Visualizing Hierarchical Knowledge As Insightful Islands Bin Yang

Total Page:16

File Type:pdf, Size:1020Kb

Visualizing Hierarchical Knowledge As Insightful Islands Bin Yang Memory Island : Visualizing Hierarchical Knowledge as Insightful Islands Bin Yang To cite this version: Bin Yang. Memory Island : Visualizing Hierarchical Knowledge as Insightful Islands. Information Retrieval [cs.IR]. Université Pierre et Marie Curie - Paris VI, 2015. English. NNT : 2015PA066137. tel-01241135 HAL Id: tel-01241135 https://tel.archives-ouvertes.fr/tel-01241135 Submitted on 10 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie École doctorale Informatique, Télécommunications et Électronique (Paris) (ED130) Lip6 ACASA Group MEMORY ISLAND: VISUALIZING HIERARCHICAL KNOWLEDGE AS INSIGHTFUL ISLANDS Présentée Par Bin Yang Thèse de doctorat d’Informatique Dirigée par Monsieur le professeur Jean-Gabriel Ganascia Présentée et soutenue publiquement le 08 Juin 2015 Devant un jury composé de: Monsieur Dragicevic, Pierre, Chargé de Recherche, Examinateur Professeur Ganascia, Jean-Gabriel, Professeur, Directeur de these Professeur Kuntz-Cosperec, Pascale, Professeur, Rapporteur Professeur Labat, Jean-Marc, Professeur, Examinateur Monsieur Lecolinet, Eric, Maître de Conférences, Examinateur Professeur Venturini,Gilles, Professeur, Rapporteur This thesis is dedicated to my parent and my wife Xiang. Thank you for the wealth of love. i ii ABSTRACT This thesis is devoted to the study of an original cartographic visualization approach named Memory Island. We discuss how hierarchical knowledge can be meaningfully mapped and visualized as an insightful island. Our technique is inspired by the "loci" (plural of Latin "locus" for places or locations) method of the ancient "Art of Memory" technique. A well-designed map in mind can make sense of knowledge, which leads to the accomplishment of one's information seeking tasks, and helps to extend one's knowledge. To this end, Memory Island technique consists of associating each entity of knowledge to a designated area on a created virtual island. With the geographic visual metaphors we define, Memory Island can present phenomena found in knowledge, which is often difficult to understand. In this thesis, we discuss how we design our visualization technique to make it achieve the great features of visualization: automatically generate a truthful, functional, beautiful, insightful, and enlightening island with its technical details. In order to make Memory Island more convenient for its users, we present our "overview+detail" interface, to support them with visual exploration and knowledge analysis. We also demonstrate how to create knowledge maps using Memory Island technique, by giving some example on different datasets of Digital Humanities (Project OBVIL), e-books (Project LOCUPLETO) and other domains. Then, we propose our validation and evaluation protocols with two preliminary user experiments. The results from these studies indicate that the use of Memory Island provides advantages for non-experienced users tackling realistic browsing, helps them improve their performances in knowledge navigation and memorization tasks, and that most of them choose to use it for navigation and knowledge discovery. We end up by concluding our researches and listing some perspectives and future works that can be based on our Memory Island technique. iii iv TITRE EN FRANÇAISE « ILES DE MEMOIRES: UNE NOUVELLE APPROCHE POUR LA VISUALISATION INTUITIVE DES CONNAISSANCES HIERARCHIQUES» RE SUME Dans cette thèse nous étudions une nouvelle approche de visualisation cartographique appelée « îles de mémoires ». Le terme « îles de mémoires » a été inspiré par la méthode des «loci» (pluriel de « locus » en latin qui signifie « endroit » ou « lieu») de l’ancien « Art de la mémoire». Une carte bien représentée dans l’esprit peut donner un sens à la connaissance, ce qui améliore une de recherche d'information (une recherche intuitive), et contribue à enrichir les connaissances issues de cette carte. Pour cela, la technique « îles de mémoires » consiste à associer chaque entité de connaissance à un endroit désigné sur une île virtuelle. Grâce aux les métaphores géographiques que nous avons définies, une représentation en « îles de mémoires » peut inférer des phénomènes souvent difficile à identifier et comprendre dans la connaissance. Dans une première partie, nous détaillons notre approche de visualisation d’une hiérarchie de connaissances en île de mémoire. Nous présentons les algorithmes que nous avons définis pour générer automatiquement une belle carte réaliste, fonctionnelle, intuitive et