Guidelines for Begonia Nomenclature
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Report on the Fourth Botanical Nomenclature Course Organized by the Botanical Survey of India at Shillong
A REPORT ON THE FOURTH BOTANICAL NOMENCLATURE COURSE ORGANIZED BY THE BOTANICAL SURVEY OF INDIA AT SHILLONG P. LAKSHMINARASIMHAN,1 N. ODYUO,2 CHAYA DEORI,2 DEEPU VIJAYAN,2 DAVID L. BIATE,2 AND KANCHI N. GANDHI3 The Botanical Survey of India (BSI) held its fourth al., 2018) and a user’s guide to the International Code of Botanical Nomenclature Course on January 27–31, 2020 Nomenclature (Turland, 2019). at BSI-Eastern Regional Centre (BSI-ERC), Shillong. The Chaya Deori (BSI-ERC) anchored the inaugural activities. course drew 66 participants from across the country, including Odyuo gave a welcome speech, followed by remarks 45 from outside BSI (Fig. 1). Ashiho A. Mao, director of BSI, from Lakshminarasimhan, Gandhi, and chief guest Mao. was the convener of the course; P. Lakshminarasimhan, ex- Rajalakshmi Prasad and Anupama Jayasimha (former joint director of BSI, and Nripemo Odyuo, head, BSI-ERC, students of Gandhi’s at National College, Bengaluru) were served as the coordinator and facilitator, respectively. Kanchi the guests of honor. Uma Shankar (North-Eastern Hill N. Gandhi served as the course director. Participants were University, Shillong) also attended the inaugural function. provided with the latest International Code of Nomenclature Gandhi began the course with a historical review of for algae, fungi, and plants (Shenzhen Code; Turland et botanical nomenclature. He provided a detailed review of FIGURE 1. Fourth Botanical Nomenclature Course organized by the Botanical Survey of India at Shillong. Delegates of the course. We thank A. R. Brach (A, GH) for helpful suggestions on the text, C. M. Gallagher, and D. -
BEGONIACEAE 1. BEGONIA Linnaeus, Sp. Pl. 2: 1056. 1753
BEGONIACEAE 秋海棠科 qiu hai tang ke Gu Cuizhi (谷粹芝 Ku Tsue-chih)1, Ching-I Peng (彭镜毅)2, Nicholas J. Turland3 Perennial succulent herbs, very rarely subshrubs. Stem erect, frequently rhizomatous, or plants tuberous and either acaulescent or shortly stemmed, rarely lianoid or climbing with adventitious roots, or stoloniferous. Leaves simple, rarely palmately compound, alternate or all basal, petiolate, stipules usually deciduous; blade often oblique and asymmetric, rarely symmetric, margin irregularly serrate and divided, occasionally entire, venation usually palmate. Flowers unisexual, plants monoecious, rarely dioecious, (1 or)2–4 to several, rarely numerous in dichotomous cyme, sometimes in panicles, with pedicel and bracts. Staminate flower: tepals 2 or 4 and decussate, usually outer ones larger, inner ones smaller; stamens usually numerous; filaments free or connate at base; anthers 2- celled, apical or lateral. Pistillate flower: tepals 2–5(–10), usually free, rarely connate at base; ovary nodding, pendulous, or ascending, 1–3-, rarely 4–8-loculed; placentae axile or parietal; styles 2 or 3(or more), free or fused at base, forked once or more; stigma turgid, spirally twisted-tortuous or U-shaped, capitate or reniform and setose-papillose. Capsule dry, sometimes berrylike, unequally or subequally 3-winged, rarely wingless and 3- or 4-horned; seeds very numerous, minute, oblong, testa pale brown, reticulate. Two or three genera and more than 1400 species: widely distributed in the tropical and subtropical regions of the world; one genus and 173 species (141 endemic) in China. Ku Tsuechih. 1999. Begoniaceae. In: Ku Tsuechih, ed., Fl. Reipubl. Popularis Sin. 52(1): 126–269. 1. -
Botanical Gardens in France
France Total no. of Botanic Gardens recorded in France: 104, plus 10 in French Overseas Territories (French Guiana, Guadeloupe, Martinique and Réunion). Approx. no. of living plant accessions recorded in these botanic gardens: c.300,000 Approx. no. of taxa in these collections: 30,000 to 40,000 (20,000 to 25,000 spp.) Estimated % of pre-CBD collections: 80% to 90% Notes: In 1998 36 botanic gardens in France issued an Index Seminum. Most were sent internationally to between 200 and 1,000 other institutions. Location: ANDUZE Founded: 1850 Garden Name: La Bambouseraie (Maurice Negre Parc Exotique de Prafrance) Address: GENERARGUES, F-30140 ANDUZE Status: Private. Herbarium: Unknown. Ex situ Collections: World renowned collection of more than 100 species and varieties of bamboos grown in a 6 ha plot, including 59 spp.of Phyllostachys. Azaleas. No. of taxa: 260 taxa Rare & Endangered plants: bamboos. Special Conservation Collections: bamboos. Location: ANGERS Founded: 1895 Garden Name: Jardin Botanique de la Faculté de Pharmacie Address: Faculte Mixte de Medecine et Pharmacie, 16 Boulevard Daviers, F-49045 ANGERS. Status: Universiy Herbarium: No Ex situ Collections: Trees and shrubs (315 taxa), plants used for phytotherapy and other useful spp. (175 taxa), systematic plant collection (2,000 taxa), aromatic, perfume and spice plants (22 spp), greenhouse plants (250 spp.). No. of taxa: 2,700 Rare & Endangered plants: Unknown Location: ANGERS Founded: 1863 Garden Name: Arboretum Gaston Allard Address: Service des Espaces Verts de la Ville, Mairie d'Angers, BP 3527, 49035 ANGERS Cedex. Situated: 9, rue du Château d’Orgement 49000 ANGERS Status: Municipal Herbarium: Yes Approx. -
