External Morphology of Eyes and Nebenaugen of Caridean Decapods–Ecological and Systematic Considerations Magnus L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Diversity of Seagrass-Associated Decapod Crustaceans in a Tropical Reef Lagoon Prior to Large Environmental Changes: a Baseline Study
diversity Article Diversity of Seagrass-Associated Decapod Crustaceans in a Tropical Reef Lagoon Prior to Large Environmental Changes: A Baseline Study Patricia Briones-Fourzán * , Luz Verónica Monroy-Velázquez, Jaime Estrada-Olivo y and Enrique Lozano-Álvarez Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Puerto Morelos, 77580 Quintana Roo, Mexico; [email protected] (L.V.M.-V.); [email protected] (J.E.-O.); [email protected] (E.L.-Á.) * Correspondence: [email protected] Current address: Calle Trasatlántico SM-18, Mz 24, Lote 12; Villas Morelos, Puerto Morelos, y 77580 Quintana Roo, Mexico. Received: 7 April 2020; Accepted: 19 May 2020; Published: 23 May 2020 Abstract: The community composition of decapods associated with subtidal tropical seagrass meadows was analyzed in a pristine reef lagoon on the Mexican Caribbean coast in the summer of 1995 and winter of 1998. The macrophyte community was dominated by Thalassia testudinum followed by Syringodium filiforme, with interspersed rhyzophytic macroalgae and large patches of drift algae. In each season, 10 one-min trawls were made with an epibenthic sled (mesh aperture 1 mm) during the day and 10 during the night on each of five sites. In all, 53,211 decapods belonging to 119 species were collected. The most diverse taxa were Brachyura and Caridea, but the most abundant were Caridea and Anomura. Dominance was high, with three species (Latreutes fucorum, Cuapetes americanus, and Thor manningi) accounting for almost 50% of individuals, and 10 species accounting for nearly 90% of individuals. There was great similarity in community composition and ecological indices between seasons, but significantly more individuals and species in night versus day samples. -
W7192e19.Pdf
click for previous page 952 Shrimps and Prawns Sicyoniidae SICYONIIDAE Rock shrimps iagnostic characters: Body generally Drobust, with shell very hard, of “stony” grooves appearance; abdomen often with deep grooves and numerous tubercles. Rostrum well developed and extending beyond eyes, always bearing more than 3 upper teeth (in- cluding those on carapace); base of eyestalk with styliform projection on inner surface, but without tubercle on inner border. Both upper and lower antennular flagella of similar length, attached to tip of antennular peduncle. 1 Carapace lacks both postorbital and postantennal spines, cervical groove in- distinct or absent. Exopod present only on first maxilliped. All 5 pairs of legs well devel- 2 oped, fourth leg bearing a single well-devel- 3rd and 4th pleopods 4 single-branched oped arthrobranch (hidden beneath 3 carapace). In males, endopod of second pair 5 of pleopods (abdominal appendages) with appendix masculina only. Third and fourth pleopods single-branched. Telson generally armed with a pair of fixed lateral spines. Colour: body colour varies from dark brown to reddish; often with distinct spots or colour markings on carapace and/or abdomen - such colour markings are specific and very useful in distinguishing the species. Habitat, biology, and fisheries: All members of this family are marine and can be found from shallow to deep waters (to depths of more than 400 m). They are all benthic and occur on both soft and hard bottoms. Their sizes are generally small, about 2 to 8 cm, but some species can reach a body length over 15 cm. The sexes are easily distinguished by the presence of a large copulatory organ (petasma) on the first pair of pleopods of males, while the females have the posterior thoracic sternites modified into a large sperm receptacle process (thelycum) which holds the spermatophores or sperm sacs (usually whitish or yellowish in colour) after mating. -
