Electronegativity and Bonding Why?

Total Page:16

File Type:pdf, Size:1020Kb

Electronegativity and Bonding Why? Electronegativity and Bonding How does electronegativity predict the type of bonds atoms form? Why? By this point in your academic career, you have probably learned the two most common types of chemical bonds: ionic bonds and covalent bonds. Ionic bonds transfer electrons and covalent bonds share them. But what does that really mean? And how can an atoms electronegativity unit help you understand and predict the types of chemical bonds that form between atoms. Model 1-Electronegativity Values on the Periodic Table 1. What does electronegativity tell you about an element? Measure of an atom’s ability to take electrons FROM ANOTHER ATOM a. If an element has a high electronegativity, the element is good at… Gaining electrons b. If an element has a low electronegativity, the element… Loses electrons easily 2. Do you notice a pattern between metals and non-metals in Model 1? Electronegativity of metals is lower than those of non-metals 1 3. As you move down a group on the periodic table what typically happens to electronegativity? It decreases 4. As you move from left to right across a period what typically happens to electronegativity? It increases 5. Which corner of the periodic table are the elements that are the best at attracting electrons? Top right 6. Which corner of the periodic table are the elements that have difficulty holding onto to their electrons? Bottom left 7. Make a prediction: if two atoms with very different electronegativities get close together, the atoms are likely to (share electrons / transfer electrons / bounce off without reacting). Explain your reasoning below. 8. Make a prediction: if two atoms with similar electronegativities get close together, the atoms are likely to (share electrons / transfer electrons / bounce off without reacting). Explain your reasoning below. 2 Model 2 – Using Electronegativity Difference to Determine Bond Type Bond What’s Holding the Electronegativity Example Type Bonds Together? Difference NaCl Ionic Transfer of electrons 3.16 (chlorine) ~1.7 or greater - 0.93 (sodium) 2.23 ~ 1.7 of less CO2 Covalent Sharing of electrons 3.44 (oxygen) - 2.55 (carbon) 0.89 Element Electronegativity Good at attracting F 3.98 e- in a bond O 3.44 Cl 3.16 N 3.04 Br 2.96 I 2.66 S 2.58 C 2.55 H 2.20 P 2.19 Si 1.90 Cu 1.90 Fe 1.83 Al 1.61 Mg 1.31 Ca 1.00 Li 0.98 Na 0.93 Has difficulty K 0.82 attracting e- in a bond Fr 0.7 3 Use Model 2 to determine the types of bonds formed between the following elements: 9. Fluorine and Potassium a. Difference in Electronegativity: 3.98 – 0.82 = 3.16 b. Type of Bond formed: ionic or covalent 10. Silicon and Oxygen a. Difference in Electronegativity: 3.44 – 1.90 = 1.54 b. Type of Bond formed: ionic or covalent 11. Calcium and Chlorine 3.16 – 1.00 = 2.16 a. Difference in Electronegativity: b. Type of Bond formed: ionic or covalent 12. Aluminum and Chlorine 3.16 – 1.61 = 1.55 a. Difference in Electronegativity: b. Type of Bond formed: ionic or covalent 13. Sodium & Oxygen 3.44 – 0.93 = 2.51 a. Difference in Electronegativity: b. Type of Bond formed: ionic or covalent 14. Look back at your answers to questions 7 & 8. Were your predictions correct? If not, revise your answers. Answers will vary 15. Use your answers from questions 9-13 to complete the following statements: a. Ionic bonds most often form between (metals and non-metals/ non-metals and non-metals/metals and metals) b. Covalent bonds most often form between (metals and non-metals/ non-metals and non-metals/metals and metals) 4 .
Recommended publications
  • The Periodic Electronegativity Table
    The Periodic Electronegativity Table Jan C. A. Boeyens Unit for Advanced Study, University of Pretoria, South Africa Reprint requests to J. C. A. Boeyens. E-mail: [email protected] Z. Naturforsch. 2008, 63b, 199 – 209; received October 16, 2007 The origins and development of the electronegativity concept as an empirical construct are briefly examined, emphasizing the confusion that exists over the appropriate units in which to express this quantity. It is shown how to relate the most reliable of the empirical scales to the theoretical definition of electronegativity in terms of the quantum potential and ionization radius of the atomic valence state. The theory reflects not only the periodicity of the empirical scales, but also accounts for the related thermochemical data and serves as a basis for the calculation of interatomic interaction within molecules. The intuitive theory that relates electronegativity to the average of ionization energy and electron affinity is elucidated for the first time and used to estimate the electron affinities of those elements for which no experimental measurement is possible. Key words: Valence State, Quantum Potential, Ionization Radius Introduction electronegative elements used to be distinguished tra- ditionally [1]. Electronegativity, apart from being the most useful This theoretical notion, in one form or the other, has theoretical concept that guides the practising chemist, survived into the present, where, as will be shown, it is also the most bothersome to quantify from first prin- provides a precise definition of electronegativity. Elec- ciples. In historical context the concept developed in a tronegativity scales that fail to reflect the periodicity of natural way from the early distinction between antag- the L-M curve will be considered inappropriate.
