Elicitor Induction of Cytochrome P-450

Total Page:16

File Type:pdf, Size:1020Kb

Elicitor Induction of Cytochrome P-450 Elicitor Induction of Cytochrome P-450 Monooxygenases in Cell Suspension Cultures of Chickpea (Cicer arietinum L.) and Their Involvement in Pterocarpan Phytoalexin Biosynthesis Werner Gunia, Walter Hinderer*, Uta Wittkampf, and Wolfgang Barz Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-4400 Münster, Bundesrepublik Deutschland * Biotest Pharma, D-6072 Dreieich, Bundesrepublik Deutschland Z. Naturforsch. 46c, 58-66 (1991); received October 29, 1990 Cicer arietinum, Yeast Elicitor, Cytochrome P-450 Monooxygenases, Pterocarpan Phytoalexins, Microsomes A yeast glucan elicitor causes the accumulation of the pterocarpan phytoalexins medicarpin and maackiain in chickpea (Cicer arietinum) cell suspension cultures established from seeds. A cell culture line from a chickpea cultivar resistant against its main fungal pathogen Asco- chyta rabiei accumulates large amounts (944 nmol/g fr. wt.) whereas a cell culture line from a susceptible cultivar accumulates only low amounts (38 nmol/g fr. wt.) of the phytoalexins. This is consistent with differential accumulation of pterocarpan phytoalexins in intact plants [1], The first reactions in the pterocarpan-specific branch of biosynthesis are hydroxylation of the isoflavone intermediate formononetin in position 2' or 3', catalyzed by microsomal cyto­ chrome P-450 monooxygenases. Upon elicitation formononetin 2'-hydroxylase undergoes a strong transient induction in the cell suspension culture of the resistant cultivar, whereas in the cell culture from the susceptible cultivar it is only slightly induced. In both cell suspension cul­ tures the induction of cinnamic acid 4-hydroxylase and of formononetin 3'-hydroxylase does not show a clear correlation with phytoalexin accumulation. Experiments with different elici­ tor concentrations confirm that formononetin 2'-hydroxylase is much more induced in cell cul­ tures from the resistant cultivar than from the susceptible one. It is concluded that the massive difference in phytoalexin accumulation between cell suspension cultures from the resistant and susceptible cultivar is determined mainly by the differential induction of formononetin 2'-hydroxylase activity. Introduction biosynthesis [8], co-hydroxylation of fatty acids [9] Cytochrome P-450 monooxygenases (EC as well as in pesticide and herbicide metabolism 1.14.14.1) are widely distributed in animals, plants [10, 11]. In plant secondary product metabolism and microorganisms. In eukaryots these enzymes they catalyze reactions in the general phenylpropa- are localized in microsomes where these mem­ noid pathway [12] and in the biosynthesis of car- brane proteins occur together with cytochrome denolides [13], monoterpene alkaloids [14, 15] and P-450 reductases (EC 1.6.2.4). The structure of the flavonoids [16, 17], plant cytochrome P-450 system is highly analo­ In addition, a number of cytochrome P-450 gous to the enzymes from animals [2, 3], However, monooxygenases are involved in phytoalexin bio­ the plant cytochrome P-450 monooxygenases do synthesis. Examples are psoralen synthase known not possess such a broad substrate specifity as has from the biosynthesis of furanocoumarins in been observed with the hepatic enzymes [4-6], Petroselinum hortense and Ammi majus [18, 19], the dihydroxypterocarpan 6a-hydroxylase in­ Plant cytochrome P-450 monooxygenases are involved in a number of biochemical processes volved in the biosynthesis of the glyceollins in soy­ such as biosynthesis of gibberellic acid [7], sterol bean [20] and isoflavone 2'- and 3'-hydroxylases demonstrated in the formation of the pterocarpans medicarpin and maackiain in chickpea (Cicer arie­ Abbreviations: C4H, cinnamic acid 4-hydroxylase; CO, tinum) [21]. Phytoalexins accumulate in plants carbon monoxide; F2H, formononetin 2'-hydroxylase; F3H, formononetin 3'-hydroxylase; PAL, phenylala­ after stress, wounding or microbial infection and nine ammonia lyase. are an integral part of plant antimicrobial defence Reprint requests to Prof. Dr. W. Barz. reactions [22, 23]. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen Medicarpin and maackiain (Fig. 1) are synthe­ 0939-5075/91/0100-0058 $01.30/0 sized in chickpea via the general phenylpropanoid W. G unia et al. ■ Elicitor Induction of Cytochrome P-450 Monooxygenases in Chickpea 59 OCH- 2'-Hydroxyformononetin 3'-Hydroxy formononetin I Fig. 1. Hydroxylation reactions of the isofla­ vone intermediate formononetin in the posi­ tions 2' and 3', catalyzed by microsomal cyto­ OCH- chrome P-450 monooxygenases as involved in Medicarpin Maackiain medicarpin and maackiain biosynthesis. pathway with the isoflavone formononetin as an ble (ILC 1929) cultivars of chickpea [31] were intermediate [24]. The subsequent enzymes of the grown on a PRL-4c medium [32] with the addition pterocarpan specific branch of phytoalexin forma­ of 2 mg/ml glycine instead of yeast extract. The tion have been recently detected with isoflavone 2'- culture conditions were those of Keßmann and and 3'-hydroxylase [21], NADPH: isoflavone oxi- Barz [31]. doreductase [25] and pterocarpan synthase [26], respectively. Preparation of elicitor Up to now only limited knowledge is available The preparation of a yeast glucan elicitor was concerning quantitative differences in the induc­ performed according to Schumacher et al. [33]. tion of phytoalexin biosynthetic enzymes ex­ The final preparation was lyophilized and stored pressed by plants which are either susceptible or as a dry powder until use. The glucose content of resistant against their natural microbial pathogens the elicitor preparation was determined with the [27, 28]. Earlier investigations had indicated [29, anthrone method [34]. For elicitation an appro­ 30] that the chickpea cultivars greatly differed in priate amount of this powder was dissolved in the expression of the isoflavone 2'-hydroxylase. water (2 ml), autoclaved for 20 min and applied Therefore, we now report on the differential elici­ under sterile conditions to the cell cultures at day 3 tor induction of cytochrome P-450 monooxygen­ of the culture period. ases (i.e. cinnamic acid 4-hydroxylase, formonone­ tin 2'- and 3'-hydroxylase) in chickpea cell suspen­ Extraction of phytoalexins sion cultures established from different cultivars which are resistant and susceptible against the Phenolic compounds containing medicarpin natural fungal pathogen Ascochyta rabiei [31]. and maackiain were extracted from the culture me­ dium [31] and the cells [35] with ethyl acetate. Materials and Methods Preparation of microsomes Cell suspension cultures Microsomes were prepared from cell suspension Cell suspension cultures, derived from seeds of cultures of chickpea according to Hinderer et al. Ascochyta rabiei resistant (ILC 3279) and suscepti­ [21]. 60 W. G unia et al. • Elicitor Induction of Cytochrome P-450 Monooxygenases in Chickpea Enzyme assays Results Cinnamic acid 4-hydroxylase was assayed in a Upon elicitation cell suspension cultures of total volume of 1 ml and incubated for 30 min at chickpea accumulate the pterocarpan phytoalexins 25 °C. The assay mixture contained 25 to 100 |il medicarpin and maackiain in essentially the same microsomal preparations (0.1 to 0.3 mg protein), manner as intact plants when infected with the 50 (im cinnamic acid (in 25 |il MeOH; Roth, Karls­ fungal pathogen Ascochyta rabiei [1, 31]. There­ ruhe), 1 mM NADPH and buffer (100 m M potas­ fore we used such chickpea cell suspension cultures sium phosphate, pH 7.0, with 400 m M sucrose). to determine biochemical differences between The reaction was terminated and the products resistant and susceptible cultivars. were extracted with ethyl acetate (3><2 ml). The Upon elicitation with yeast extract cell suspen­ organic phases were collected, dried with a rotary sion cultures from the resistant cultivar ILC 3279 evaporator (30 °C) and redissolved in 150 (il accumulated large amounts of the phytoalexins MeOH. Aliquots of 20 (il were analyzed by HPLC and concomitantly formononetin 2'- and formo­ methods. Formononetin 2'- and 3'-hydroxylase nonetin 3'-hydroxylase activities were strongly in­ were determined according to Hinderer et al. [21] duced [21]. In our present study we changed to a with the above mentioned modifications. yeast glucan preparation as a more defined source of elicitor which mainly consists of glucose and mannose residues [33, 38, 39]. The glucose content Chromatographic analyses of our elicitor preparation was determined to be Phytoalexins were separated on a Merck 450 nmol glucose residues per mg dry powder. LiChrosorb RP select B HPLC column (5 |im, In Fig. 2 A the effect of this elicitor preparation 250 x 4 mm i.d.) according to Köster et al. [35, 36]. on phytoalexin accumulation is demonstrated. Separation of substrate and product from the The cell suspension culture from the resistant culti­ assays for cinnamic acid 4-hydroxylase was var accumulated phytoalexins with a maximum of achieved on a Merck LiChrosher 100 RP select B 944 nmol/g fresh weight (in cells and medium) 12 h HPLC column (5 |im, 250 x 4 mm i.d.). A linear after elicitation. Medicarpin was the predominant gradient was run from 25% to 65% eluent B in phytoalexin as has been previously observed with 12 min (eluent A: 1.5% phosphoric acid; eluent B: an elicitor preparation from the natural pathogen 84% acetonitrile in water) with a flow rate of Ascochyta rabiei [31]. In contrast, cell suspension 0.8 ml/min at room temperature. Cinnamic acid cultures from the susceptible cultivar ILC 1929
Recommended publications
  • Identification and Functional Characterization of the First Two
    Identification and functional characterization of the first two aromatic prenyltransferases implicated in the biosynthesis of furanocoumarins and prenylated coumarins in two plant families: Rutaceae and Apiaceae Fazeelat Karamat To cite this version: Fazeelat Karamat. Identification and functional characterization of the first two aromatic prenyl- transferases implicated in the biosynthesis of furanocoumarins and prenylated coumarins in two plant families: Rutaceae and Apiaceae. Agronomy. Université de Lorraine, 2013. English. NNT : 2013LORR0029. tel-01749560 HAL Id: tel-01749560 https://hal.univ-lorraine.fr/tel-01749560 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat,
    [Show full text]
  • Biochemical, Molecular and Functional Analysis of Volatile Terpene Formation in Arabidopsis Roots
    Biochemical, Molecular and Functional Analysis of Volatile Terpene Formation in Arabidopsis Roots Jung-Hyun Huh Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biological Sciences Dorothea Tholl, Committee Chair David G. Schmale III James G. Tokuhisa Boris A. Vinatzer Brenda S. J. Winkel July 20th 2011 Blacksburg Virginia Keywords: terpene synthase, sesquiterpene, plant volatiles, secondary (specialized) metabolism, root chemical defense, soil-borne pathogen, oomycete, Pythium Biochemical, Molecular and Functional Analysis of Volatile Terpene Formation in Arabidopsis Roots Jung-Hyun Huh ABSTRACT Plants produce secondary (or specialized) metabolites to respond to a variety of environmental changes and threats. Especially, volatile compounds released by plants facilitate short and long distance interaction with both beneficial and harmful organisms. Comparatively little is known about the organization and role of specialized metabolism in root tissues. In this study, we have investigated the root-specific formation and function of volatile terpenes in the model plant Arabidopsis. As one objective, we have characterized the two root-specific terpene synthases, TPS22 and TPS25. Both enzymes catalyze the formation of several volatile sesquiterpenes with (E)-β- farnesene as the major product. TPS22 and TPS25 are expressed in the root in distinct different cell type-specific patterns and both genes are induced by jasmonic acid. Unexpectedly, both TPS proteins are localized to mitochondria, demonstrating a subcellular localization of terpene specialized metabolism in compartments other than the cytosol and plastids. (E)-β-Farnesene is produced at low concentrations suggesting posttranslational modifications of the TPS proteins and/or limited substrate availability in mitochondria.