inspirante. Nous présentons aussi l’interface de visualisation "overview+detail" qui permet de naviguer dans les îles de mémoire. Dans une deuxième partie, nous détaillons les expérimentations réalisées avec notre outil dans le cadre du projet LOCUPLETO et des exemples issus du domaine des humanités numériques (Projet OBVIL, InPhO, etc.). Les résultats obtenus avec notre approche de visualisation sont prometteuses. En effet, les résultats démontrent que la navigation est intuitive et est capable d’augmenter la mémorisation des connaissances chez les utilisateurs de l’outil. Nous concluions notre thèse par le bilan des travaux menées et nous proposons un ensemble de travaux futurs basé sur notre approche de visualisation « îles de mémoires ». v ACKNOWLEDGEMENTS This work is supported by the French National Research Project (investissement d'avenir) LOCUPLETO. This work has been possible only because of the French National Research Project (investissement d'avenir) LOCUPLETO. I thank all the participants of the Project LOCUPLETO and the participants of our user studies. Professor Jean-Gabriel Ganascia has been the ideal thesis supervisor. His sage advice, insightful criticisms, and patient encouragement aided the working and writing of this thesis in innumerable ways. I want to thank Raluca Tocmag, Suradej Panich, Marie Laxenaire, Soroosh Nalchigar and Fabio Pardo for their interns and supports for the evaluation experiments. I would like to thank for Professor Gilles Venturini and Professor Pascale Kuntz-Cosperec for their interests they have shown with this thesis, and their agreement to examine this thesis in detail as reviewers. I also appreciate Professor Jean-Marc Labat, Dr. Pierre Dragicevic and Dr. Eric Lecolinet for accepting to examine this work and it’s my pleasure that they can participate in my thesis committee. I also want to give my specific thanks to Dr. Jean-Daniel Fekete, even unfortunately, he cannot by my thesis committee as he is on sabbatical year on the USA. He suggest me to invite Dr. Pierre Dragicevic who is an ideal thesis committee. I have had the good fortune to be able to present my research in several conferences and workshops, and would like to thank everyone who made this possible, including anonymous reviewers who offered valuable input. I would like to thank also the Association EGC, and AFIHM (L'Association Francophone d'Interaction Homme-Machine), who have organized the workshops on InfoVis, give me a chance to discuss our idea with others. I thank the Cost Action TD1210, who bring me the opportunities and support me to present my research in many places in Europe. I also thanks to the members of Labex OBVIL, who give me the rights to apply Memory Island on their dataset and the encouragements from them. I also thank the editors, Aida Slavic and Almila Akdag Salah of the International UDC Seminar 2013 proceedings for valuable comments and suggestions for improving our works. I would like to thank for Professor Colin Allen of Indiana University Bloomington for his comments and helps when we work on his InPhO ontology. I would like also thanks the Research Scientist Michaël AUPETIT of Qatar Computing Research Institute, he give me some reference on how to design a visualization tools. I appreciate the encouragement and useful suggestions of Professor Andre Skupin of San Diego State University, Professor Charles van den Heuvel of University of Amsterdam and Xia Lin of Drexel University for the valuable discussion on Memory Island. I want to give my specific thanks to the people in ACASA Team at Lip6: Christophe Jouis, Gauvain Bourgne, Mihnea Tufis, Alexandre Bazin, Mohamed Amine Boukhaled, Suzanne vii Mpouli Njanga Seh, Fiona Berreby, Alaa Abi Haidar Zied Sellami and Francesca Frontini. I have passed wonderful three years with all of you for both my research and my stays in Paris. Thank you to Kayla Friedman and Malcolm Morgan of the Centre for Sustainable Development, University of Cambridge, UK and the IFD department of University Pierre and Marie Curie for producing their Microsoft Word thesis templates used to produce this document. In the end, I would like to give my specific thanks to Marco Quaggiotto, Martin Rosvall and Andrea Scharnhorst who allow me to reproduce your images in my thesis. viii Memory Island: Visualizing Hierarchical Knowledge as Insightful Islands Bin Yang‐ June 2015 CONTENTS PART I. BACKGROUND AND LITERATURE REVIEW ....................................................................... 1 CHAPTER 1 GENERAL INTRODUCTION .....................................................................................................................
