Key to Larvae of Mayflies (Ephemeroptera)

Total Page:16

File Type:pdf, Size:1020Kb

Key to Larvae of Mayflies (Ephemeroptera) Key to Larvae of Mayflies (Ephemeroptera) For species level identification see FBA Scientific Publication 49: “Larvae of the British Ephemeroptera: a key with ecological notes”, J. M. Elliott, U. H. Humpesch & T. T. Macan. 1 Gills under covers (except small 1st gill) (fig. 1) — CAENIDAE CAENIDAE (2 genera). Brachycercus harrisella (fig. 2.) is separated from genus Caenis (5 spp.) by the presence of 3 tubercles on anterior-dorsal part of head and 5 backward-curved processes on the sides of the abdomen under the gill covers. Fig. 1 Fig. 2 — Gills Visible — 2 2 Gills feathery (fig. 3) — EPHEMERIDAE or POTAMANTHIDAE EPHEMERIDAE (one genus Ephemera, 3 spp.) POTAMANTHIDAE (1 sp.) Each gill 2-branched with fine filaments down Potamanthus luteus – Rare!) the sides, held over back, and extend over first Gills held out sideways, and half of abdomen (fig. 4). extend over whole length of Fig. 3 abdomen (fig. 5). Fig. 5 Fig. 4 — Gills not feathery — 3 3 Body flattened; eyes dorsal; plate-like gills, each usually with tuft (fig. 6) — HEPTAGENIIDAE HEPTAGENIIDAE (5 genera) Body markedly flattened with broad head, thorax, and femora. Nymphs cling to surface of stones. Examine hind corners of plate (pronotum) behind head; Fig. 6 — Back projections present fig. 7a ECDYONURUS (4 spp.) Fig. 7a Fig. 7b — Back projections absent fig. 7b, 8a RHITHROGENA (2 spp.), 8b HEPTAGENIA (2 spp.), ELECTROGENA (2 spp.) and KAGERONIA 1 sp.) Fig 8b: No dark Fig. 8a: Note dark spot spot on femora. on top of each femur. First gill small First gill large and meets and like others in its fellow beneath the shape. body. NOTE: Arthroplea congener used to belong to the HEPTAGENIIDAE but is now in the family ARTHROPLEIDAE. A. congener also has a flattened body, dorsally placed eyes and plate-like gills (without tuft), though is easily distinguished by its long, brush-like maxillary palps that extend well beyond edges of the head (fig. 9). A. congener has not been seen in the UK since 1920. Fig. 9 — Body not flattened; eyes lateral; gills not as above — 4 4 Four pairs of plate-like gills (fig. 10) which are held over back — EPHEMERELLIDAE EPHEMERELLIDAE (2 genera Ephemerella, 1 sp. & Serratella 1 sp.). Serratella ignita (was Ephemerella ignita) is common in small stony streams and rivers, and is easily recognised by the alternate light and dark bands on the tails, and the backwardly-directed projections on either side of the mid-dorsal line of the abdomen (fig. 1)1 The rarer Ephemerella Fig. 10 notata has neither of these characters. Fig. 11 — Six or 7 pairs of gills visible and held out sideways — 5 5 Filamentous gills as shown (either fig. 12a, b or c); tails ≥ length of body — LEPTOPHLEBIIDAE LEPTOPHLEBIIDAE (3 genera) Tails as long as or longer than the body, with a few short bristles on both sides of each tail. Poor swimmers. Genera separated by shape of gills: — Several filaments fig. 12a. — Gill pairs 2-7 have two plates, each — Two strap-like filaments fig. 12c. Habrophlebia fusca tapering to a single filament fig.12b. PARALEPTOPHLEBIA (3 spp.) LEPTOPHLEBIA (2 spp.) Fig. 12a Fig. 12b Fig. 12c — Plate-like gills tails < length of body — 6 6 On posterior abdominal segments, hind corners form sharp points (fig.13a and b)– SIPHLONURIDAE or AMELETIDAE SIPHLONURIDAE (one genus Siphlonurus, 3 spp.) Tails of equal length with thick black band across centre. Tails in live specimens held apart. At least first two gills have two plates. Family AMELETIDAE (1 sp. Ameletus inopinatus). As with SIPHLONURIDAE hind corners of abdominal segments have spines but much smaller. Ameletus may be wrongly identified as Baetis (family BAETIDAE). However, Ameletus Fig. 13a, SIPHLONURIDAE Fig 13b, AMELITIDAE and Baetis are easily separated by tail length; 