    [Show full text]
  • An Alternate Graphical Representation of Periodic Table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt
    An Alternate Graphical Representation of Periodic table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt. Ltd, Hyderabad, India. [email protected] Abstract Periodic table of chemical elements symbolizes an elegant graphical representation of symmetry at atomic level and provides an overview on arrangement of electrons. It started merely as tabular representation of chemical elements, later got strengthened with quantum mechanical description of atomic structure and recent studies have revealed that periodic table can be formulated using SO(4,2) SU(2) group. IUPAC, the governing body in Chemistry, doesn‟t approve any periodic table as a standard periodic table. The only specific recommendation provided by IUPAC is that the periodic table should follow the 1 to 18 group numbering. In this technical paper, we describe a new graphical representation of periodic table, referred as „Circular form of Periodic table‟. The advantages of circular form of periodic table over other representations are discussed along with a brief discussion on history of periodic tables. 1. Introduction The profoundness of inherent symmetry in nature can be seen at different depths of atomic scales. Periodic table symbolizes one such elegant symmetry existing within the atomic structure of chemical elements. This so called „symmetry‟ within the atomic structures has been widely studied from different prospects and over the last hundreds years more than 700 different graphical representations of Periodic tables have emerged [1]. Each graphical representation of chemical elements attempted to portray certain symmetries in form of columns, rows, spirals, dimensions etc. Out of all the graphical representations, the rectangular form of periodic table (also referred as Long form of periodic table or Modern periodic table) has gained wide acceptance.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Removal of Heavy Metals from Aqueous Solution by Zeolite in Competitive Sorption System
    International Journal of Environmental Science and Development, Vol. 3, No. 4, August 2012 Removal of Heavy Metals from Aqueous Solution by Zeolite in Competitive Sorption System Sabry M. Shaheen, Aly S. Derbalah, and Farahat S. Moghanm rich volcanic rocks (tuff) with fresh water in playa lakes or Abstract—In this study, the sorption behaviour of natural by seawater [5]. (clinoptilolite) zeolites with respect to cadmium (Cd), copper The structures of zeolites consist of three-dimensional (Cu), nickel (Ni), lead (Pb) and zinc (Zn) has been studied in frameworks of SiO and AlO tetrahedra. The aluminum ion order to consider its application to purity metal finishing 4 4 wastewaters. The batch method has been employed, using is small enough to occupy the position in the center of the competitive sorption system with metal concentrations in tetrahedron of four oxygen atoms, and the isomorphous 4+ 3+ solution ranging from 50 to 300 mg/l. The percentage sorption replacement of Si by Al produces a negative charge in and distribution coefficients (Kd) were determined for the the lattice. The net negative charge is balanced by the sorption system as a function of metal concentration. In exchangeable cation (sodium, potassium, or calcium). These addition lability of the sorbed metals was estimated by DTPA cations are exchangeable with certain cations in solutions extraction following their sorption. The results showed that Freundlich model described satisfactorily sorption of all such as lead, cadmium, zinc, and manganese [6]. The fact metals. Zeolite sorbed around 32, 75, 28, 99, and 59 % of the that zeolite exchangeable ions are relatively innocuous added Cd, Cu, Ni, Pb and Zn metal concentrations (sodium, calcium, and potassium ions) makes them respectively.