Recommended publications
  • Stable Treemaps Via Local Moves
    Stable treemaps via local moves Citation for published version (APA): Sondag, M., Speckmann, B., & Verbeek, K. A. B. (2018). Stable treemaps via local moves. IEEE Transactions on Visualization and Computer Graphics, 24(1), 729-738. [8019841]. https://doi.org/10.1109/TVCG.2017.2745140 DOI: 10.1109/TVCG.2017.2745140 Document status and date: Published: 01/01/2018 Document Version: Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Treemap User Guide
    TreeMap User Guide Macrofocus GmbH Version 2019.8.0 Table of Contents Introduction. 1 Getting started . 2 Load and filter the data . 2 Set-up the visualization . 5 View and analyze the data. 7 Fine-tune the visualization . 12 Export the result. 15 Treemapping . 16 User interface . 20 Menu and toolbars. 20 Status bar . 24 Loading data . 25 File-based data sources. 25 Directory-based data sources . 31 Database connectivity. 32 On-line data sources . 33 Automatic default configuration . 33 Data types . 33 Configuration panel . 36 Layout . 38 Group by. 53 Size. 56 Color . 56 Height . 61 Labels . 61 Tooltip. 63 Rendering . 66 Legend . 67 TreeMap view . 69 Zooming . 69 Drilling . 70 Probing and selection . 70 TreePlot view. 71 Configuration . 71 Zooming . 72 Drilling . 72 Probing and selection . 72 TreeTable view . 73 Sorting . 73 Probing and selection . 74 Filter on a subset . 75 Search . 76 Filter . 76 See details. 77 Configure variables . 78 Formatting patterns. 78 Expression.
    [Show full text]
  • Treemap Art Project
    EVERY ALGORITHM HAS ART IN IT Treemap Art Project By Ben Shneiderman Visit Exhibitions @ www.cpnas.org 2 tree-structured data as a set of nested rectangles) which has had a rippling impact on systems of data visualization since they were rst conceived in the 1990s. True innovation, by denition, never rests on accepted practices but continues to investigate by nding new In his book, “Visual Complexity: Mapping Patterns of perspectives. In this spirit, Shneiderman has created a series Information”, Manuel Lima coins the term networkism which of prints that turn our perception of treemaps on its head – an he denes as “a small but growing artistic trend, characterized eort that resonates with Lima’s idea of networkism. In the by the portrayal of gurative graph structures- illustrations of exhibition, Every AlgoRim has ART in it: Treemap Art network topologies revealing convoluted patterns of nodes and Project, Shneiderman strips his treemaps of the text labels to links.” Explaining networkism further, Lima reminds us that allow the viewer to consider their aesthetic properties thus the domains of art and science are highly intertwined and that laying bare the fundamental property that makes data complexity science is a new source of inspiration for artists and visualization eective. at is to say that the human mind designers as well as scientists and engineers. He states that processes information dierently when it is organized visually. this movement is equally motivated by the unveiling of new In so doing Shneiderman seems to daringly cross disciplinary is exhibit is a project of the knowledge domains as it is by the desire for the representation boundaries to wear the hat of the artist – something that has Cultural Programs of the National Academy of Sciences of complex systems.
    [Show full text]
  • Immersive Data Visualization and Storytelling Based on 3D | Virtual Reality Platform: a Study of Feasibility, Efficiency, and Usability
    Masterarbeit Truong Vinh Phan Immersive Data Visualization and Storytelling based on 3D | Virtual Reality Platform: a Study of Feasibility, Efficiency, and Usability Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Informatik Department of Computer Science Truong Vinh Phan Immersive Data Visualization and Storytelling based on 3D | Virtual Reality Platform: a Study of Feasibility, Efficiency, and Usability Masterarbeit eingereicht im Rahmen der Masterprüfung im Studiengang Angewandte Informatik am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg Betreuender Prüfer: Prof. Dr. Kai von Luck Zweitgutachter: Prof. Dr. Philipp Jenke Abgegeben am October 7, 2016 Truong Vinh Phan Thema der Masterarbeit Immersive Datenvisualisierung und Storytelling, die auf 3D bzw. virtueller Realität-Plattform basiert: eine Studie der Machbarkeit, Effizienz und Usability. Stichworte immersive Datenvisualisierung, 3D, visueller Data-Mining, virtuelle Realität, Open-Data, Big- Data, UX, Userbefragung Kurzzusammenfassung Seit der Datenexplosion dank der Open-Data- bzw. Transparenz-Bewegung sind Daten- analyse und -exploration eine zwar interessanter aber immer schwieriger Herausforderung, nicht nur für die Informationstechnik und Informatik sondern auch für unsere allgemeine Gesellschaft, geworden. Wegen der Arbeitsweise des menschlichen Gehirns ist Visual- isierung eine der ersten Go-to Methoden, um komplexe Datensätze verständlich, anschaulich und zugänglich zu machen.