Tracing History
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911 Tracing History Phylogenetic, Taxonomic, and Biogeographic Research in the Colchicum Family BY ANNIKA VINNERSTEN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2003 Dissertation presented at Uppsala University to be publicly examined in Lindahlsalen, EBC, Uppsala, Friday, December 12, 2003 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Vinnersten, A. 2003. Tracing History. Phylogenetic, Taxonomic and Biogeographic Research in the Colchicum Family. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911. 33 pp. Uppsala. ISBN 91-554-5814-9 This thesis concerns the history and the intrafamilial delimitations of the plant family Colchicaceae. A phylogeny of 73 taxa representing all genera of Colchicaceae, except the monotypic Kuntheria, is presented. The molecular analysis based on three plastid regions—the rps16 intron, the atpB- rbcL intergenic spacer, and the trnL-F region—reveal the intrafamilial classification to be in need of revision. The two tribes Iphigenieae and Uvularieae are demonstrated to be paraphyletic. The well-known genus Colchicum is shown to be nested within Androcymbium, Onixotis constitutes a grade between Neodregea and Wurmbea, and Gloriosa is intermixed with species of Littonia. Two new tribes are described, Burchardieae and Tripladenieae, and the two tribes Colchiceae and Uvularieae are emended, leaving four tribes in the family. At generic level new combinations are made in Wurmbea and Gloriosa in order to render them monophyletic. The genus Androcymbium is paraphyletic in relation to Colchicum and the latter genus is therefore expanded. -
Principles of Plant Taxonomy Bot
PRINCIPLES OF PLANT TAXONOMY BOT 222 Dr. M. Ajmal Ali, PhD 1 What is Taxonomy / Systematics ? Animal group No. of species Amphibians 6,199 Birds 9,956 Fish 30,000 Mammals 5,416 Tundra Reptiles 8,240 Subtotal 59,811 Grassland Forest Insects 950,000 Molluscs 81,000 Q: Why we keep the stuffs of our home Crustaceans 40,000 at the fixed place or arrange into some Corals 2,175 kinds of system? Desert Others 130,200 Rain forest Total 1,203,375 • Every Human being is a Taxonomist Plants No. of species Mosses 15,000 Ferns and allies 13,025 Gymnosperms 980 Dicotyledons 199,350 Monocotyledons 59,300 Green Algae 3,715 Red Algae 5,956 Lichens 10,000 Mushrooms 16,000 Brown Algae 2,849 Subtotal 28,849 Total 1,589,361 • We have millions of different kind of plants, animals and microorganism. We need to scientifically identify, name and classify all the living organism. • Taxonomy / Systematics is the branch of science deals with classification of organism. 2 • Q. What is Plant Taxonomy / Plant systematics We study plants because: Plants convert Carbon dioxide gas into Every things we eat comes Plants produce oxygen. We breathe sugars through the process of directly or indirectly from oxygen. We cannot live without photosynthesis. plants. oxygen. Many chemicals produced by the Study of plants science helps to Study of plants science helps plants used as learn more about the natural Plants provide fibres for paper or fabric. to conserve endangered medicine. world plants. We have millions of different kind of plants, animals and microorganism. -
Begonia Chingipengii (Sect
Phytotaxa 164 (3): 175–182 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.164.3.2 Begonia chingipengii (sect. Baryandra, Begoniaceae), a new species from Luzon Island, Philippines ROSARIO RIVERA RUBITE1,2, JOHN REY C. CALLADO2 , YOSHIKO KONO3 & HSUN-AN YANG3,4 1University of the Philippines Manila, Department of Biology, College of Arts and Sciences, Padre Faura, Manila, Philippines 2Philippine National Herbarium, National Museum, Padre Burgos, Manila Philippines 3Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan 4Author for correspondence, e-mail: [email protected] Abstract Begonia chingipengii from Gabaldon, Nueva Ecija, Luzon Island is described as a new species endemic to the Philippines. This is the latest addition to the newly delimited Begonia section Baryandra. It resembles Begonia trichochila but is distinguished by the variegated leaves with light green veins and midrib contrasting