Cell Cycle-Independent Furrowing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phosphorylation and Activation of Cell Division Cycle Associated 8 by Aurora Kinase B Plays a Significant Role in Human Lung Carcinogenesis
Research Article Phosphorylation and Activation of Cell Division Cycle Associated 8 by Aurora Kinase B Plays a Significant Role in Human Lung Carcinogenesis Satoshi Hayama,1,2 Yataro Daigo,1 Takumi Yamabuki,1 Daizaburo Hirata,1 Tatsuya Kato,1 Masaki Miyamoto,2 Tomoo Ito,3 Eiju Tsuchiya,4 Satoshi Kondo,2 andYusuke Nakamura 1 1Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Departments of 2Surgical Oncology and 3Surgical Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; and 4Kanagawa Cancer Center Research Institute, Kanagawa, Japan Abstract inhibitors for EGFR tyrosine kinase (i.e., gefitinib and erlotinib), Through genome-wide gene expression analysis of lung were developed and are applied in clinical practice (5). However, carcinomas, we detected in the great majority of lung cancer each of the new regimens can provide survival benefits to a small samples cotransactivation of cell division cycle associated subset of the patients (6, 7). Hence, new therapeutic strategies, such 8(CDCA8) and aurora kinase B (AURKB), which were as development of more effective molecular targeted agents considered to be components of the vertebrate chromosomal applicable to the great majority of patients with less toxicity, are passenger complex.Immunohistochemical analysis of lung eagerly awaited. cancer tissue microarrays showed that overexpression of Systematic analysis of expression levels of thousands of genes CDCA8 and AURKB was significantly associated with poor using cDNA microarrays is an effective approach for identification prognosis of lung cancer patients.AURKB directly phosphor- of unknown molecules involved in carcinogenic pathways and can ylated CDCA8 at Ser154, Ser219, Ser275, and Thr278 and seemed effectively screen candidate target molecules for development of to stabilize CDCA8 protein in cancer cells.Suppression of novel therapeutics and diagnostics. -
Core Lab Brochure
CHOOSE THE MOST TRUSTED LONG-READ TECHNOLOGY FOR YOUR CORE Sequence with Confidence The Sequel® II and IIe Systems are powered by Single Molecule, Real-Time (SMRT®) Sequencing, a technology proven to produce highly accurate long reads, known as HiFi reads, for sequencing data you and your customers can trust. SMRT SEQUENCING IS SMART BUSINESS HiFi Reads: PacBio is the only sequencing technology to offer highly accurate long reads. Because HiFi reads are extremely accurate, downstream analysis is simplified and streamlined, requiring less compute time than the error-prone long reads of other technologies. High Throughput: The Sequel II and IIe Systems have high data yields on robust, highly automated platforms to increase productivity and reduce project costs. Efficient and Easy-To-Use Workflows: Our end-to-end solutions feature library preparation in <3 hours and many push- button analysis workflows, so you can run projects quickly and easily. Support: All of our products are backed by a global team of scientists, bioinformaticians, and engineers who stand ready to provide you with outstanding service. OUTSTANDING PERFORMANCE AND RELIABILITY 99% of runs on the Sequel II System completed successfully Sequel II Systems provide reliable performance with the total bases produced by the PacBio fleet steadily increasing, and 99% of runs completed successfully. “In our experience, the Sequel II System was essentially production-ready right out of the box. We have used it for a range of applications and sample types — from human genome sequencing to metagenome and microbiome profiling to non-model plant and animal genomes — and results have been very good.” — Luke Tallon, Director of the Genomics Resource Center at Maryland Genomics pacb.com/Sequel SMRT SEQUENCING APPLICATIONS – EFFICIENT AND COST EFFECTIVE The Sequel II and IIe Systems support a wide range of applications, each adding unique value to a sequencing study. -
The Drug Sensitivity and Resistance Testing (DSRT) Approach