3 tails of equal length in Ameletus and middle tail shorter than others in Baetis. In live Ameletus tails held close together. All gills are small and simple (one-plate). Ameletus is usually found in streams at high altitudes above 1,000ft, but is also found in lochs in Scotland. — Hind corners blunt — BAETIDAE BAETIDAE (4 genera) Hind corners of last few abdominal segments not drawn out to form sharp projections (fig. 14). Genus Baetis (9 spp.) Middle tail shorter than outer ones; tails Fig. 14 never with dark rings but have a median dark band in some species (fig. 15). Gills single, rounded at the tip, and shaped like the head of a tennis racket. B. niger and B. digitatus have 6 pairs of Fig. 15 single plate-like gills. Larvae found chiefly in streams and rivers. Other genera: 3 tails of equal length and tails marked with dark rings. If gills simple, they are pointed at tip. Centroptilum luteolum: About 7 distinct dark rings on the tails but no dark band (fig. 16). Gills single and pointed at tip (beech-leaf Fig. 17 shape) fig. 17. Lakes and slow-running stretches of streams and rivers. Fig. 16 Procloeon (was Centroptilum) pennulatum: Dark band about half-way along tails and about 5 dark rings between band and body (fig. 18). First 6 gills double with one plate much larger than the other, and both plates round at tip. Slow-running water. Fig. 18 Procloeon bifidum (synonym pseudorufulum): Narrow dark band on tails and about 9 dark rings between band and body (fig.19). Gills single, hairs on tails thick and usually extend to tip (in life, tails held close together). Slow-running water. Fig. 19 Genus Cloeon (2 spp.): Broad dark band on tails and about 12 dark rings between band and body (fig. 20). First 6 gills double and rounded (C. dipterum) or pointed (C. simile) at tip. Hairs on tails not obvious and do not extend to tip (in life, tails held well apart and curve downwards at tip when seen from the side). Generally in ponds and lakes. Fig. 20.
Recommended publications
  • 1.- Heptageniidae, Ephemerellidae, Leptophlebiidae & Palingeniidae
    PRIVATE UBRARV OF WILLIAM L. PETERS Revue suisse Zool. I Tome 99 Fasc. 4 p. 835-858 I Geneve, decembre 1992 Mayflies from Israel (lnsecta; Ephemeroptera) 1.- Heptageniidae, Ephemerellidae, Leptophlebiidae & Palingeniidae * by Michel SARTORI 1 With 45 figures ABSTRACT This paper is the first part of a work dealing with the mayfly fauna of Israel. Eleven species are reported here. The most diversified family is the Heptageniidae with six species belonging to six different genera: Rhithrogena znojkoi (Tshemova), Epeorus zaitzevi Tshemova, Ecdyonurus asiaeminoris Demoulin, Electrogena galileae (Demoulin) (comb. nov.), Afronurus kugleri Demoulin and Heptagenia samochai (Demoulin) (comb. nov.). E. zaitzevi is new for the fauna of Israel. The male of H. samochai is described for the first time and the synonymy with H. lutea Kluge (syn. nov.) is proposed. Eggs of the six species are described and illustrated. Keys are provided for nymphs and adults. Ephemerellidae are represented by a single species, Ephemerella mesoleuca (Brauer). Leptophlebiid species are: Paraleptophlebia submarginata (Stephens), Choroterpes (Ch.) picteti Eaton and Choroterpes (Euthraulus) ortali nov. sp. described at all stages. New features to distinguish the nymphs of the Mediterranean Euthraulus species are provided. One species of Palingeniidae has been found in the collections of Bet Gordon Museum in Deganya: Palingenia orientalis Chopra. The female of this species is described for the first time. P. orientalis disappeared from the investigated area in the early fifties. Some geographical data are given on the distribution of the species inside and outside the investigated area, as well as some ecological observations. For instance, underwater emergence is reported for the first time in the genus Afronurus.