with the dark green adaxial surface and maroon abaxial surface, and its oblique leaf is elongated with an acuminate apex. The robust variegated leaves, large flowers and extensive inflorescence make it very attractive. Introduction The last comprehensive account of Philippine Begonia Linnaeus (1753: 1056) recording 59 species (Merrill 1912), is now over a century old. Golding & Wasshausen (2002) and Hughes (2008) listed 104 Philippine species. Globally, more than 1,500 species have been described and many more are being discovered. Asia, from the Himalayas to Southern China and Malesia, is second only to South America as a center of diversity for begonias (Tebbitt 2005). In Southeast Asia, the Philippines ranks first in the number of endemic begonias, followed by Borneo (Hughes, 2008). -
My Education in Botanical Nomenclature Began at Least As Far
EDITORIAL: THE GOVERNANCE OF THE INTERNATIONAL CODE OF NOMENCLATURE—MY SLOW LEARNING EXPERIENCE. The Code of Nomenclature for Algae, Fungi, and Plants (formerly the International Code of Botanical Nomenclature) is an important document of international law (http://www.iapt-taxon.org/nomen/main.php). It tells us how the scientific names of plants, new and old, should be applied—what the correct name of a plant is given a particular taxonomy. One might think that the Code is governed by some international institution or organization such as the United Nations or the International Association for Plant Taxonomy (IAPT), but it is not. It is loosely associated with International Botanical Congresses, a tradition over 100 years old. In between congresses, a series of committees makes decisions about nomenclature and these are then nearly always approved at the next International Botanical Congress (IBC). I did not clearly realize how the governance of nomenclature functioned until recently, about 48 years after I was first introduced to the concept of botanical nomenclature. My education in botanical nomenclature began in 1968 when I took "Plant Taxonomy" from my revered Professor John L. Morrison at the New York State College of Forestry in Syracuse, New York, USA. One lesson I was supposed to learn about botanical nomenclature in Morrison's class (but didn't really learn until after the final exam) was that in practice it is a peaceful form of international cooperation in which all the participants agree that they will follow certain rules about how plants are named, but there is no one imposing those rules. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Nannoplankton Taxonomy and the International Code of Nomenclature for Algae, Fungi, and Plants (ICN)
Proc. 14th INA Conf., Reston VA, USA (Guest Ed. J. Self-Trail) J. Nannoplankton Res. 35 (2), 2015, pp.141-154 © 2015 International Nannoplankton Association 141 ISSN 1210-8049 Printed by The Sheridan Press, USA Nannoplankton taxonomy and the International Code of Nomenclature for algae, fungi, and plants (ICN) Richard W. Jordan Department of Earth & Environmental Sciences, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan; [email protected] Manuscript received 2nd June, 2015; revised manuscript accepted 1st July, 2015 Abstract In 2012, the International Code of Nomenclature for algae, fungi, and plants was published, which has ramifications for nannoplankton workers. The main changes that are relevant to us are: 1) certain forms of electronic publication are now acceptable, 2) English instead of Latin may now be used in descriptions and diagnoses of extant organisms, and 3) the morphotaxon concept for fossil plants and algae has been abandoned. Furthermore, names of genera based on extant types now have priority over those based on fossil types. This may cause a potential problem in the future for at least four genera with fossil types: Cruciplacolithus and Reticulofenestra (nannoplankton) and Dictyocha and Stephanocha (silicoflagellates). Herein, some of the rules and recommendations are explained, with nannoplankton and silicoflagellate examples. Keywords nannoplankton, nannofossils, silicoflagellates, taxonomy, ICBN, ICN 1. Introduction name, all names for which it is the basionym Explanatory notes on the rules and recommendations of are similarly rejected, and none is to be used previous versions of the International Code of Botanical (see Rec. 50E.2). -
Major Changes to the Code of Nomenclature—Melbourne, July 2011