A phenotypic screening and machine learning platform eciently identifies triple negative breast cancer-selective and readily druggable targets Prson Gautam 1 Alok Jaiswal 1 Tero Aittokallio 1, 2 Hassan Al Ali 3 Krister Wennerberg 1,4 Identifying eective oncogenic targets is challenged by the complexity of genetic alterations in 1Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland cancer and their poorly understood relation to cell function and survival. There is a need for meth- Current kinome coverage of kinase inhibitors in TNBC exhibit diverse kinase dependencies MFM-223 is selectively addicted to FGFR2 2Department of Mathematics and Statistics, University of Turku, Finland 3The Miami Project to Cure Paralysis, Peggy and Harold Katz Family Drug Discovery Center, A A Sylvester Comprehensive Cancer Center, and Department of Neurological Surgery and Medicine ods that rapidly and accurately identify “pharmacologically eective” targets without the require- clinical evaluation TN Kinases MFM-223 CAL-120 MDA-MB-231 TNBC TNBC TNBC TNBC TNBC TNBC HER2+ 100 University of Miami Miller School of Medicine, Miami, FL 33136, USA. non- HER2+ FGFR1 0.97 0.00 0.00 MFM-223 BL1 BL2 M MSL IM LAR ER+, PR+ 50 ment for priori knowledge of complex signaling networks. We developed an approach that uses ma- cancerous FGFR2 56.46 0.00 0.00 CAL-120 25 4 MDA-MB-231 Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center HCC1937 CAL-85-1 CAL-120 MDA-MB-231 DU4475 CAL-148 MCF-10A SK-BR-3 BT-474 FGFR3 25.10 0.00 0.00 0 chine learning to relate results from unbiased phenotypic screening of kinase inhibitors to their bio- for Stem Cell Biology (DanStem), University of Copenhagen, Denmark HCC1599 HDQ-P1 BT-549 MDA-MB-436 MFM-223 FGFR4 0.00 0.00 0.00 MAXIS*Bk Clinical status MDA-MB-468 CAL-51 Hs578T MDA-MB-453 score chemical activity data. -
Evolution, Expression and Meiotic Behavior of Genes Involved in Chromosome Segregation of Monotremes
G C A T T A C G G C A T genes Article Evolution, Expression and Meiotic Behavior of Genes Involved in Chromosome Segregation of Monotremes Filip Pajpach , Linda Shearwin-Whyatt and Frank Grützner * School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; fi[email protected] (F.P.); [email protected] (L.S.-W.) * Correspondence: [email protected] Abstract: Chromosome segregation at mitosis and meiosis is a highly dynamic and tightly regulated process that involves a large number of components. Due to the fundamental nature of chromosome segregation, many genes involved in this process are evolutionarily highly conserved, but duplica- tions and functional diversification has occurred in various lineages. In order to better understand the evolution of genes involved in chromosome segregation in mammals, we analyzed some of the key components in the basal mammalian lineage of egg-laying mammals. The chromosome passenger complex is a multiprotein complex central to chromosome segregation during both mitosis and meio- sis. It consists of survivin, borealin, inner centromere protein, and Aurora kinase B or C. We confirm the absence of Aurora kinase C in marsupials and show its absence in both platypus and echidna, which supports the current model of the evolution of Aurora kinases. High expression of AURKBC, an ancestor of AURKB and AURKC present in monotremes, suggests that this gene is performing all necessary meiotic functions in monotremes. Other genes of the chromosome passenger complex complex are present and conserved in monotremes, suggesting that their function has been preserved Citation: Pajpach, F.; in mammals. -
Centromere RNA Is a Key Component for the Assembly of Nucleoproteins at the Nucleolus and Centromere
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere Lee H. Wong,1,3 Kate H. Brettingham-Moore,1 Lyn Chan,1 Julie M. Quach,1 Melisssa A. Anderson,1 Emma L. Northrop,1 Ross Hannan,2 Richard Saffery,1 Margaret L. Shaw,1 Evan Williams,1 and K.H. Andy Choo1 1Chromosome and Chromatin Research Laboratory, Murdoch Childrens Research Institute & Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville 3052, Victoria, Australia; 2Peter MacCallum Research Institute, St. Andrew’s Place, East Melbourne, Victoria 3002, Australia The centromere is a complex structure, the components and assembly pathway of which remain inadequately defined. Here, we demonstrate that centromeric ␣-satellite RNA and proteins CENPC1 and INCENP accumulate in the human interphase nucleolus in an RNA polymerase I–dependent manner. The nucleolar targeting of CENPC1 and INCENP requires ␣-satellite RNA, as evident from the delocalization of both proteins from the nucleolus in RNase-treated cells, and the nucleolar relocalization of these proteins following ␣-satellite RNA replenishment in these cells. Using protein truncation and in vitro mutagenesis, we have identified the nucleolar localization sequences on CENPC1 and INCENP. We present evidence that CENPC1 is an RNA-associating protein that binds ␣-satellite RNA by an in vitro binding assay. Using chromatin immunoprecipitation, RNase treatment, and “RNA replenishment” experiments, we show that ␣-satellite RNA is a key component in the assembly of CENPC1, INCENP, and survivin (an INCENP-interacting protein) at the metaphase centromere. -
Download Paper