    [Show full text]
  • Uncertainty Treemaps
    Uncertainty Treemaps Citation for published version (APA): Sondag, M., Meulemans, W., Schulz, C., Verbeek, K., Weiskopf, D., & Speckmann, B. (2020). Uncertainty Treemaps. In F. Beck, J. Seo, & C. Wang (Eds.), 2020 IEEE Pacific Visualization Symposium, PacificVis 2020 - Proceedings (pp. 111-120). [9086235] IEEE Computer Society. https://doi.org/10.1109/PacificVis48177.2020.7614 DOI: 10.1109/PacificVis48177.2020.7614 Document status and date: Published: 01/06/2020 Document Version: Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • UNIVERSITY of CALIFORNIA SANTA CRUZ PLAYING with WORDS: from INTUITION to EVALUATION of GAME DIALOGUE INTERFACES a Dissertation
    UNIVERSITY OF CALIFORNIA SANTA CRUZ PLAYING WITH WORDS: FROM INTUITION TO EVALUATION OF GAME DIALOGUE INTERFACES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in COMPUTER SCIENCE Serdar Sali December 2012 The Dissertation of Serdar Sali is approved: _______________________________ Professor Michael Mateas, Chair _______________________________ Associate Professor Noah Wardrip-Fruin _______________________________ Associate Professor Sri Kurniawan _______________________________ Professor Marilyn Walker _____________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Serdar Sali 2012 TABLE OF CONTENTS CHAPTER 1. INTRODUCTION ........................................................................................ 1 OBJECTIVES ........................................................................................................................... 3 CONTRIBUTIONS ................................................................................................................... 4 ORGANIZATION .................................................................................................................... 5 CHAPTER 2. RELATED WORK ......................................................................................... 7 DIALOGUE IN TASK-BASED SYSTEMS ................................................................................... 7 DIALOGUE SYSTEMS FOR VIRTUAL AND BELIEVABLE AGENTS ........................................... 9 DIALOGUE
    [Show full text]
  • Issn –2395-1885 Issn
    IJMDRR Research Paper E- ISSN –2395-1885 Impact Factor: 4.164 Refereed Journal ISSN -2395-1877 HIERARCHICAL VISUALIZATION METHOD FOR MULTIDIMENSIONAL RELATIONAL DATA SET USING NR-PERFECT TREEMAPPING K. Kalasha* G. Nirmala** *Head, PG and Research Department of Computer Science, Government Arts College, Thiruvannamalai. **Research Scholar, Government Arts College, Thiruvannamalai. Abstract This paper describes multidimensional relational data sets visualization by using hierarchical method for enhanced treemapping. Many ideas behind by introducing a variety of interactive techniques for space optimization, rectangle overlapping and gaps and adjusting treemaps [1,2]. In this paper, we present strategies to visualize changes of hierarchical data using treemaps. A new NR-Perfect treemapping algorithm is presented to abrupt above all of these limitations. NR- Perfect treemapping algorithm would create rectangles with an aspect ratio close to one. The given size to form treemapping a rectangle can be formed in a big small split of a rectangle. Each rectangle followed by clearly few items of color, size, and position and represents a rectangle using graph based regions [3]. In this rectangle is cut out of a rectangle by substituting the values for T and it can be shown easily D the target aspect ratio is met. NR-Perfect treemapping well known treemap visualization in order to guarantee layouts with constant aspect ratio and it has effective power. When you implement this algorithm it satisfies many conditions and the implementation of NR-Perfect treemapping concept using python code. Keywords: NR-Perfect (Node vs Rectangle) Treemapping, High Dimensional Data, Clustering, Multidimensional Relational Database. I. Introduction In this real world, to store and represent a huge amount of dataset into the database, we are in the need of multidimensional relational database.
