Developments in Reversible Deactivation Radical Polymerization

Total Page:16

File Type:pdf, Size:1020Kb

Developments in Reversible Deactivation Radical Polymerization Carlos Miguel Rocha Abreu Carlos Miguel Rocha Abreu Developments in Reversible Deactivation Radical Polymerization: Developments inDevelopments Reversible Deactivation Radical Polymerization: New Ecofriendly Catalytic Systems and New Ecofriendly Catalytic Systems and Vinyl Chloride (co)Polymerization Methods Vinyl Chloride (co)Polymerization Methods PhD Thesis in Chemical Engineering, supervised by Professor Doctor Jorge Fernando Jordão Coelho, Professor Doctor Arménio Coimbra Serra and Professor Doctor Krzysztof Matyjaszewski, submitted to the Department of Chemical Engineering, Faculty of Science and Technology, University of Coimbra OIMBRA C Agosto, 2017 E D NIVERSIDADE NIVERSIDADE U Carlos Miguel Rocha Abreu Developments in Reversible Deactivation Radical Polymerization: New Ecofriendly Catalytic Systems and Vinyl Chloride (co)Polymerization Methods Thesis submitted to the Faculty of Sciences and Technology of the University of Coimbra, to obtain the Degree of Doctor in Chemical Engineering. Coimbra 2017 Carlos Miguel Rocha Abreu Developments in Reversible Deactivation Radical Polymerization: New Ecofriendly Catalytic Systems and Vinyl Chloride (co)Polymerization Methods Thesis submitted to the Faculty of Sciences and Technology of the University of Coimbra, to obtain the Degree of Doctor in Chemical Engineering. Advisors: Prof. Dr. Jorge Fernando Jordão Coelho Prof. Dr. Arménio Coimbra Serra Prof. Dr. Krzysztof Matyjaszewski Host institutions: University of Coimbra Carnegie Mellon University Financing: Portuguese Foundation for Science and Technology (FCT) Doctoral degree grant: SFRH/BD/88528/2012 Coimbra 2017 Financial support: À minha mãe (in memoriam), Acknowledgments Acknowledgments O meu Muito Obrigado a todos aqueles que de modo directo ou indirecto contribuíram para o sucesso deste trabalho. Ao Professor Jorge Coelho, meu orientador científico. Agradeço por ter acreditado e confiado em mim desde o início, me ter motivado e concedido as melhores oportunidades ao longo dos últimos anos. Agradeço também toda a ajuda prestada, todo o conhecimento transmitido e o facto de me ter proporcionado uma incrível experiência em Pittsburgh (Estados Unidos da América). Sem dúvida que contribuiu imenso para o meu desenvolvimento. Ao Professor Arménio Serra, pela confiança demonstrada, pela sua disponibilidade e por todas as discussões, conselhos e sugestões ao longo do trabalho. To Professor Krzysztof Matyjaszewski I want to express my deepest gratitude for welcoming in his laboratory at Carnegie Mellon University and for the helpful discussions, comments and advices. I'm grateful for such wonderful opportunity. I would also like to extend my great appreciation to his wife for having me at home during my stay at Pittsburgh. I’ve found a home far from home with you both. A todos os membros do Polymer Synthesis and Characterization (Polysyc), em especial ao pessoal do laboratório B37, pelo bom ambiente de trabalho criado e pelas discussões de resultados durante o nosso duro processo de desenvolvimento de novos sistemas de RDRP. To the group members of the Matyjaszewski Polymer Group, it was a pleasure to meet you all and have the chance to work with you. Thank you for the good advices, support, friendship and fun we shared during my stay. Ao Departamento de Engenharia Química e a todos os seus funcionários, pelas condições proporcionadas. À Fundação para a Ciência e Tecnologia (FCT), pelo financiamento deste trabalho. VII Acknowledgments E, por fim, mas não menos importante, a toda a minha família e todos os meus amigos, a minha eterna gratidão pelo esforço, pelo incentivo e por terem apoiado sempre todas as minhas decisões. VIII Abstract Abstract The aim of this work was the study and development of new ecofriendly catalytic systems for reversible deactivation radical polymerization (RDRP). It was also a goal the development of new vinyl chloride (VC) (co)polymerizations systems using RDRP methods. Atom transfer radical polymerization (ATRP) is among the most efficient, versatile and robust RDRP techniques. The new generation of catalytic systems for RDRP of vinyl monomers should be non-toxic, inexpensive and provide fast polymerizations in environmentally friendly media. In this context, in the present work Food and Drug Administration (FDA) approved inorganic sulfites