    [Show full text]
  • The CYP71AZ P450 Subfamily: a Driving Factor for the Diversification
    fpls-09-00820 June 17, 2018 Time: 12:20 # 1 ORIGINAL RESEARCH published: 19 June 2018 doi: 10.3389/fpls.2018.00820 The CYP71AZ P450 Subfamily: A Driving Factor for the Diversification of Coumarin Biosynthesis in Apiaceous Plants Célia Krieger1†, Sandro Roselli1†, Sandra Kellner-Thielmann2†, Gianni Galati1, Bernd Schneider3, Jérémy Grosjean1, Alexandre Olry1, David Ritchie4, Ulrich Matern2, Frédéric Bourgaud5 and Alain Hehn1* 1 Laboratoire Agronomie et Environnement, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France, 2 Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg, Germany, 3 Max Planck Institute for Chemical Ecology, Jena, Germany, 4 INRIA Nancy, Grand-Est Research Centre, Laboratoire Lorrain De Recherche En Informatique Et Ses Applications, Nancy, France, 5 Plant Advanced Technologies, Nancy, France Edited by: Danièle Werck, Centre National de la Recherche The production of coumarins and furanocoumarins (FCs) in higher plants is widely Scientifique (CNRS), France considered a model illustration of the adaptation of plants to their environment. In this Reviewed by: report, we show that the multiplication of cytochrome P450 variants within the CYP71AZ Alain Tissier, subfamily has contributed to the diversification of these molecules. Multiple copies Leibniz-Institut für Pflanzenbiochemie (IPB), Germany of genes encoding this enzyme family are found in Apiaceae, and their phylogenetic May Berenbaum, analysis suggests that they have different functions within these plants. CYP71AZ1 Illinois Rocstar, University of Illinois at Urbana–Champaign, United States from Ammi majus and CYP71AZ3, 4, and 6 from Pastinaca sativa were functionally *Correspondence: characterized. While CYP71AZ3 merely hydroxylated esculetin, the other enzymes Alain Hehn accepted both simple coumarins and FCs.
    [Show full text]
  • Natural Products (Secondary Metabolites)
    Biochemistry & Molecular Biology of Plants, B. Buchanan, W. Gruissem, R. Jones, Eds. © 2000, American Society of Plant Physiologists CHAPTER 24 Natural Products (Secondary Metabolites) Rodney Croteau Toni M. Kutchan Norman G. Lewis CHAPTER OUTLINE Introduction Introduction Natural products have primary ecological functions. 24.1 Terpenoids 24.2 Synthesis of IPP Plants produce a vast and diverse assortment of organic compounds, 24.3 Prenyltransferase and terpene the great majority of which do not appear to participate directly in synthase reactions growth and development. These substances, traditionally referred to 24.4 Modification of terpenoid as secondary metabolites, often are differentially distributed among skeletons limited taxonomic groups within the plant kingdom. Their functions, 24.5 Toward transgenic terpenoid many of which remain unknown, are being elucidated with increas- production ing frequency. The primary metabolites, in contrast, such as phyto- 24.6 Alkaloids sterols, acyl lipids, nucleotides, amino acids, and organic acids, are 24.7 Alkaloid biosynthesis found in all plants and perform metabolic roles that are essential 24.8 Biotechnological application and usually evident. of alkaloid biosynthesis Although noted for the complexity of their chemical structures research and biosynthetic pathways, natural products have been widely per- 24.9 Phenylpropanoid and ceived as biologically insignificant and have historically received lit- phenylpropanoid-acetate tle attention from most plant biologists. Organic chemists, however, pathway metabolites have long been interested in these novel phytochemicals and have 24.10 Phenylpropanoid and investigated their chemical properties extensively since the 1850s. phenylpropanoid-acetate Studies of natural products stimulated development of the separa- biosynthesis tion techniques, spectroscopic approaches to structure elucidation, and synthetic methodologies that now constitute the foundation of 24.11 Biosynthesis of lignans, lignins, contemporary organic chemistry.