    [Show full text]
  • Treemaps for Space-Constrained Visualization of Hierarchies
    Treemaps for space-constrained visualization of hierarchies by Ben Shneiderman Started Dec. 26th, 1998, last updated June 25th, 2009 by Catherine Plaisant Our treemap products: Treemap 4.0: General treemap tool (Free demo version, plus licensing information for full package) PhotoMesa: Zoomable image library browser (Free demo version, plus licensing information for full package) Treemap Algorithms and Algorithm Animations (Open source Java code) A History of Treemap Research at the University of Maryland During 1990, in response to the common problem of a filled hard disk, I became obsessed with the idea of producing a compact visualization of directory tree structures. Since the 80 Megabyte hard disk in the HCIL was shared by 14 users it was difficult to determine how and where space was used. Finding large files that could be deleted, or even determining which users consumed the largest shares of disk space were difficult tasks. Tree structured node-link diagrams grew too large to be useful, so I explored ways to show a tree in a space-constrained layout. I rejected strategies that left blank spaces or those that dealt with only fixed levels or fixed branching factors. Showing file size by area coding seemed appealing, but various rectangular, triangular, and circular strategies all had problems. Then while puzzling about this in the faculty lounge, I had the Aha! experience of splitting the screen into rectangles in alternating horizontal and vertical directions as you traverse down the levels. This recursive algorithm seemed attractive, but it took me a few days to convince myself that it would always work and to write a six line algorithm.
    [Show full text]
  • A Visual Analysis Tool for Medication Use Data in the ABCD Study
    Eurographics Workshop on Visual Computing for Biology and Medicine (2019) Short Paper K. Lawonn and R. G. Raidou (Editors) MedUse: A Visual Analysis Tool for Medication Use Data in the ABCD Study H. Bartsch1,2 and L. Garrison5 and S. Bruckner5 and A. (Szu-Yung) Wang4 and S. F. Tapert3 and R. Grüner1 1Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway 2Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, United States 3Department of Psychiatry, University of California San Diego, La Jolla, California, United States 4Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States 5Department of Informatics, University of Bergen, Norway 58930 Zyrtec #209 1186679 Zyrtec Pill #29 865258 Aller Tec #18 203150 cetirizine hydrochloride #15 1186677 Zyrtec Oral Liquid Product #6 1152447 Cetirizine Pill #5 1086791 Wal Zyr #5 1366498 Ahist Antihistamine Oral Product #4 1428980 Cetirizine Oral Solution [Pediacare Children's 24 Hr Allergy] #3 1020026 cetirizine hydrochloride 10 MG Oral Tablet [Zyrtec] #3 1020023 cetirizine hydrochloride 10 MG Oral Capsule [Zyrtec] #3 371364 Cetirizine Oral Tablet #3 1366499 Ahist Antihistamine Pill #2 1296197 Zyrtec Disintegrating Oral Product #2 R06AE Piperazine derivatives #209 1186680 Zyrtec D Oral Product #2 1020021 cetirizine hydrochloride 1 MG/ML Oral Solution [Zyrtec] #2 759919 levocetirizine Oral Solution #2 398335 Xyzal #2 1595661 1595661 #1 ine] #1 1296338 Zyrtec Chewable Product
    [Show full text]
  • Hsuanwei Michelle Chen
    ALAAmericanLibraryAssociation INFORMATION VISUALIZATION Hsuanwei Michelle Chen APRIL 2017 Library Technology Reports Vol. 53 / No. 3 Expert Guides to Library Systems and Services ISSN 0024-2586 Library Technology R E P O R T S Expert Guides to Library Systems and Services Information Visualization Hsuanwei Michelle Chen alatechsource.org American Library Association About the Author Library Technology Dr. Hsuanwei Michelle Chen is an Assistant Professor REPORTS in the School of Information at San José State Univer- sity. Her primary areas of research and teaching interests ALA TechSource purchases fund advocacy, awareness, and include data mining, information visualization, social accreditation programs for library professionals worldwide. network analysis, and online user behavior. In partic- Volume 53, Number 3 ular, she is interested in studying the value of virtual Information Visualization platforms, social media, and networked environments, ISBN: 978-0-8389-5986-2 and the role they play in shaping online user behavior. She has published on the topics of information visualiza- American Library Association tion, social media, and online user behavior in journals 50 East Huron St. Chicago, IL 60611-2795 USA such as Journal of Information Technology Management, alatechsource.org Library Management, Information Systems Research, and 800-545-2433, ext. 4299 312-944-6780 Decision Support Systems. She holds a BS and MS in com- 312-280-5275 (fax) puter science and information engineering from National Taiwan University and a PhD in information systems Advertising Representative from the University of Texas at Austin, McCombs School Samantha Imburgia [email protected] of Business. 312-280-3244 Editors Patrick Hogan [email protected] Abstract 312-280-3240 Samantha Imburgia Information visualization has been widely adopted [email protected] as both an analytical tool and an aid to enhance and 312-280-3244 shape data interpretation and knowledge discovery in Copy Editor disciplines ranging from computer science to humani- Judith Lauber ties.