such as sodium dithionite (Na2S2O4), sodium metabisulfite (Na2S2O5), and sodium bisulfite (NaHSO3) were found as a new class of very efficient reducing agents and supplemental activators (SARA) for ATRP. In combination with catalytic amounts of Cu(II)Br2/Me6TREN (Me6TREN: tris[2- (dimethylamino)ethyl]amine) in dimethyl sulfoxide (DMSO) at ambient temperature (30 ºC), poly(methyl acrylate) (PMA) with controlled molecular weight, low dispersity (Ð < 1.05), and well-defined chain-end functionality, was synthetized as a proof-of-concept. In addition, an unusual synergistic effect between an ionic liquid, 1-butyl-3- methylimidazolium hexafluorophosphate (BMIM-PF6), and DMSO mixtures was found for this ecofriendly SARA ATRP. The novel developed inorganic sulfites catalyzed ATRP was also successfully extended to the (co)polymerization of activated vinyl monomers, such as methyl acrylate (MA), n- butyl acrylate (n-BA), methyl methacrylate (MMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA), in ecofriendly solvents (alcohols and alcohol/water mixtures) at ambient temperature. In this system, the use of inorganic sulfites and ecofriendly solvents (alcohol-water mixtures are inexpensive and have low boiling points) is a remarkable advantage for the possibility of scaling-up of the ATRP method. The aqueous SARA ATRP using inorganic sulfites was successfully developed for the first time. This study methodically investigated the different parameters of SARA ATRP for the synthesis of well-defined water-soluble polymers (e.g., poly[oligo(ethylene oxide) IX Abstract methyl ether acrylate] (POEOA)) in aqueous media catalyzed by Cu(II)Br2/tris(2- pyridylmethyl)amine (TPMA) (<30 ppm) using a slow feeding of inorganic sulfites at room temperature. The developed system was also extended to the synthesis of block copolymers using a “one-pot” method. As proof-of-concept, under biologically relevant conditions, the aqueous SARA ATRP using inorganic sulfites was successfully applied to synthesize a well-defined bovine serum albumin protein-polymer (BSA-[P(OEOA480)30]) hybrid. The development of efficient RDRP methods for control of nonactivated vinyl monomers (e.g., vinyl acetate, N-vinylpyrrolidone and vinyl chloride) remains an important challenge. Poly(vinyl chloride) (PVC) is one of the most widely consumed polymers worldwide due to its general versatility and low cost. Conventional free radical polymerization (FRP) of VC is the only available industrial process to produce the polymer in large scale. The several intrinsic limitations of FRP triggered interest in synthesizing this polymer by RDRP methods. Until 2012, the most successful RDRP of VC had been achieved by single electron transfer degenerative chain transfer living radical polymerization (SET-DTLRP) or Metal Catalyzed RDRP (termed SET-LRP). In this context, in the present work reversible addition-fragmentation chain transfer (RAFT) polymerization of VC was developed. The success of the RAFT polymerization process (control over the molecular weight, the molecular weight distribution and the molecular architecture of the resulting polymers) is strongly related to the appropriate selection of the RAFT agent (usually termed CTA). Cyanomethyl methyl(phenyl)carbamodithioate (CMPCD) was shown to be an efficient RAFT agent. The results demonstrated that a careful selection of the reaction conditions (initiator type and concentration, solvent type and concentration, temperature) is critical for achieving PVC products with controlled features (the lowest dispersity ever reported for PVC obtained by any RDRP method, Ð ~ 1.4). Structural analysis, via 1H-NMR and MALDI- TOF-MS, revealed that the PVC chains contained well preserved functional groups and no structural defects. Moreover, the “living” nature of the PVC that was synthesized via RAFT polymerization method was confirmed by successful chain extension and PVC- based block copolymerization experiments. X Abstract The work continued with the synthesis of PVC by nitroxide-mediated polymerization (NMP) using the SG1-based BlocBuilder alkoxyamine at low temperature (30 and 42 °C). With a judicious selection of the polymerization conditions (dichloromethane (DCM) as solvent using 1/1 monomer-to-solvent ratio), first order kinetics and linear evolutions of the molecular weight with VC conversion were obtained with decreasing Ð down to 1.6- 1.4. The structural characterizations (1H-NMR and 31P-NMR) of the resulting PVC suggested the existence of very