    [Show full text]
  • Identification of Candidate Genes Related to Calanolide Biosynthesis
    Gómez-Robledo et al. BMC Plant Biology (2016) 16:177 DOI 10.1186/s12870-016-0862-9 RESEARCH ARTICLE Open Access Identification of candidate genes related to calanolide biosynthesis by transcriptome sequencing of Calophyllum brasiliense (Calophyllaceae) Hilda-Beatriz Gómez-Robledo1,2, Francisco Cruz-Sosa3, Antonio Bernabé-Antonio4, Antonio Guerrero-Analco5, José Luis Olivares-Romero5, Alexandro Alonso-Sánchez5, Emanuel Villafán5 and Enrique Ibarra-Laclette5* Abstract Background: Calophyllum brasiliense is highlighted as an important resource of calanolides, which are dipyranocoumarins that inhibit the reverse transcriptase of human immunodeficiency virus type 1 (HIV-1 RT). Despite having great medicinal importance, enzymes involved in calanolide, biosynthesis and the pathway itself, are still largely unknown. Additionally, no genomic resources exist for this plant species. Results: In this work, we first analyzed the transcriptome of C. brasiliense leaves, stem, and roots using a RNA-seq strategy, which provided a dataset for functional gene mining. According to the structures of the calanolides, putative biosynthetic pathways were proposed. Finally, candidate unigenes in the transcriptome dataset, potentially involved in umbelliferone and calanolide (angular pyranocoumarin) biosynthetic pathways, were screened using mainly homology-based BLAST and phylogenetic analyses. Conclusions: The unigene dataset that was generated in this study provides an important resource for further molecular studies of C. brasiliense, especially for functional analysis of candidate genes involved in the biosynthetic pathways of linear and angular pyranocoumarins. Background geographical origin. Chemotype 1 (CTP 1), which grows Calophyllum sp. (Calophyllaceae) is a large group of trop- in Sierra de Santa Marta, State of Veracruz, Mexico, ical trees with more than 180–200 species [1].
    [Show full text]
  • Identification Et Caractérisation Fonctionnelle De Gènes Impliqués Dans La Voie De Biosynthèse Des Furocoumarines Chez Les Végétaux Supérieurs Guilhem Vialart
    Identification et caractérisation fonctionnelle de gènes impliqués dans la voie de biosynthèse des furocoumarines chez les végétaux supérieurs Guilhem Vialart To cite this version: Guilhem Vialart. Identification et caractérisation fonctionnelle de gènes impliqués dans la voiede biosynthèse des furocoumarines chez les végétaux supérieurs. Agronomie. Université de Lorraine, 2012. Français. NNT : 2012LORR0390. tel-01750069 HAL Id: tel-01750069 https://hal.univ-lorraine.fr/tel-01750069 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm UMR 1121, Université de Lorraine-INRA, RP2E Laboratoire Agronomie et Environnement Thèse de recherche Identification et caractérisation fonctionnelle de gènes impliqués dans la voie de biosynthèse des furocoumarines chez les végétaux supérieurs.