    [Show full text]
  • Variation in Mayfly Size at Metamorphosis As a Developmental Response to Risk of Predation
    Ecology, 82(3), 2001, pp. 740±757 q 2001 by the Ecological Society of America VARIATION IN MAYFLY SIZE AT METAMORPHOSIS AS A DEVELOPMENTAL RESPONSE TO RISK OF PREDATION BARBARA L. PECKARSKY,1,3,5 BRAD W. T AYLOR,1,3 ANGUS R. MCINTOSH,2,3 MARK A. MCPEEK,4 AND DAVID A. LYTLE1 1Department of Entomology, Cornell University, Ithaca, New York 14853 USA 2Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand 3Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado 81224 USA 4Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 USA Abstract. Animals with complex life cycles often show large variation in the size and timing of metamorphosis in response to environmental variability. If fecundity increases with body size and large individuals are more vulnerable to predation, then organisms may not be able to optimize simultaneously size and timing of metamorphosis. The goals of this study were to measure and explain large-scale spatial and temporal patterns of phe- notypic variation in size at metamorphosis of the may¯y, Baetis bicaudatus (Baetidae), from habitats with variable levels of predation risk. Within a single high-elevation watershed in western Colorado, USA, from 1994 to 1996 we measured dry masses of mature larvae of the overwintering and summer generations of Baetis at 28 site-years in streams with and without predatory ®sh (trout). We also estimated larval growth rates and development times at 16 site-years. Patterns of spatial variation in may¯y size could not be explained by resource (algae) standing stock, competitor densities, or physical±chemical variables.
    [Show full text]
  • Gill Mobility in the Baetidae (Ephemeroptera): Results of a Short Study in Africa
    GILL MOBILITY IN THE BAETIDAE (EPHEMEROPTERA): RESULTS OF A SHORT STUDY IN AFRICA MICHAEL T. GJLLIES Whitfeld, Hamsey, Lewes, Sussex, BN8 STD, England Afroptilum was the only genus of Baetidae observed with mobile gills in African streams. Other members of the Cloeon group of genera from fast-running water, including Dicentroptilum, Rhithrocloeon, Afrobaetodes, Centroptiloides and Platycloeon had rigid gills. No gill movements were observed in any species of Baetis s.l. No structural features of the gills appeard to be correlated with this behaviour. Gill movement is seen as an adaptation by Afroptilum to lower current speeds. Mobility of the gills is thought to be the plesiomorphic state. INTRODUCTION the vicinity of the research station of Amani. It lies at an altitude of 600-900 m and is fed by a number of streams draining the forested slopes of the surrounding hills. It had KLuGE et al. (1984) were the first to note that in the advantage that intermittent studies of the mayfly fauna the family Baetidae gill vibration is confined to have been made in the past so that the identity of most taxa the subfamily Cloeninae (referred to here as the could be firmly established. The availability of laboratory Cloeon-group of genera). They concluded it had facilities was also a great help. The study was limited to a tree-week period during the months of November and been lost in the subfamily Baetinae (Baetis­ December, 1993. group of genera). In a later paper, NovrKovA & The essential observations were made at the riverside. I KLUGE ( 1987) remarked that Baetis was sharply collected nymphs with a sweep net and transferred them differentiated from all members of the Cloeon­ directly from the holding pan into individual dishes for group genera in which gills are developed as a study under a portable stereomicroscope at a magnification of 20 diameters.
    [Show full text]
  • Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S Rdna Sequences: a Reply to Sun Et Al
    Utah Valley University From the SelectedWorks of T. Heath Ogden 2008 Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) are not monophyletic based on 18S rDNA sequences: A Reply to Sun et al. (2006) T. Heath Ogden, Utah Valley University Available at: https://works.bepress.com/heath_ogden/9/ LETTERS TO THE EDITOR Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S rDNA Sequences: A Response to Sun et al. (2006) 1 2 3 T. HEATH OGDEN, MICHEL SARTORI, AND MICHAEL F. WHITING Sun et al. (2006) recently published an analysis of able on GenBank October 2003. However, they chose phylogenetic relationships of the major lineages of not to include 34 other mayßy 18S rDNA sequences mayßies (Ephemeroptera). Their study used partial that were available 18 mo before submission of their 18S rDNA sequences (Ϸ583 nucleotides), which were manuscript (sequences available October 2003; their analyzed via parsimony to obtain a molecular phylo- manuscript was submitted 1 March 2005). If the au- genetic hypothesis. Their study included 23 mayßy thors had included these additional taxa, they would species, representing 20 families. They aligned the have increased their generic and familial level sam- DNA sequences via default settings in Clustal and pling to include lineages such as Leptohyphidae, Pota- reconstructed a tree by using parsimony in PAUP*. manthidae, Behningiidae, Neoephemeridae, Epheme- However, this tree was not presented in the article, rellidae, and Euthyplociidae. Additionally, there were nor have they made the topology or alignment avail- 194 sequences available (as of 1 March 2005) for other able despite multiple requests. This molecular tree molecular markers, aside from 18S, that could have was compared with previous hypotheses based on been used to investigate higher level relationships.