small content of structural defects and the high preservation of the chain-end functional groups (~91% SG1 chain-end functionality). PVC-SG1 macroinitiators were successfully used in chain extension experiments using VC, MMA and mixture of monomers (90% of MMA and 10% of styrene (S)) and confirmed the “livingness” of the PVC-SG1 macroinitiators, giving access to different PVC-based block copolymers. Even though water is the ideal solvent in terms of nontoxicity, very few examples of monomers/polymers are water-soluble. Therefore, alternative green organic solvents are highly desirable. Thus, considering the very promising results that were obtained in previous parts of this work, cyclopentyl methyl ether (CPME) was successfully introduced
Recommended publications
  • Oligomeric A2 + B3 Approach to Branched Poly(Arylene Ether Sulfone)
    “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By ANDREA M. ELSEN B.S., Wright State University, 2007 2009 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES June 19, 200 9 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Andrea M. Elsen ENTITLED “One-Pot” Oligomeric A2 + B3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondenstation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science . _________________________ Eric Fossum, Ph.D. Thesis Director _________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination ____________________________ Eric Fossum, Ph.D. ____________________________ Kenneth Turnbull, Ph.D. ____________________________ William A. Feld, Ph.D. ____________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies Abstract Elsen, Andrea M. M.S., Department of Chemistry, Wright State University, 2009. “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation The synthesis of fully soluble branched poly(arylene ether)s via an oligomeric A 2 + B 3 system, in which the A 2 oligomers are generated in situ, is presented. This approach takes advantage of the significantly higher reactivity toward nucleophilic aromatic substitution reactions, NAS, of B 2, 4-Fluorophenyl sulfone, relative to B 3, tris (4-Fluorophenyl) phosphine oxide. The A 2 oligomers were synthesized by reaction of Bisphenol-A and B 2, in the presence of the B 3 unit, at temperatures between 100 and 160 °C, followed by an increase in the reaction temperature to 180 °C at which point the branching unit was incorporated.
    [Show full text]
  • Cationic/Anionic/Living Polymerizationspolymerizations Objectives
    Chemical Engineering 160/260 Polymer Science and Engineering LectureLecture 1919 -- Cationic/Anionic/LivingCationic/Anionic/Living PolymerizationsPolymerizations Objectives • To compare and contrast cationic and anionic mechanisms for polymerization, with reference to free radical polymerization as the most common route to high polymer. • To emphasize the importance of stabilization of the charged reactive center on the growing chain. • To develop expressions for the average degree of polymerization and molecular weight distribution for anionic polymerization. • To introduce the concept of a “living” polymerization. • To emphasize the utility of anionic and living polymerizations in the synthesis of block copolymers. Effect of Substituents on Chain Mechanism Monomer Radical Anionic Cationic Hetero. Ethylene + - + + Propylene - - - + 1-Butene - - - + Isobutene - - + - 1,3-Butadiene + + - + Isoprene + + - + Styrene + + + + Vinyl chloride + - - + Acrylonitrile + + - + Methacrylate + + - + esters • Almost all substituents allow resonance delocalization. • Electron-withdrawing substituents lead to anionic mechanism. • Electron-donating substituents lead to cationic mechanism. Overview of Ionic Polymerization: Selectivity • Ionic polymerizations are more selective than radical processes due to strict requirements for stabilization of ionic propagating species. Cationic: limited to monomers with electron- donating groups R1 | RO- _ CH =CH- CH =C 2 2 | R2 Anionic: limited to monomers with electron- withdrawing groups O O || || _ -C≡N -C-OR -C- Overview of Ionic Chain Polymerization: Counterions • A counterion is present in both anionic and cationic polymerizations, yielding ion pairs, not free ions. Cationic:~~~C+(X-) Anionic: ~~~C-(M+) • There will be similar effects of counterion and solvent on the rate, stereochemistry, and copolymerization for both cationic and anionic polymerization. • Formation of relatively stable ions is necessary in order to have reasonable lifetimes for propagation.