    [Show full text]
  • ARTICLE in PRESS ZRT YJMBI-60577; No
    ARTICLE IN PRESS ZRT YJMBI-60577; No. of pages: 12; 4C: 5, 7 doi:10.1016/j.jmb.2008.06.060 J. Mol. Biol. (2008) xx, xxx–xxx Available online at www.sciencedirect.com Evolutionary History of a Specialized P450 Propane Monooxygenase Rudi Fasan1, Yergalem T. Meharenna2, Christopher D. Snow1, Thomas L. Poulos2 and Frances H. Arnold1⁎ 1Division of Chemistry and The evolutionary pressures that shaped the specificity and catalytic effi- Chemical Engineering, California ciency of enzymes can only be speculated. While directed evolution expe- Institute of Technology, 1200 riments show that new functions can be acquired under positive selection E. California Blvd., MC 210-41, with few mutations, the role of negative selection in eliminating undesired Pasadena, CA 91125, USA activities and achieving high specificity remains unclear. Here we examine intermediates along the ‘lineage’ from a naturally occurring C –C fatty 2Department of Molecular 12 20 acid hydroxylase (P450 ) to a laboratory-evolved P450 propane mono- Biology & Biochemistry, BM3 oxygenase (P450 ) having 20 heme domain substitutions compared to Chemistry, and Pharmaceutical PMO P450 . Biochemical, crystallographic, and computational analyses Sciences, University of BM3 show that a minimal perturbation of the P450 fold and substrate- California, Irvine, Irvine, BM3 binding pocket accompanies a significant broadening of enzyme substrate CA 92697, USA range and the emergence of propane activity. In contrast, refinement of the Received 22 April 2008; enzyme catalytic efficiency for propane oxidation (∼9000-fold increase in received in revised form kcat/Km) involves profound reshaping and partitioning of the substrate 13 June 2008; access pathway. Remodeling of the substrate-recognition mechanisms accepted 19 June 2008 ultimately results in remarkable narrowing of the substrate profile around propane and enables the acquisition of a basal iodomethane dehalogenase activity as yet unknown in natural alkane monooxygenases.
    [Show full text]
  • Characterization of Oxidative Enzymes Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in Opium Poppy (Papaver Somniferum)
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-03-16 Characterization of Oxidative Enzymes Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in Opium Poppy (Papaver somniferum) Beaudoin, Guillaume Arthur Welch Beaudoin, G. A. (2015). Characterization of Oxidative Enzymes Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in Opium Poppy (Papaver somniferum) (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25284 http://hdl.handle.net/11023/2115 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Characterization of Oxidative Enzymes Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in Opium Poppy (Papaver somniferum) by Guillaume Arthur Welch Beaudoin A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA MARCH, 2015 © Guillaume Arthur Welch Beaudoin 2015 Abstract Benzylisoquinoline alkaloids (BIAs) are a large group of nitrogen-containing specialized metabolites. Opium poppy (Papaver somniferum) is an important pharmaceutical plant and has been cultivated for thousands of years for its analgesic constituents: the morphinan BIAs codeine and morphine. In addition, opium poppy produces other BIAs with biological activities, such as the vasodilator papaverine, the potential anti-cancer drug noscapine and the antimicrobial agent sanguinarine.