    [Show full text]
  • TEK 8.5C: Periodic Table
    Name: Teacher: Pd. Date: TEK 8.5C: Periodic Table TEK 8.5C: Interpret the arrangement of the Periodic Table, including groups and periods, to explain how properties are used to classify elements. Elements and the Periodic Table An element is a substance that cannot be separated into simpler substances by physical or chemical means. An element is already in its simplest form. The smallest piece of an element that still has the properties of that element is called an atom. An element is a pure substance, containing only one kind of atom. The Periodic Table of Elements is a list of all the elements that have been discovered and named, with each element listed in its own element square. Elements are represented on the Periodic Table by a one or two letter symbol, and its name, atomic number and atomic mass. The Periodic Table & Atomic Structure The elements are listed on the Periodic Table in atomic number order, starting at the upper left corner and then moving from the left to right and top to bottom, just as the words of a paragraph are read. The element’s atomic number is based on the number of protons in each atom of that element. In electrically neutral atoms, the atomic number also represents the number of electrons in each atom of that element. For example, the atomic number for neon (Ne) is 10, which means that each atom of neon has 10 protons and 10 electrons. Magnesium (Mg) has an atomic number of 12, which means it has 12 protons and 12 electrons.
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • Heavy Metals'' with ``Potentially Toxic Elements'
    It’s Time to Replace the Term “Heavy Metals” with “Potentially Toxic Elements” When Reporting Environmental Research Olivier Pourret, Andrew Hursthouse To cite this version: Olivier Pourret, Andrew Hursthouse. It’s Time to Replace the Term “Heavy Metals” with “Potentially Toxic Elements” When Reporting Environmental Research. International Journal of Environmental Research and Public Health, MDPI, 2019, 16 (22), pp.4446. 10.3390/ijerph16224446. hal-02889766 HAL Id: hal-02889766 https://hal.archives-ouvertes.fr/hal-02889766 Submitted on 5 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Letter It’s Time to Replace the Term “Heavy Metals” with “Potentially Toxic Elements” When Reporting Environmental Research Olivier Pourret 1,* and Andrew Hursthouse 2,* 1 UniLaSalle, AGHYLE, 19 rue Pierre Waguet, 60000 Beauvais, France 2 School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK * Correspondence: [email protected] (O.P.); [email protected] (A.H.) Received: 28 October 2019; Accepted: 12 November 2019; Published: date Abstract: Even if the Periodic Table of Chemical Elements is relatively well defined, some controversial terms are still in use.
    [Show full text]
  • Adverse Health Effects of Heavy Metals in Children
    TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event …Sponsor …Organizer] ADVERSE HEALTH EFFECTS OF HEAVY METALS IN CHILDREN Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh October 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the problem. Present only those slides that apply most directly to the local situation in the region. Please replace the examples, data, pictures and case studies with ones that are relevant to your situation.>> <<NOTE TO USER: This slide set discusses routes of exposure, adverse health effects and case studies from environmental exposure to heavy metals, other than lead and mercury, please go to the modules on lead and mercury for more information on those. Please refer to other modules (e.g. water, neurodevelopment, biomonitoring, environmental and developmental origins of disease) for complementary information>> Children and heavy metals LEARNING OBJECTIVES To define the spectrum of heavy metals (others than lead and mercury) with adverse effects on human health To describe the epidemiology of adverse effects of heavy metals (Arsenic, Cadmium, Copper and Thallium) in children To describe sources and routes of exposure of children to those heavy metals To understand the mechanism and illustrate the clinical effects of heavy metals’ toxicity To discuss the strategy of prevention of heavy metals’ adverse effects 2 The scope of this module is to provide an overview of the public health impact, adverse health effects, epidemiology, mechanism of action and prevention of heavy metals (other than lead and mercury) toxicity in children.
    [Show full text]
  • Most Atoms Form Chemical Bonds to Obtain a Lower Potential Energy
    Integrated Chemistry <Kovscek> 6-1-2 Explain why most atoms form chemical bonds. Most atoms form chemical bonds to obtain a lower potential energy. Many share or transfer electrons to get a noble gas configuration. 6-1-3 Describe ionic and covalent bonding. Ions form to lower the reactivity of an atom. Ionic bonding is when the attraction between many cations and anions hold atoms together. Covalent bonding results from the sharing of electron pairs between two atoms. That is, when atoms share electrons, the mutual attraction between the electrons (electron clouds) and protons (the nucleus) hold the atoms together. 6-1-4 Explain why most chemical bonding is neither purely ionic nor purely covalent. In order for a bond to be totally ionic one atom would have to have an electronegativity of zero. (there aren’t any). To have a purely covalent bond the electronegativity must be equal. (Only the electronegativity of atoms of the same element are identical, diatomic elements are purely covalent) 6-1-5 Classify bonding type according to electronegativity differences. Differences in electronegativities reflect the character of bonding between elements. The electronegativity of the less- electronegative element is subtracted from that of the more- electronegative element. The greater the electronegativity difference, the more ionic is the bonding. Covalent Bonding happens between atoms with an electronegativity difference of 1.7 or less. That is the bond has an ionic character of 50% or less. Electronegativity % Ionic Character Covalent Differences Bond Type 0 to 0.3 0% to 5% Non - Polar Over 0.3 up to 1.7 5% to 50% Polar Over 1.7 Greater than 50 % Ionic Ionic Bonding occurs between atoms with an electronegativity difference of greater than 1.7.