    [Show full text]
  • Controlled Radical Polymerization in the Dispersed Phase
    CONTROLLED RADICAL POLYMERIZATION IN THE DISPERSED PHASE by MARY E. THOMSON A thesis submitted to the Department of Chemical Engineering in conformity with the requirements for the degree of Doctor of Philosophy Queen's University Kingston, Ontario, Canada December, 2010 Copyright c Mary E. Thomson, 2010 Abstract Controlled radical polymerization (CRP) has emerged as a powerful method of creating polymers with tailored molecular architectures under mild reaction conditions. However, production of these polymers efficiently at an industrial scale will likely require them to be synthesized in the dispersed phase. Three types of CRP are explored, Atom Transfer Radical Polymerization (ATRP), Nitroxide Mediated Polymerization (NMP) and Catalytic Chain Transfer (CCT) to elucidate the intricacies of creating these novel polymer colloids. Compartmentalization in an ATRP dispersed phase system is explored theoretically to understand the effects of particle size and catalyst concentration on the polymerization. The results suggest that there is an optimal range of particle sizes where the rate of poly- merization is greater than that in an equivalent bulk system while maintaining both a lower PDI (polydispersity index) and higher livingness. All three factors are desirable in ATRP but generally cannot be achieved simultaneously in bulk. Compartmentalization manifests itself differently in CCT dispersed phase systems, where the segregation of the CCT agents into different polymer particles leads to multimodal molecular weight distributions. Control over the particle size is notoriously difficult for nitroxide mediated polymeriza- tion, as it is challenging to decouple an increase in the particle size with an increase in target molecular weight using a two stage emulsion polymerization approach.
    [Show full text]
  • Examining the Technology for a Sustainable Environment Grant Program
    Examining the Technology for a Sustainable Environment Grant Program An Interactive Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTIUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science Submitted to: Professor James Demetry Professor Joseph Petruccelli Worcester Polytechnic Institute: Washington, D.C. Project Center By: Eddie Diaz _____________________ Melissa Hinton _____________________ Mark Stevenson _____________________ December 13, 2004 In Cooperation with the Environmental Protection Agency Diana Bauer, Ph.D April Richards, PE National Center of National Center of Environmental Research Environmental Research Environmental Protection Environmental Protection Agency Agency Washington, DC 20005 Washington, DC 20005 This report is submitted in partial fulfillment of the degree requirements of Worcester Polytechnic Institute. The views and opinions expressed herein are those of the authors and do not necessarily reflect the positions or opinions of the Environmental Protection Agency or Worcester Polytechnic Institute. Abstract This project was performed with the support of the Environmental Protection Agency and involved the examination of the Technology for a Sustainable Environment (TSE) grants program. We selected ten researchers funded by the TSE program, interviewed them, and reviewed their research in terms of qualitative and quantitative academic, industrial, and potential environmental impacts. For each of the ten researchers, we wove this information together
    [Show full text]
  • The Chemistry of Radical Polymerization
    THE CHEMISTRY OF RADICAL POLYMERIZATION THE CHEMISTRY OF RADICAL POLYMERIZATION GRAEME MOAD CSIRO Molecular and Health Technologies Bayview Ave, Clayton, Victoria 3168, AUSTRALIA and DAVID H. SOLOMON Department of Chemical and Biomolecular Engineering. University of Melbourne, Victoria 3010, AUSTRALIA Dr Graeme Moad CSIRO Molecular and Health Technologies Bayview Ave, Clayton, Victoria 3168 AUSTRALIA Email: [email protected] Prof David H. Solomon Department of Chemical and Biomolecular Engineering. University of Melbourne Victoria 3010 AUSTRALIA Email: [email protected] Contents Contents............................................................................................................................ v Index to Tables.............................................................................................................xvi Index to Figures ............................................................................................................ xx Preface to the First Edition .....................................................................................xxiii Preface to the Second Edition..................................................................................xxv Acknowledgments......................................................................................................xxvi 1 INTRODUCTION.................................................................................................. 1 1.1 References ...........................................................................................................