    [Show full text]
  • 2-Oxoglutarate-Dependent Dioxygenases in the Biosynthesis of Simple Coumarins
    MINI REVIEW ARTICLE published: 03 November 2014 doi: 10.3389/fpls.2014.00549 2-Oxoglutarate-dependent dioxygenases in the biosynthesis of simple coumarins Bun-Ichi Shimizu* Department of Life Sciences, Graduate School of Life Sciences, Toyo University, Itakura, Japan Edited by: Coumarins are natural plant products that have been the subject of extensive Stefan Martens, Edmund Mach phytochemical and pharmacological research studies in the past few decades. The core Foundation, Italy structure of coumarins is derived from the respective cinnamates via ortho-hydroxylation Reviewed by: of the aromatic ring, trans/cis isomerization, and lactonization. Various substitution Joong-Hoon Ahn, Konkuk University, South Korea patterns of coumarins have been reported, whereas the biosynthesis of coumarins Basil J. Nikolau, Iowa State remains elusive. Ortho-hydroxylation is a key step in simple coumarin biosynthesis University, USA as a branch point from the lignin biosynthetic pathway. 2-Oxoglutarate-dependent *Correspondence: dioxygenases (2OGDs) from plants convert cinnamate derivatives into simple coumarins Bun-Ichi Shimizu, Department of through the process of ortho-hydroxylation. This review describes the 2OGDs involved in Life Sciences, Graduate School of Life Sciences, Toyo University, coumarin biosynthesis and their substrate specificities. Itakura, Gunma 3740193, Japan Keywords: coumarin biosynthesis, simple coumarins, Ortho-hydroxylases, coenzyme A thioester of cinnamates, e-mail: [email protected] C-terminal sequences, Arabidopsis, Ipomoea batatas,
    [Show full text]
  • Chemistry and Health Effects of Furanocoumarins in Grapefruit
    journal of food and drug analysis xxx (2016) 1e13 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.jfda-online.com Review Article Chemistry and health effects of furanocoumarins in grapefruit * Wei-Lun Hung, Joon Hyuk Suh, Yu Wang Citrus Research and Education Center, Department of Food Science and Human Nutrition, University of Florida, Lake Alfred, FL, USA article info abstract Article history: Furanocoumarins are a specific group of secondary metabolites that commonly present in Received 1 September 2016 higher plants, such as citrus plants. The major furanocoumarins found in grapefruits 0 0 Received in revised form (Citrus paradisi) include bergamottin, epoxybergamottin, and 6 ,7 -dihydroxybergamottin. 2 November 2016 During biosynthesis of these furanocoumarins, coumarins undergo biochemical modifi- Accepted 3 November 2016 cations corresponding to a prenylation reaction catalyzed by the cytochrome P450 enzymes Available online xxx with the subsequent formation of furan rings. Because of undesirable interactions with several medications, many studies have developed methods for grapefruit furanocoumarin Keywords: quantification that include high-performance liquid chromatography coupled with UV anticancer activity detector or mass spectrometry. The distribution of furanocoumarins in grapefruits is bergamottin affected by several environmental conditions, such as processing techniques, storage bone health temperature, and packing materials. In the past few years, grapefruit furanocoumarins furanocoumarins have been demonstrated to exhibit several biological activities including antioxidative, grapefruit -inflammatory, and -cancer activities as well as bone health promotion both in vitro and in vivo. Notably, furanocoumarins potently exerted antiproliferative activities against cancer cell growth through modulation of several molecular pathways, such as regulation of the signal transducer and activator of transcription 3, nuclear factor-kB, phosphatidy- linositol-3-kinase/AKT, and mitogen-activated protein kinase expression.
    [Show full text]
  • Dietary Supplements of Plant Origin
    Dietary Supplements of Plant Origin © 2003 Taylor & Francis Ltd Dietary Supplements of Plant Origin A nutrition and health approach Edited by Massimo Maffei © 2003 Taylor & Francis Ltd First published 2003 by Taylor & Francis 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Taylor & Francis Inc, 29 West 35th Street, New York, NY 10001 Taylor & Francis is an imprint of the Taylor & Francis Group This edition published in the Taylor & Francis e-Library, 2003. © 2003 Taylor & Francis Ltd All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Every effort has been made to ensure that the advice and information in this book is true and accurate at the time of going to press. However, neither the publisher nor the authors can accept any legal responsibility or liability for any errors or omissions that may be made. In the case of drug administration, any medical procedure or the use of technical equipment mentioned within this book, you are strongly advised to consult the manufacturer’s guidelines. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalog record for this book has been requested ISBN 0-203-02709-4 Master e-book ISBN ISBN 0-203-34158-9 (Adobe eReader Format) ISBN 0–415–30835–6 (Print edition) © 2003 Taylor & Francis Ltd Contents List of Contributors vii Foreword viii 1 An introduction to dietary supplements of plant origin: definitions, background and an overview of this volume 1 BERNADETTE M.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]