    [Show full text]
  • Conceptualizing an Interactive Graphical Interface
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Universidade do Minho: RepositoriUM Interfaces for Science: Conceptualizing an Interactive Graphical Interface How to cite Azevedo, B., Baptista, A. A., Oliveira e Sá, J., Branco, P., & Tortosa, R. (2019). Interfaces for Science: Conceptualizing an Interactive Graphical Interface. In A. Brooks, E. Brooks, & C. Sylla (Eds.), 7th EAI Interna- tional Conference, ArtsIT 2018, and 3rd EAI International Conference, DLI 2018, ICTCC 2018, Braga, Portugal, October 24–26, 2018, Pro- ceedings (pp. 17–27). https://doi.org/10.1007/978-3-030-06134-0_3 Where to find http://hdl.handle.net/1822/58860 Project Reference POCI-01-0145-FEDER-028284 Acknowledgements This work has been supported by COMPETE: POCI-01-0145-FEDER- 007043 and FCT - Fundação para a Ciência e Tecnologia within the Project Scope: (UID/CEC/00319/2013) and the Project IViSSEM: ref: POCI-01- 0145-FEDER-28284. 2 Interfaces for Science: Conceptualizing An Interactive Graphical Interface Bruno Azevedo1 [0000-0003-1494-4726], Ana Alice Baptista1 [0000-0003-3525-0619], Jorge Oliveira e Sá1 [000-0003-4095-3431], Pedro Branco1 [0000-0002-6707-6806], Rubén Tortosa2 [0000-0003-1500-7697] 1 ALGORITMI Research Centre, University of Minho, Guimarães, Portugal 2 Polytechnic University of Valencia, Valencia, Spain [email protected]; {analice;jos;pbranco}@dsi.uminho.pt; [email protected] Abstract. 6,849.32 new research journal articles are published every day. The exponential growth of Scientific Knowledge Objects (SKOs) on the Web, makes searches time-consuming. Access to the right and relevant SKOs is vital for re- search, which calls for several topics, including the visualization of science dy- namics.
    [Show full text]
  • Discovery with Data: Leveraging Statistics with Computer Science to Transform Science and Society
    Discovery with Data: Leveraging Statistics with Computer Science to Transform Science and Society July 2, 2014 A Working Group of the American Statistical Association 1 Summary : The Big Data Research and Development Initiative is now in its third year and making great strides to address the challenges of Big Data. To further advance this initiative, we describe how statistical thinking can help tackle the many Big Data challenges, emphasizing that often the most productive approach will involve multidisciplinary teams with statistical, computational, mathematical, and scientific domain expertise. With a major Big Data objective of turning data into knowledge, statistics is an essential scientific discipline because of its sophisticated methods for statistical inference, prediction, quantification of uncertainty, and experimental design. Such methods have helped and will continue to enable researchers to make discoveries in science, government, and industry. The paper discusses the statistical components of scientific challenges facing many broad areas being transformed by Big Data—including healthcare, social sciences, civic infrastructure, and the physical sciences—and describes how statistical advances made in collaboration with other scientists can address these challenges. We recommend more ambitious efforts to incentivize researchers of various disciplines to work together on national research priorities in order to achieve better science more quickly. Finally, we emphasize the need to attract, train, and retain the next generation
    [Show full text]