    [Show full text]
  • Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications
    Hindawi Bioinorganic Chemistry and Applications Volume 2019, Article ID 8260496, 15 pages https://doi.org/10.1155/2019/8260496 Review Article Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications Ayodele T. Odularu 1 and Peter A. Ajibade 2 1Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa 2School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Scottsville 3209, South Africa Correspondence should be addressed to Ayodele T. Odularu; [email protected] Received 16 September 2018; Accepted 26 November 2018; Published 6 February 2019 Academic Editor: Claudio Pettinari Copyright © 2019 Ayodele T. Odularu and Peter A. Ajibade. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Progresses made in previous researches on syntheses of dithiocarbamates led to increase in further researches. ,is paper reviews concisely the challenges experienced during the synthesis of dithiocarbamate and mechanisms to overcome them in order to obtain accurate results. Aspects of its precursor’s uses to synthesize adducts, nanoparticles, and nanocomposites are reported. Some common characterization techniques used for the synthesized products were assessed. Biological applications are also reported. 1. Introduction [7]. ,e basic medium can either be a weak base (ammonia solution) or strong bases (sodium hydroxide and potassium 1.1. Dithiocarbamates. Dithiocarbamates (dtcs) are orga- hydroxide). Bases are incorporated to conserve the amines nosulfur ligands which form stable complexes with metals [8]. General method of preparation is called one-pot syn- [1].
    [Show full text]
  • Acrylamide, Sodium Acrylate Polymer (Cas No
    ACRYLAMIDE/SODIUM ACRYLATE COPOLYMER (CAS NO. 25085‐02‐3) ACRYLAMIDE, SODIUM ACRYLATE POLYMER (CAS NO. 25987‐30‐8) 2‐PROPENOIC ACID, POTASSIUM SALT, POLYMER WITH 2‐PROPENAMIDE (CAS NO. 31212‐13‐2) SILICONE BASED EMULSION NEUTRALISED POLYACRYLIC BASED STABILIZER (NO CAS NO.) This group contains a sodium salt of a polymer consisting of acrylic acid, methacrylic acid or one of their simple esters and three similar polymers. They are expected to have similar environmental concerns and have consequently been assessed as a group. Information provided in this dossier is based on acrylamide/sodium acrylate copolymer (CAS No. 25085‐02‐3). This dossier on acrylamide/sodium acrylate copolymer and similar polymers presents the most critical studies pertinent to the risk assessment of these polymers in their use in drilling muds. This dossier does not represent an exhaustive or critical review of all available data. Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). Screening Assessment Conclusion – Acrylamide/sodium acrylate copolymer, acrylamide, sodium acrylate polymer and 2‐propenoic acid, potassium salt, polymer with 2‐propenamide are polymers of low concern. Therefore, these polymers and the other similar polymer in this group are classified as tier 1 chemicals and require a hazard assessment only. 1. BACKGROUND Acrylamide/sodium acrylate copolymer is a sodium salt of a polymer consisting of acrylic acid, methacrylic acid or one of their simple esters. Acrylates are a family of polymers which are a type of vinyl polymer. Synthetic chemicals used in the manufacture of plastics, paint formulations and other products. Acrylate copolymer is a general term for copolymers of two or more monomers consisting of acrylic acid, methacrylic acid or one of their simple esters.