    [Show full text]
  • 9 a New Record of Burrowing Mayfly, Anthopotamus Neglectus Neglectus
    Ohio Biological Survey Notes 10: 9–12, 2021. © Ohio Biological Survey, Inc. A New Record of Burrowing Mayfly, Anthopotamus neglectus neglectus (Traver, 1935) (Ephemeroptera: Potamanthidae), from Ohio, USA DONALD H. DEAN1 1Departments of Entomology and Chemistry & Biochemistry, 484 W. 12th Ave., The Ohio State University, Columbus, OH USA 43214. E-mail: [email protected] Abstract: A new state record for a mayfly (Ephemeroptera) was collected on the Olentangy River, Delaware County, Ohio, USA. Anthopotamus neglectus Traver (1935) were collected as nymphs and subsequently reared to adults. Keywords: Olentangy River, Delaware County, Ohio Introduction The neglected hackle-gilled burrowing mayfly, or the golden (or yellow) drake to fly fishers, Anthopotamus neglectus was first described by Traver (1935) as Potomanthus neglectus. Bae and McCafferty (1991) reorganized the family Potomanthidae and placed the taxon in a new genus, Anthopotamus McCafferty and Bae (1990). They further divided the species into two subspecies, A. neglectus neglectus and A. neglectus disjunctus. The geographic range of the former species was originally given as a small circle centered in New York. The latter species was centered in the south-central United States. More recently, A. neglectus neglectus has been reported in eastern North America including Ontario, Alabama, Arkansas, Maryland, Missouri, Mississippi, New York, Oklahoma, Tennessee, Virginia, and West Virginia (Randolph, 2002). The online database NatureServe Explorer (2019) lists the range of A. neglectus neglectus as previously stated, with the addition of Georgia and Pennsylvania (but it includes the caveat “Distribution data for U.S. states and Canadian provinces is known to be incomplete or has not been reviewed for this taxon”).
    [Show full text]
  • “Two-Tailed” Baetidae of Ohio January 2013
    Ohio EPA Larval Key for the “two-tailed” Baetidae of Ohio January 2013 Larval Key for the “two-tailed” Baetidae of Ohio For additional keys and descriptions see: Ide (1937), Provonsha and McCafferty (1982), McCafferty and Waltz (1990), Lugo-Ortiz and McCafferty (1998), McCafferty and Waltz (1998), Wiersema (2000), McCafferty et al. (2005) and McCafferty et al. (2009). 1. Forecoxae with filamentous gill (may be very small), gills usually with dark clouding, cerci without dark band near middle, claws with a smaller second row of teeth. .............................. ............................................................................................................... Heterocloeon (H.) sp. (Two species, H. curiosum (McDunnough) and H. frivolum (McDunnough), are reported from Ohio, however, the larger hind wing pads used by Morihara and McCafferty (1979) to distinguish H. frivolum have not been verified by OEPA.) Figures from Ide, 1937. Figures from Müller-Liebenau, 1974. 1'. Forecoxae without filamentous gill, other characters variable. .............................................. 2 2. Cerci with alternating pale and dark bands down its entire length, body dorsoventrally flattened, gills with a dark clouded area, hind wing pads greatly reduced. ............................... ......................................................................................... Acentrella parvula (McDunnough) Figure from Ide, 1937. Figure from Wiersema, 2000. 2'. Cerci without alternating pale and dark bands, other characters variable. ............................