Prawn Fauna (Crustacea: Decapoda) of India - an Annotated Checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean Prawns
Available online at: www.mbai.org.in doi: 10.6024/jmbai.2012.54.1.01697-08 Prawn fauna (Crustacea: Decapoda) of India - An annotated checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean prawns E. V. Radhakrishnan*1, V. D. Deshmukh2, G. Maheswarudu3, Jose Josileen 1, A. P. Dineshbabu4, K. K. Philipose5, P. T. Sarada6, S. Lakshmi Pillai1, K. N. Saleela7, Rekhadevi Chakraborty1, Gyanaranjan Dash8, C.K. Sajeev1, P. Thirumilu9, B. Sridhara4, Y Muniyappa4, A.D.Sawant2, Narayan G Vaidya5, R. Dias Johny2, J. B. Verma3, P.K.Baby1, C. Unnikrishnan7, 10 11 11 1 7 N. P. Ramachandran , A. Vairamani , A. Palanichamy , M. Radhakrishnan and B. Raju 1CMFRI HQ, Cochin, 2Mumbai RC of CMFRI, 3Visakhapatnam RC of CMFRI, 4Mangalore RC of CMFRI, 5Karwar RC of CMFRI, 6Tuticorin RC of CMFRI, 7Vizhinjam RC of CMFRI, 8Veraval RC of CMFRI, 9Madras RC of CMFRI, 10Calicut RC of CMFRI, 11Mandapam RC of CMFRI *Correspondence e-mail: [email protected] Received: 07 Sep 2011, Accepted: 15 Mar 2012, Published: 30 Apr 2012 Original Article Abstract Many penaeoid prawns are of considerable value for the fishing Introduction industry and aquaculture operations. The annual estimated average landing of prawns from the fishery in India was 3.98 The prawn fauna inhabiting the marine, estuarine and lakh tonnes (2008-10) of which 60% were contributed by freshwater ecosystems of India are diverse and fairly well penaeid prawns. An additional 1.5 lakh tonnes is produced from known. Significant contributions to systematics of marine aquaculture. During 2010-11, India exported US $ 2.8 billion worth marine products, of which shrimp contributed 3.09% in prawns of Indian region were that of Milne Edwards (1837), volume and 69.5% in value of the total export. -
The Complete Mitogenome of €Lysmata Vittata
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.04.455109; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 The complete mitogenome of Lysmata vittata (Crustacea: 2 Decapoda: Hippolytidae) and its phylogenetic position in 3 Decapoda 4 Longqiang Zhu1,2,3, Zhihuang Zhu1,2*, Leiyu Zhu1,2, Dingquan Wang3, Jianxin 5 Wang3*, Qi Lin1,2,3* 6 1 Fisheries Research Institute of Fujian, Xiamen, China 7 2 Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, 8 China 9 3Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Zhejiang, China 10 * [email protected] (QL); [email protected] (JW); [email protected] (ZZ) 11 12 Abstract 13 In this study, the complete mitogenome of Lysmata vittata (Crustacea: Decapoda: 14 Hippolytidae) has been determined. The genome sequence was 22003 base pairs (bp) 15 and it included thirteen protein-coding genes (PCGs), twenty-two transfer RNA genes 16 (tRNAs), two ribosomal RNA genes (rRNAs) and three putative control regions 17 (CRs). The nucleotide composition of AT was 71.50%, with a slightly negative AT 18 skewness (-0.04). Usually the standard start codon of the PCGs was ATN, while cox1, 19 nad4L and cox3 began with TTG, TTG and GTG. The canonical termination codon 20 was TAA, while nad5 and nad4 ended with incomplete stop codon T, and cox1 ended 21 with TAG. -
Redalyc.Larval Development of the Rock Shrimp Rhynchocinetes Typus
Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile DUPRÉ, ENRIQUE; FLORES, LUIS; PALMA, SERGIO Larval development of the rock shrimp Rhynchocinetes typus Milne Edwards, 1937 (Decapoda, Caridea) reared in the laboratory Revista Chilena de Historia Natural, vol. 81, núm. 2, 2008, pp. 155-170 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944286001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LARVAL DEVELOPMENT OF RHYNCHOCINETES TYPUSRevista Chilena de Historia Natural155 81: 155-170, 2008 Larval development of the rock shrimp Rhynchocinetes typus Milne Edwards, 1937 (Decapoda, Caridea) reared in the laboratory