    [Show full text]
  • High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) Α-Diimine Catalyst
    polymers Article High Temperature, Living Polymerization of Ethylene by a Sterically-Demanding Nickel(II) α-Diimine Catalyst Lauren A. Brown, W. Curtis Anderson Jr., Nolan E. Mitchell, Kevin R. Gmernicki and Brian K. Long * ID Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; [email protected] (L.A.B.); [email protected] (W.C.A.J.); [email protected] (N.E.M.); [email protected] (K.R.G.) * Correspondence: [email protected]; Tel.: +1-865-974-5664 Received: 15 December 2017; Accepted: 27 December 2017; Published: 2 January 2018 Abstract: Catalysts that employ late transition-metals, namely Ni and Pd, have been extensively studied for olefin polymerizations, co-polymerizations, and for the synthesis of advanced polymeric structures, such as block co-polymers. Unfortunately, many of these catalysts often exhibit poor thermal stability and/or non-living polymerization behavior that limits their ability to access tailored polymer structures. Due to this, the development of catalysts that display controlled/living behavior at elevated temperatures is vital. In this manuscript, we describe a Ni α-diimine complex that is capable of polymerizing ethylene in a living manner at temperatures as high as 75 ◦C, which is one of the highest temperatures reported for the living polymerization of ethylene by a late transition metal-based catalyst. Furthermore, we will demonstrate that this catalyst’s living behavior is not dependent on the presence of monomer, and that it can be exploited to access polyethylene-based block co-polymers. Keywords: polyethylene; living polymerization; nickel α-diimine; catalysis 1. Introduction Controlled/living polymerizations offer a precise means by which polymer structure, co-monomer incorporation levels, and even regio- and stereoselectivity can be tailored [1–7].
    [Show full text]
  • Poly( Ethylene-Co-Methyl Acrylate)-Solvent- Cosolvent Phase Behaviour at High Pressures
    Poly( ethylene-co-methyl acrylate)-solvent- cosolvent phase behaviour at high pressures Melchior A. Meilchen, Bruce M. Hasch, Sang-Ho Lee and Mark A. McHugh* Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD 21278, USA (Received 5 April 7991; accepted 75 July 1997 ) Cloud-point data to 160°C and 2000 bar are presented showing the effect of cosolvents on the phase behaviour of poly(ethylene-co-methyl acrylate) (EMA) (64 mo1%/36 mol%) with propane and chlorodifluoromethane (F22). Ethanol shifts the EMA-propane cloud-point curves to lower temperatures and pressures, but above _ 10 wt% ethanol, the copolymer becomes insoluble. Up to 40 wt% acetone monotonically shifts the EMA-propane cloud-point curves to lower temperatures and pressures. Acetone and ethanol both shift the cloud-point curves of EMA-F22 mixtures in the same monotonic manner for cosolvent concentrations of up to 40 wt%. (Keywords: copolymer; cosolvent; high pressures) INTRODUCTION or diethyl ether, so it is necessary to operate at elevated temperatures and pressures to dissolve high molecular Within the past 20 years there has been a great deal of weight polystyrene in either solvent. Adding acetone to effort invested in trying to understand and model the PS-diethyl ether mixtures monotonically reduces the solubility behaviour of polar polymers in liquid cosolvent pressure needed at a given temperature to obtain a single mixtures’-9. Polymer solubility is usually related to phase. whether the cosolvent preferentially solvates or adsorbs There has also been a number of viscometric and light to certain segments of the polymer chain as determined scattering studies on the solution behaviour of polar by light scattering, viscosity measurements or cloud- copolymers in liquid cosolvent mixtures’4*‘5.
    [Show full text]
  • 7: Source-Based Nomenclature for Copolymers (1985)
    7: Source-Based Nomenclature for Copolymers (1985) PREAMBLE Copolymers have gained considerable importance both in scientific research and in industrial applications. A consistent and clearly defined system for naming these polymers would, therefore, be of great utility. The nomenclature proposals presented here are intended to serve this purpose by setting forth a system for designating the types of monomeric-unit sequence arrangements in copolymer molecules. In principle, a comprehensive structure-based system of naming copolymers would be desirable. However, such a system presupposes a knowledge of the structural identity of all the constitutional units as well as their sequential arrangements within the polymer molecules; this information is rarely available for the synthetic polymers encountered in practice. For this reason, the proposals presented in this Report embody an essentially source-based nomenclature system. Application of this system should not discourage the use of structure-based nomenclature whenever the copolymer structure is fully known and is amenable to treatment by the rules for single-strand polymers [1, 2]. Further, an attempt has been made to maintain consistency, as far as possible, with the abbreviated nomenclature of synthetic polypeptides published by the IUPAC-IUB Commission on Biochemical Nomenclature [3]. It is intended that the present nomenclature system supersede the previous recommendations published in 1952 [4]. BASIC CONCEPT The nomenclature system presented here is designed for copolymers. By definition, copolymers are polymers that are derived from more than one species of monomer [5]. Various classes of copolymers are discussed, which are based on the characteristic sequence arrangements of the monomeric units within the copolymer molecules.