M BoC | ARTICLE Chromosomal passenger complex hydrodynamics suggests chaperoning of the inactive state by nucleoplasmin/nucleophosmin Mariah L. Hanleya,b, Tae Yeon Yooc, Matthew Sonnetta, Daniel J. Needlemanc,d, and Timothy J. Mitchisona,* aDepartment of Systems Biology, Harvard Medical School, Boston, MA 02114–5701; bDepartment of Chemistry, cJohn A. Paulson School of Engineering and Applied Sciences, and dDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138-2902 ABSTRACT The chromosomal passenger complex (CPC) is a conserved, essential regulator of Monitoring Editor cell division. As such, significant anti–cancer drug development efforts have been focused on Yixian Zheng targeting it, most notably by inhibiting its AURKB kinase subunit. The CPC is activated by Carnegie Institution AURKB-catalyzed autophosphorylation on multiple subunits, but how this regulates CPC in- Received: Dec 20, 2016 teractions with other mitotic proteins remains unclear. We investigated the hydrodynamic Revised: Mar 27, 2017 behavior of the CPC in Xenopus laevis egg cytosol using sucrose gradient sedimentation and Accepted: Apr 4, 2017 in HeLa cells using fluorescence correlation spectroscopy. We found that autophosphoryla- tion of the CPC decreases its sedimentation coefficient in egg cytosol and increases its diffu- sion coefficient in live cells, indicating a decrease in mass. Using immunoprecipitation coupled with mass spectrometry and immunoblots, we discovered that inactive, unphosphorylated CPC interacts with nucleophosmin/nucleoplasmin proteins, which are known to oligomerize into pentamers and decamers. Autophosphorylation of the CPC causes it to dissociate from nucleophosmin/nucleoplasmin. We propose that nucleophosmin/nucleoplasmin complexes serve as chaperones that negatively regulate the CPC and/or stabilize its inactive form, pre- venting CPC autophosphorylation and recruitment to chromatin and microtubules in mitosis. -
Application of a MYC Degradation
SCIENCE SIGNALING | RESEARCH ARTICLE CANCER Copyright © 2019 The Authors, some rights reserved; Application of a MYC degradation screen identifies exclusive licensee American Association sensitivity to CDK9 inhibitors in KRAS-mutant for the Advancement of Science. No claim pancreatic cancer to original U.S. Devon R. Blake1, Angelina V. Vaseva2, Richard G. Hodge2, McKenzie P. Kline3, Thomas S. K. Gilbert1,4, Government Works Vikas Tyagi5, Daowei Huang5, Gabrielle C. Whiten5, Jacob E. Larson5, Xiaodong Wang2,5, Kenneth H. Pearce5, Laura E. Herring1,4, Lee M. Graves1,2,4, Stephen V. Frye2,5, Michael J. Emanuele1,2, Adrienne D. Cox1,2,6, Channing J. Der1,2* Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adeno- carcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry–based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, Downloaded from UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage- dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability 62 through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser . -
Comprehensive Identification of Survival-Associated Genes for Cancers
bioRxiv preprint doi: https://doi.org/10.1101/526285; this version posted January 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Comprehensive identification of survival-associated genes for cancers Hongde Liu1*, Kun Luo2, Huamei Li1, Xiao Sun1 1State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China 2Department of Neurosurgery, Xinjiang Evidence-Based Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China *The corresponding author: Hongde Liu, e-mail: [email protected] (HDL). Authors’ e-mails: Hongde Liu: [email protected] (HDL); Kun Luo: [email protected] (KL); Huamei Li: [email protected](HML); Xiao Sun: [email protected](XS). Highlights: ● The number of possible prognostic and diagnostic genes for cancers; ● A list of independent prognostic genes for each cancer; ● The universal prognostic genes mainly function in the spindle assembly checkpoint; ● Statistical links between mutated pathways and prognostic genes. 1 bioRxiv preprint doi: https://doi.org/10.1101/526285; this version posted January 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: Prognostic signature is important in estimating cancer risk, subtyping cancer, and planning treatment. -
Phosphorylation of Threonine 3 on Histone H3 by Haspin Kinase Is Required for Meiosis I in Mouse Oocytes
ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 5066–5078 doi:10.1242/jcs.158840 RESEARCH ARTICLE Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes Alexandra L. Nguyen, Amanda S. Gentilello, Ahmed Z. Balboula*, Vibha Shrivastava, Jacob Ohring and Karen Schindler` ABSTRACT a lesser extent. However, it is not known whether haspin is required for meiosis in oocytes. To date, the only known haspin substrates Meiosis I (MI), the division that generates haploids, is prone to are threonine 3 of histone H3 (H3T3), serine 137 of macroH2A and errors that lead to aneuploidy in females. Haspin is a kinase that threonine 57 of CENP-T (Maiolica et al., 2014). Knockdown or phosphorylates histone H3 on threonine 3, thereby recruiting Aurora inhibition of haspin in mitotically dividing tissue culture cell kinase B (AURKB) and the chromosomal passenger complex lines reveal that phosphorylation of H3T3 is essential for the (CPC) to kinetochores to regulate mitosis. Haspin and AURKC, an alignment of chromosomes at the metaphase plate (Dai and AURKB homolog, are enriched in germ cells, yet their significance Higgins, 2005; Dai et al., 2005), regulation of chromosome in regulating MI is not fully understood. Using inhibitors and cohesion (Dai et al., 2009) and establishing a bipolar spindle (Dai overexpression approaches, we show a role for haspin during MI et al., 2009). In mitotic metaphase, phosphorylation of H3T3 is in mouse oocytes. Haspin-perturbed oocytes display abnormalities restricted to kinetochores, and this mark signals recruitment of the in chromosome morphology and alignment, improper kinetochore– chromosomal passenger complex (CPC) (Dai et al., 2005; Wang microtubule attachments at metaphase I and aneuploidy at et al., 2010; Yamagishi et al., 2010). -
A Single Amino Acid Change Converts Aurora-A Into Aurora-B-Like Kinase in Terms of Partner Specificity and Cellular Function
A single amino acid change converts Aurora-A into Aurora-B-like kinase in terms of partner specificity and cellular function Jingyan Fua, Minglei Biana, Junjun Liub, Qing Jianga, and Chuanmao Zhanga,1 aThe Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing 100871, China; and bDepartment of Biological Sciences, California State Polytechnic University, Pomona, CA 91768 Edited by Don W. Cleveland, University of California at San Diego, La Jolla, CA, and approved March 5, 2009 (received for review January 25, 2009) Aurora kinase-A and -B are key regulators of the cell cycle and the original Aurora-A localization at the spindle. Moreover, tumorigenesis. It has remained a mystery why these 2 Aurora Aurora-AG198N prevented the chromosome misalignment and kinases, although highly similar in protein sequence and structure, cell premature exit from mitosis caused by Aurora-B knock- are distinct in subcellular localization and function. Here, we report down, indicating functional substitution for Aurora-B in cell the striking finding that a single amino acid residue is responsible cycle regulation. for these differences. We replaced the Gly-198 of Aurora-A with the equivalent residue Asn-142 of Aurora-B and found that in HeLa Results cells, Aurora-AG198N was recruited to the inner centromere in Aurora-AG198N Colocalizes with Aurora-B at Centromere and Midzone. metaphase and the midzone in anaphase, reminiscent of the We fused the mutants Aurora-AG198N and Aurora-BN142G (Fig. Aurora-B localization. Moreover, Aurora-AG198N compensated for 1A) with GFP and transiently expressed them in HeLa cells the loss of Aurora-B in chromosome misalignment and cell prema- [supporting information (SI) Fig. -
Associated 16P11.2 Deletion in Drosophila Melanogaster
ARTICLE DOI: 10.1038/s41467-018-04882-6 OPEN Pervasive genetic interactions modulate neurodevelopmental defects of the autism- associated 16p11.2 deletion in Drosophila melanogaster Janani Iyer1, Mayanglambam Dhruba Singh1, Matthew Jensen1,2, Payal Patel 1, Lucilla Pizzo1, Emily Huber1, Haley Koerselman3, Alexis T. Weiner 1, Paola Lepanto4, Komal Vadodaria1, Alexis Kubina1, Qingyu Wang 1,2, Abigail Talbert1, Sneha Yennawar1, Jose Badano 4, J. Robert Manak3,5, Melissa M. Rolls1, Arjun Krishnan6,7 & 1234567890():,; Santhosh Girirajan 1,2,8 As opposed to syndromic CNVs caused by single genes, extensive phenotypic heterogeneity in variably-expressive CNVs complicates disease gene discovery and functional evaluation. Here, we propose a complex interaction model for pathogenicity of the autism-associated 16p11.2 deletion, where CNV genes interact with each other in conserved pathways to modulate expression of the phenotype. Using multiple quantitative methods in Drosophila RNAi lines, we identify a range of neurodevelopmental phenotypes for knockdown of indi- vidual 16p11.2 homologs in different tissues. We test 565 pairwise knockdowns in the developing eye, and identify 24 interactions between pairs of 16p11.2 homologs and 46 interactions between 16p11.2 homologs and neurodevelopmental genes that suppress or enhance cell proliferation phenotypes compared to one-hit knockdowns. These interac- tions within cell proliferation pathways are also enriched in a human brain-specific network, providing translational relevance in humans. Our study indicates a role for pervasive genetic interactions within CNVs towards cellular and developmental phenotypes. 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA. 2 Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA. -
Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,