Desarrollo larval del camarón de roca Rhynchocinetes typus Milne Edwards, 1937 (Decapoda, Caridea) cultivados en laboratorio ENRIQUE DUPRÉ1*, LUIS FLORES1 & SERGIO PALMA2 1 Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Casilla117 Coquimbo, Chile; [email protected] 2 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile *e-mail for correspondence: [email protected] ABSTRACT The first description of the larval stages of a representative of the family Rhynchocinetidae from the southeastern Pacific coast of South America is presented. Larvae of the rock shrimp Rhynchocinetes typus, from rocky subtidal environment of the Chile-Peru coast were reared in the laboratory at 22 ºC, salinity 32 and feeding with Artemia franciscana. Seven zoeal stages, which occur through 10 successive moults, are described and illustrated in detail. -
Crustacea: Decapoda: Gnathophyllidae)
Memoirs of Museum Victoria 60(2): 237-242 (2003) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs Gnathophyllum taylori, a new species of caridean shrimp from south-eastern Australia (Crustacea: Decapoda: Gnathophyllidae) S h a n e T. Ah y o n g Department of Marine Invertebrates, Australian Museum, 6 College St, Sydney, NSW 2010, Australia (shanea@ austmus.gov.au) A b stra c t Ahyong, S. T. 2003. Gnathophyllum taylori, a new species of caridean shrimp from south-eastern Australia (Crustacea: Decapoda: Gnathophyllidae). Memoirs o f Museum Victoria 60(2): 237-242. Anew species of caridean shrimp, Gnathophyllum taylori sp.nov., is described from south-eastern Australia. The new species most closely resembles two Atlantic species, G. modestum Hay, 1917, and G. elegans Risso, 1816, but is readily distinguished by its banded rather than spotted body colour pattern. Gnathophyllum taylori is the third Indo-West Pacific species to be recognised. It differs from G. americanum, with which it can be sympatric, by having fewer and narrower dark bands on the body as well as by the rostral dentition, morphology of the orbit and dactyli of the walking legs. The identity of G. fasciolatum Stimpson, 1860, a junior synonym of G. americanum, is fixed by neotype selection. K eyw ords Crustacea, Decapoda, Caridea, Gnathophyllum taylori, new species Introduction Gnathophyllum taylori sp. nov. The most recent treatment of the caridean genus Figures 1-2 Gnathophyllum Latreille, 1819, recognised eight species Gnathophyllum americanum.—Healy and Yaldwyn, 1970: 46, fig. worldwide with two in the Indo-West Pacific - G. -
New Records of Marine Ornamental Shrimps (Decapoda: Stenopodidea and Caridea) from the Gulf of Mannar, Tamil Nadu, India
12 6 2010 the journal of biodiversity data 7 December 2016 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 12(6): 2010, 7 December 2016 doi: http://dx.doi.org/10.15560/12.6.2010 ISSN 1809-127X © 2016 Check List and Authors New records of marine ornamental shrimps (Decapoda: Stenopodidea and Caridea) from the Gulf of Mannar, Tamil Nadu, India Sanjeevi Prakash1, 3, Thipramalai Thangappan Ajith Kumar2* and Thanumalaya Subramoniam1 1 Centre for Climate Change Studies, Sathyabama University, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600119, Tamil Nadu, India 2 ICAR - National Bureau of Fish Genetic Resources, Canal Ring Road, Dilkusha Post, Lucknow - 226002, Uttar Pradesh, India 3 Current address: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA * Corresponding author. E-mail: [email protected] Abstract: Marine ornamental shrimps found in from coral reefs have greatly affected their diversity and tropical coral reef waters are widely recognized for the distribution (Wabnitz et al. 2003). aquarium trade. Our survey of ornamental shrimps in Among all the ornamental shrimps, Stenopus the Gulf of Mannar, Tamil Nadu (India) has found three spp. and Lysmata spp. are the most attractive and species, which we identify as Stenopus hispidus Olivier, extensively traded organisms in the marine aquarium 1811, Lysmata debelius Bruce, 1983, and L. amboinensis industry (Calado 2008). Interestingly, these shrimps are De Man, 1888, based on morphology and color pattern. associates of fishes, in particular, the groupers and giant These shrimps are recorded for the first time in Gulf of moray eels (Gymnothorax spp.). These shrimps display a Mannar, Tamil Nadu. -