    [Show full text]
  • Reversible Deactivation Radical Polymerization: State-Of-The-Art in 2017
    Chapter 1 Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017 Sivaprakash Shanmugam and Krzysztof Matyjaszewski* Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States *E-mail: [email protected]. This chapter highlights the current advancements in reversible-deactivation radical polymerization (RDRP) with a specifc focus on atom transfer radical polymerization (ATRP). The chapter begins with highlighting the termination pathways for acrylates radicals that were recently explored via RDRP techniques. This led to a better understanding of the catalytic radical termination (CRT) in ATRP for acrylate radicals. The designed new ligands for ATRP also enabled the suppression of CRT and increased chain end functionality. In addition, further mechanistic understandings of SARA-ATRP with Cu0 activation and comproportionation were studied using model reactions with different ligands and alkyl halide initiators. Another focus of RDRP in recent years has been on systems that are regulated by external stimuli such as light, Downloaded via CARNEGIE MELLON UNIV on August 17, 2020 at 15:07:44 (UTC). electricity, mechanical forces and chemical redox reactions. Recent advancements made in RDRP in the feld of complex See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. polymeric architectures, organic-inorganic hybrid materials and bioconjugates have also been summarized. Introduction The overarching goal of this chapter is to provide an overall summary of the recent achievements in reversible-deactivation radical polymerization (RDRP), primarily in atom transfer radical polymerization (ATRP), and also in reversible addition-fragmentation chain transfer (RAFT) polymerization, tellurium mediated © 2018 American Chemical Society Matyjaszewski et al.; Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies ACS Symposium Series; American Chemical Society: Washington, DC, 2018.
    [Show full text]
  • End-Functional Styrene-Maleic Anhydride Copolymers Via Catalytic
    Article pubs.acs.org/Macromolecules End-Functional Styrene−Maleic Anhydride Copolymers via Catalytic Chain Transfer Polymerization † ‡ † § § Gemma C. Sanders, , Robbert Duchateau, Ching Yeh Lin, Michelle L. Coote, † and Johan P. A. Heuts ,* † Laboratory of Polymer Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ‡ Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands § ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia *S Supporting Information ABSTRACT: Styrene−maleic anhydride copolymers have been successfully synthesized using catalytic chain transfer polymerization employing the low spin [bis(difluoroboryl)- dimethylglyoximato]cobalt(II) (COBF) complex. By partially replacing styrene with α-methylstyrene (while maintaining the amount of maleic anhydride at 50 mol %) over a range of ratios, it was shown that the rate of reaction and molar mass decreases with increasing α-methylstyrene content. The polymers were characterized using MALDI−ToF−MS and 1H−13C gHMQC NMR to determine the end groups, which in the presence of α-methylstyrene was an α-methylstyrene unit with a vinylic functionality. For styrene−maleic anhydride copolymers, the end group was determined to be predom- inantly maleic anhydride with a vinylic functionality. Considering the fact that in a styrene−maleic anhydride copolymerization the propagating radicals are predominantly of a styrenic nature, this was a very surprising result, suggesting that the maleic anhydride radicals undergo a chain transfer reaction, which is orders of magnitude faster than that of styrenic radicals. This conclusion was supported by high-level ab initio quantum chemical calculations, which showed that hydrogen abstraction from the maleic anhydride radical is 40 kJ/mol more exothermic than that from a styrene radical.
    [Show full text]