amplifier ƒ Type of a homodyne receiver ƒ Uses coherent detection: a precise local oscillator is required (use frequency synthesizer) ƒ No IF filtering: single-chip integration is possible H.-S. Lee & M.H. Perrott MIT OCW Direct Conversion (Zero-IF) Receiver

ƒ No IF filtering: single-chip integration is possible ƒ Channel (station) selection in baseband ƒ Since the RF filter is not highly selective, the baseband filter needs to reject interferers: requires much higher dynamic range/SNR and high selectivity in the baseband processing circuit ƒ Channel filtering is typically performed by DSP ƒ No image to reject ƒ Time-varying DC offset due to local oscillator leakage is an important issue ƒ DC offset can be larger than signal and saturate baseband circuits

H.-S. Lee & M.H. Perrott MIT OCW Double Conversion Receiver

RF Filter

LNA A/D

I Q Receive Signal Path I Q LO1 LO2 RF IF BB

1 2 3 N 1 2 3 N 1 2 3 N 3

Figure by MIT OCW. REF: “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications,”J C. Rudell, et. al. IEEE J. Solid-State Circuits, Vol. SC-32, Dec. 1997 pp 2071-2088 ƒ I/Q Image rejection provided by 6 mixers ƒ IF filtering is LPF: single-chip integration is easier ƒ LO frequency is unequal to carrier – LO leakage is not an issue H.-S. Lee & M.H. Perrott MIT OCW Image Rejection in Double Conversion Receiver

1&3 2&4 1,2,3&4 LNA Output Spectrum I-I Q-Phase -fIF fIF 1 2 3 4 I LO2I 4&2 4 j 1&3 LO I-Q 1 1I j -fLO1 fLO1 -fIF LO 4&3 4 2Q + 3 1&2 Q-I j 1 f + Q j 2 IF LO2I 2&3 - 4&1 LO 1Q Q-Q 4&1 I-Phase LO2Q

ƒ Similar to Weaver SSB generator (P.S. #1) Figure by MIT OCW. ƒ Image rejection by phase relationship – no passive components ƒ Image rejection limited by amplitude and phase matching of 6 mixers! H.-S. Lee & M.H. Perrott MIT OCW Low-IF Receiver

RF Filter RF Amplifier (LNA)

Baseband I LPF ADC Out (digital) Quadrature DSP Mixer LPF ADC Q

-90o

LO ƒ Same principle, but image rejected in digital domain: IF frequency can be very low ƒ The IF filter, ADC & DSP operate at low IF frequency: Permits easy single-chip integration ƒ Image rejection still limited by quadrature mixer amplitude & phase matching H.-S. Lee & M.H. Perrott MIT OCW Transceivers for Constant Envelope Modulation

H.-S. Lee & M.H. Perrott MIT OCW Narrowband Phase Modulator

Balanced modulator NBPM

90o

H.-S. Lee & M.H. Perrott MIT OCW Indirect

NBFM Frequency NBPM Multiplier nX

ƒ Frequency multiplier increases the FM bandwidth by nX

H.-S. Lee & M.H. Perrott MIT OCW Direct FM: VCO

VCO

ƒ fo: ‘free running’ frequency of VCO ƒ Typically, a varactor (voltage-variable capacitor) is used to change oscillation frequency in an oscillator ƒ Difficult to maintain precise output frequency due to drift in the VCO frequency ƒ High phase noise

H.-S. Lee & M.H. Perrott MIT OCW Example of VCO’s (Albert Jerng’s VCO’s)

1.8V 1.8V

L L Vtune

L Vtune L

Figure by MIT OCW. NMOS VCO PMOS VCO

H.-S. Lee & M.H. Perrott MIT OCW PLL-Based Frequency Modulation

Phase Loop detector filter VCO

ƒ The loop bandwidth must be lower than the lowest signal frequency ƒ The center frequency is precisely maintained by the crystal reference fc1

H.-S. Lee & M.H. Perrott MIT OCW Digital Frequency Modulation Using Fractional-N Synthesizer

Phase Loop detector filter VCO

(digital) Digital ∆Σ modulator 1-bit output ƒ Modulo n/n+1 divider is duty-cycle modulated by the signal ƒ Input signal is ∆Σ modulated to push quantization noise out of loop bandwidth

H.-S. Lee & M.H. Perrott MIT OCW FM : Frequency Discriminator

Limiter Envelope DC block Detector

Frequency Discriminator |H(f))

fc fo ƒ Linear f-v range is small: use balanced (differential) discriminator H.-S. Lee & M.H. Perrott MIT OCW Balanced Frequency Discriminator

|H(f))

fo2

fc fo1

H.-S. Lee & M.H. Perrott MIT OCW FM Demodulation by FM-to-AM Conversion

Differentiator Limiter Envelope DC block Detector

ƒ Differentiator converts FM signal to AM ƒ Spurious AM must be suppressed by the limiter

H.-S. Lee & M.H. Perrott MIT OCW FM Demodulator Example: Delay-Line

+

- delay τ

ƒ Differentiator is implemented by a transmission line delay

H.-S. Lee & M.H. Perrott MIT OCW FM Demodulator Using Phase-Locked Loop

Phase Limiter Loop VCO detector filter

ƒ VCO input voltage is used as output ƒ VCO is in feedback loop: input output characteristic is the inverse of VCO function (thus f-to-v conversion).

H.-S. Lee & M.H. Perrott MIT OCW