The Shrimp Genus Leptalpheus Williams, 1965 in the Southwestern Caribbean Sea, with Description of One New Species from Panama (Crustacea, Decapoda, Alpheidae)
The shrimp genus Leptalpheus Williams, 1965 in the southwestern Caribbean Sea, with description of one new species from Panama (Crustacea, Decapoda, Alpheidae) Arthur ANKER Instituto Smithsonian de Investigaciones Tropicales, apartado 0843-03092, Balboa, Ancón, Panamá (Panama) Current address: Florida Museum of Natural History, University of Florida, 250A Dickinson Hall, Gainesville, FL 32611-7800 (USA) aanker@fl mnh.ufl .edu Anker A. 2008. — The shrimp genus Leptalpheus Williams, 1965 in the southwestern Caribbean Sea, with description of one new species from Panama (Crustacea, Decapoda, Alpheidae). Zoosystema 30 (4) : 781-794. ABSTRACT Two species of the alpheid shrimp genus Leptalpheus Williams, 1965 are reported from the southwestern Caribbean Sea. Leptalpheus pierrenoeli n. sp. is described on the basis of a single male specimen collected from a burrow of unknown, presumably callianassid host on Isla Grande, Panama. Th is species diff ers from all other species of Leptalpheus by the dentition on the fi ngers of the major KEY WORDS cheliped and the elongate stylocerite. Leptalpheus cf. forceps is recorded for the Crustacea, fi rst time from Cahuita, Costa Rica, representing a considerable range extension Decapoda, of L. forceps Williams, 1965, previously known from North Carolina to the Alpheidae, Leptalpheus, Gulf of Mexico, into the southern Caribbean Sea. Th e Cahuita specimens bear Callianassidae, a peculiar segmented fi lament on the uropodal endopod (caudal fi lament), a Lepidophthalmus, Caribbean, feature not observed in the type specimens. Furthermore, they were found in western Atlantic association with the callianassid ghostshrimp, Lepidophthalmus richardi Felder & infaunal shrimp, Manning, 1997. Th is fi nding represents a new host record for L. -
Annotated Checklist of New Zealand Decapoda (Arthropoda: Crustacea)
Tuhinga 22: 171–272 Copyright © Museum of New Zealand Te Papa Tongarewa (2011) Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) John C. Yaldwyn† and W. Richard Webber* † Research Associate, Museum of New Zealand Te Papa Tongarewa. Deceased October 2005 * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand ([email protected]) (Manuscript completed for publication by second author) ABSTRACT: A checklist of the Recent Decapoda (shrimps, prawns, lobsters, crayfish and crabs) of the New Zealand region is given. It includes 488 named species in 90 families, with 153 (31%) of the species considered endemic. References to New Zealand records and other significant references are given for all species previously recorded from New Zealand. The location of New Zealand material is given for a number of species first recorded in the New Zealand Inventory of Biodiversity but with no further data. Information on geographical distribution, habitat range and, in some cases, depth range and colour are given for each species. KEYWORDS: Decapoda, New Zealand, checklist, annotated checklist, shrimp, prawn, lobster, crab. Contents Introduction Methods Checklist of New Zealand Decapoda Suborder DENDROBRANCHIATA Bate, 1888 ..................................... 178 Superfamily PENAEOIDEA Rafinesque, 1815.............................. 178 Family ARISTEIDAE Wood-Mason & Alcock, 1891..................... 178 Family BENTHESICYMIDAE Wood-Mason & Alcock, 1891 .......... 180 Family PENAEIDAE Rafinesque, 1815 .................................. -
Review on the Genuscinetorhynchus Holthuis, 1995 from the Indo-West