TAXON 60 (5) • October 2011: 1495–1497 McNeill & Turland • Melbourne Congress: Major changes to the Code XVIII INTERNATIONAL BOTANICAL CONGRESS Major changes to the Code of Nomenclature—Melbourne, July 2011 John McNeill1 & Nicholas J. Turland2 1 Royal Ontario Museum, Toronto, and Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, Scotland, U.K. 2 Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A. Author for correspondence: John McNeill, [email protected] INTRODUCTION for new names of plants, fungi, and algae (and designations of types) to appear in printed matter in order to be effectively pub- When decisions of a Nomenclature Section of an Interna- lished—effective publication being a fundamental requirement tional Botanical Congress (IBC) are presented in Naturenews of the Code for acceptance of any nomenclatural act. As an alter- (Cressey, 2011) and prompt an editorial in the journal itself native, publication online in Portable Document Format (PDF) (Origin of species, 2011) they must be of unusual significance. in a publication with an International Standard Serial Number This was indeed the case for several of those taken at the recent (ISSN) or International Standard Book Number (ISBN) will XVIII IBC in Melbourne, Australia. be permitted. The Special Committee had proposed 1 January Changes to the International Code of Botanical Nomen- 2013 as the starting date for the new rules (the beginning of the clature (McNeill & al., 2006) require the decision of a plenary year following the expected publication of the new Code), but session of an IBC as proposed by its Nomenclature Section. -
All About Begonias
All About Begonias By Dixie Mitchell October 3, 2014 Grow beautiful begonias in your home and garden Begonias are one of the largest species in the world and grow in their native habitat between 15 degrees north and 15 degrees south of the equator. They need temperatures between 66-75 degrees and are found in Mexico, Central and South America and parts of Africa. Although the discovery of begonias is obscure and in regional dispute, the name can be documented as honoring Michel Bégon, an avid plant collector in the late 1600s. Begonias can be divided into 3 categories: Tuberous, which are grown for their large showy flowers Fibrous, which develop small flowers with waxy foliage in hues of bronze or green Rhizomatous, which are known for spectacular multi-colored leaves with numerous patterns, sizes and designs From these three distinctions, hybridizers have bred over 1200 named species to withstand full sun and drought in addition to shade and high humidity. Tuberous begonias bloom from summer to fall. Lift them from pots in mid- to- late October. Give them a place to dry for a few days, and then store for winter in a frost free container. Look for signs of growth—small pink nubs emerging from the tuber—in late January/early February. Gardeners wanting an early start can pot them by positioning the tuber at a slight angle, covering it only partially with soil and placing the pot in full sun indoors. As more growth appears, add more soil, taking care to water only around the bulb to avoid rot. -
RHS the Garden 2012 Index Volume 137, Parts 1-12
Index 2012: Volume 137, Parts 112 Index 2012 The The The The The The GardenJanuary 2012 | www.rhs.org.uk | £4.25 GardenFebruary 2012 | www.rhs.org.uk | £4.25 GardenMarch 2012 | www.rhs.org.uk | £4.25 GardenApril 2012 | www.rhs.org.uk | £4.25 GardenMay 2012 | www.rhs.org.uk | £4.25 GardenJune 2012 | www.rhs.org.uk | £4.25 RHS TRIAL: LIVING Succeed with SIMPLE WINTER GARDENS GROWING BUSY LIZZIE RHS GUIDANCE Helleborus niger PLANTING IDEAS WHICH LOBELIA Why your DOWNY FOR GARDENING taken from the GARDEN GROW THE BEST TO CHOOSE On home garden is vital MILDEW WITHOUT A Winter Walk at ORCHIDS SHALLOTS for wildlife How to spot it Anglesey Abbey and what to HOSEPIPE Vegetables to Radishes to grow instead get growing ground pep up this Growing chard this month rough the seasons summer's and leaf beet at Tom Stuart-Smith's salads private garden 19522012: GROW YOUR OWN CELEBRATING Small vegetables OUR ROYAL for limited spaces PATRON SOLOMON’S SEALS: SHADE LOVERS TO Iris for Welcome Dahlias in containers CHERISH wınter to the headline for fi ne summer displays Enjoy a SUCCEED WITH The HIPPEASTRUM Heavenly summer colour How to succeed ALL IN THE MIX snowdrop with auriculas 25 best Witch hazels for seasonal scent Ensuring a successful magnolias of roses peat-free start for your PLANTS ON CANVAS: REDUCING PEAT USE IN GARDENING seeds and cuttings season CELEBRATING BOTANICAL ART STRAWBERRY GROWING DIVIDING PERENNIALS bearded iris PLUS YORKSHIRE NURSERY VISIT WITH ROY LANCASTER May12 Cover.indd 1 05/04/2012 11:31 Jan12 Cover.indd 1 01/12/2011 10:03 Feb12 Cover.indd 1 05/01/2012 15:43 Mar12 Cover.indd 1 08/02/2012 16:17 Apr12 Cover.indd 1 08/03/2012 16:08 Jun12 OFC.indd 1 14/05/2012 15:46 1 January 2012 2 February 2012 3 March 2012 4 April 2012 5 May 2012 6 June 2012 Numbers in bold before ‘Moonshine’ 9: 55 gardens, by David inaequalis) 10: 25, 25 gracile ‘Chelsea Girl’ 7: the page number(s) sibirica subsp.