    [Show full text]
  • Elements Make up the Periodic Table
    Page 1 of 7 KEY CONCEPT Elements make up the periodic table. BEFORE, you learned NOW, you will learn • Atoms have a structure • How the periodic table is • Every element is made from organized a different type of atom • How properties of elements are shown by the periodic table VOCABULARY EXPLORE Similarities and Differences of Objects atomic mass p. 17 How can different objects be organized? periodic table p. 18 group p. 22 PROCEDURE MATERIALS period p. 22 buttons 1 With several classmates, organize the buttons into three or more groups. 2 Compare your team’s organization of the buttons with another team’s organization. WHAT DO YOU THINK? • What characteristics did you use to organize the buttons? • In what other ways could you have organized the buttons? Elements can be organized by similarities. One way of organizing elements is by the masses of their atoms. Finding the masses of atoms was a difficult task for the chemists of the past. They could not place an atom on a pan balance. All they could do was find the mass of a very large number of atoms of a certain element and then infer the mass of a single one of them. Remember that not all the atoms of an element have the same atomic mass number. Elements have isotopes. When chemists attempt to measure the mass of an atom, therefore, they are actually finding the average mass of all its isotopes. The atomic mass of the atoms of an element is the average mass of all the element’s isotopes.
    [Show full text]
  • ELECTRONEGATIVITY D Qkq F=
    ELECTRONEGATIVITY The electronegativity of an atom is the attracting power that the nucleus has for it’s own outer electrons and those of it’s neighbours i.e. how badly it wants electrons. An atom’s electronegativity is determined by Coulomb’s Law, which states, “ the size of the force is proportional to the size of the charges and inversely proportional to the square of the distance between them”. In symbols it is represented as: kq q F = 1 2 d 2 where: F = force (N) k = constant (dependent on the medium through which the force is acting) e.g. air q1 = charge on an electron (C) q2 = core charge (C) = no. of protons an outer electron sees = no. of protons – no. of inner shell electrons = main Group Number d = distance of electron from the nucleus (m) Examples of how to calculate the core charge: Sodium – Atomic number 11 Electron configuration 2.8.1 Core charge = 11 (no. of p+s) – 10 (no. of inner e-s) +1 (Group i) Chlorine – Atomic number 17 Electron configuration 2.8.7 Core charge = 17 (no. of p+s) – 10 (no. of inner e-s) +7 (Group vii) J:\Sciclunm\Resources\Year 11 Chemistry\Semester1\Notes\Atoms & The Periodic Table\Electronegativity.doc Neon holds onto its own electrons with a core charge of +8, but it can’t hold any more electrons in that shell. If it was to form bonds, the electron must go into the next shell where the core charge is zero. Group viii elements do not form any compounds under normal conditions and are therefore given no electronegativity values.
    [Show full text]
  • Periodic Table of the Elements Notes
    Periodic Table of the Elements Notes Arrangement of the known elements based on atomic number and chemical and physical properties. Divided into three basic categories: Metals (left side of the table) Nonmetals (right side of the table) Metalloids (touching the zig zag line) Basic Organization by: Atomic structure Atomic number Chemical and Physical Properties Uses of the Periodic Table Useful in predicting: chemical behavior of the elements trends properties of the elements Atomic Structure Review: Atoms are made of protons, electrons, and neutrons. Elements are atoms of only one type. Elements are identified by the atomic number (# of protons in nucleus). Energy Levels Review: Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud. At least 1 energy level and as many as 7 energy levels exist in atoms Energy Levels & Valence Electrons Energy levels hold a specific amount of electrons: 1st level = up to 2 2nd level = up to 8 3rd level = up to 8 (first 18 elements only) The electrons in the outermost level are called valence electrons. Determine reactivity - how elements will react with others to form compounds Outermost level does not usually fill completely with electrons Using the Table to Identify Valence Electrons Elements are grouped into vertical columns because they have similar properties. These are called groups or families. Groups are numbered 1-18. Group numbers can help you determine the number of valence electrons: Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Groups 3–12 are transition metals and have 1 or 2 valence electrons.
    [Show full text]