Or. Chctce, : (JOitt Tn®/ S^/wtr H7' 2 Crustacea Decapoda: Review on the genus Cinetorhynchus Holthuis, 1995 from the Indo-West Pacific (Caridea: Rhynchocinetidae) JUNJIOKUNO Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260, Japan ABSTRACT Cinetorhynchus Holthuis, 1995 established as a subgenus of the genus Rhynchocinetes H. Milne Edwards, 1837, is elevated to the generic rank. In addition to the definitions pointed out by HOLTHUIS (1995), this genus is distinguished from the type genus by having two rows of spines on the ischia and rneri of the third to fifth pereiopods. Cinetorhynchus is composed of C. rigens (Gordon, 1936), the type species, from the Madeira Islands, eastern Atlantic, and the following six species from the Indo-West Pacific : C. concolor (Okuno, 1994), C. erythrostictus sp. nov., C. hendersoni (Kemp, 1925), G hiatti (Holthuis & Hayashi, 1967), C. reticulum sp. nov. and C. striatus (Nomura & Hayashi, 1992). The key for the morphological characters and the color photographs of the live-coloration of each species are provided for the identification of the species. INTRODUCTION The caridean family Rhynchocinetidae has been composed of the single genus, Rhynchocinetes H. Milne Edwards, 1837 (HOLTHUIS, 1993), which contains 15 species. Most shrimps are inhabitant of tropical to temperate reefs, and commonly known as hinge-beak shrimp in having the typically movable rostrum which is articulated with the carapace. Recently, the rhynchocinetid shrimps were clearly divided into two subgenera based on the following morphological characters (HOLTHUIS, 1995). The subgenus Rhynchocinetes has two acute teeth at median carina of carapace behind the distinct rostral articulation, a supraorbital spine and no spine on the posterolateral margins of fourth and fifth abdominal somites, whereas the subgenus Cinetorhynchus Holthuis, 1995 has three teeth at OKUNO, J., 1997 — Crustacea Decapoda : Review on the genus Cinetorhynchus Holthuis, 1995 from the Indo-West Pacific (Caridea : Rhynchocinetidae). -
Benvenuto, C and SC Weeks. 2020
--- Not for reuse or distribution --- 8 HERMAPHRODITISM AND GONOCHORISM Chiara Benvenuto and Stephen C. Weeks Abstract This chapter compares two sexual systems: hermaphroditism (each individual can produce gametes of either sex) and gonochorism (each individual produces gametes of only one of the two distinct sexes) in crustaceans. These two main sexual systems contain a variety of alternative modes of reproduction, which are of great interest from applied and theoretical perspectives. The chapter focuses on the description, prevalence, analysis, and interpretation of these sexual systems, centering on their evolutionary transitions. The ecological correlates of each reproduc- tive system are also explored. In particular, the prevalence of “unusual” (non- gonochoristic) re- productive strategies has been identified under low population densities and in unpredictable/ unstable environments, often linked to specific habitats or lifestyles (such as parasitism) and in colonizing species. Finally, population- level consequences of some sexual systems are consid- ered, especially in terms of sex ratios. The chapter aims to provide a broad and extensive overview of the evolution, adaptation, ecological constraints, and implications of the various reproductive modes in this extraordinarily successful group of organisms. INTRODUCTION 1 Historical Overview of the Study of Crustacean Reproduction Crustaceans are a very large and extraordinarily diverse group of mainly aquatic organisms, which play important roles in many ecosystems and are economically important. Thus, it is not surprising that numerous studies focus on their reproductive biology. However, these reviews mainly target specific groups such as decapods (Sagi et al. 1997, Chiba 2007, Mente 2008, Asakura 2009), caridean Reproductive Biology. Edited by Rickey D. Cothran and Martin Thiel.