    [Show full text]
  • Notes on Italian Heptageniidae (Ephemeroptera). Rhithrogena Fiorii Grandi, 1953 and R
    Aquatic Insects, Vol. 5 (1983), No. 2, pp. 69-76. Notes on Italian Heptageniidae (Ephemeroptera). Rhithrogena fiorii Grandi, 1953 and R. adrianae sp. n. by Carlo BELFIORE (Roma) ABSTRACT Rhithrogena adrianae, a new species related to R. diaphana Nav., is described from nymphs and male imagines collected in Central Italy. Taxonomic characters of nymphs and males of R. fiorii Grandi, whose nymphal stage was previously unknown, are also described and figured. Lectotype is designated for R. fiorii. The taxonomic status of Rhithrogena fiorii Grandi, 1953, described from winged stages only, was till now very uncertain. The type locality, near Bologna, is now altered by buildings and factories: R. fiorii has probably disappeared from that site. I have examined in Grandi's collection the specimens referred by her to R. fiorii, labelled: "Bologna, S. Luca, 16.III.1952 (l >, l < subim.), 20.III.1954 (l <, l > subim, l < subim.), 20.11.1955 (1 > subim.), 17.III.1955 (l <), .IV. 1955 (l >).I designate lectotype the male imago collected on 16.III. 1952. None of the spe- cimens is in a good state of preservation. Titillators are not truncate (Grandi, 1960: fig. 21,6 and pag. 91), but with few pointed lobes at the apex. During the first months of 1980 and 1981, in the river Mignone, near Rome, I collected and reared a hundred nymphs of Rhithrogena, from which I obtained some subimagines and two male imagines, easily referable to R. fiorii. I describe herein the taxonomic features of nymphs and males of this species. I also describe the male imago and nymph of a new species of Rhithrogena which lives in the same localities as R.
    [Show full text]
  • Environmental Factors Affecting Mayfly Assemblages in Tufa-Depositing
    Knowl. Manag. Aquat. Ecosyst. 2017, 418, 14 Knowledge & © M. Vilenica et al., Published by EDP Sciences 2017 Management of Aquatic DOI: 10.1051/kmae/2017005 Ecosystems www.kmae-journal.org Journal fully supported by Onema RESEARCH PAPER Environmental factors affecting mayfly assemblages in tufa-depositing habitats of the Dinaric Karst Marina Vilenica1,*, Vlatka Mičetić Stanković2, Michel Sartori3, Mladen Kučinić4 and Zlatko Mihaljević4 1 University of Zagreb, Faculty of Teacher Education, Trg Matice hrvatske 12, 44250 Petrinja, Croatia 2 Croatian Natural History Museum, Demetrova 1, 10000 Zagreb, Croatia 3 Museum of Zoology, Place de la Riponne 6, 1005 Lausanne, Switzerland 4 University of Zagreb, Faculty of Science, Rooseveltov trg 6, 10000 Zagreb, Croatia Abstract – Remarkably, unlike other parts of Europe, the ecology of mayflies in the southeastern regions is still poorly known. Here we present the first comprehensive study of Ephemeroptera in the tufa-depositing habitats of the Dinaric Karst. The study was conducted in Plitvice Lakes National Park monthly during a one-year period (2007–2008) in different types of habitats (springs, streams, mountainous rivers, tufa barriers). The aims of the study were to determine mayfly composition, abundance, spatial distribution and habitat preferences, and to examine the environmental factors important for the structuring of mayfly assemblages in Plitvice Lakes National Park. The mayfly fauna of tufa-depositing habitats was composed of 14 species (20 taxa). Water temperature, pH and ammonium concentration were the most important environmental variables explaining mayfly assemblages. Mayfly assemblages grouped according to habitat type. Generally, the most favourable habitat type was mountainous stream, tufa barriers were less favourable, and the least favourable were springs.
    [Show full text]
  • Colonization of a Parthenogenetic Mayfly (Caenidae: Ephemeroptera) from Central Africa
    COLONIZATION OF A PARTHENOGENETIC MAYFLY (CAENIDAE: EPHEMEROPTERA) FROM CENTRAL AFRICA M.T. Gillies 1 and R.J. Knowles2 1 Lewes, E. Sussex, BN8 5TD U.K. 2 Department of Zoology, British Museum (Natural History), London, U.K. ABSTRACT A new parthenogenetic species of Caenis s.l. collected from Gabon, and maintained as a laboratory colony for 3 years in London, is formally described and notes are given on its biology in culture. INTRODUCTION DESCRIPTION In February, 1984, in the course of a survey of the Caenis knowlesi sp. nov. molluscan hosts of human schistosomiasis in Ga­ bon, Central Africa, one of us (RJK) brought Male subimago. Head and pronotum purplish some material back to London for further study. brown, antennae white, rest of thorax pale brown; The collection included the snails (Bulinus forskal­ antero-lateral margin of pronotum deeply notched ii) together with tadpoles (Leptopleis) and leaf-litter before apex to form a blunt process at the corner from the bed of a forest stream. The Bulinus were (Fig. 1); pro sternum ea 1.6 times as broad as long, set up as a laboratory colony in enamel dishes, coxae separated by a distance about equal to or while the tadpoles and detritus were put in an slightly less than width of coxa (Fig. 2). Fore fe­ aquarium tank. mur and tibia purplish brown, mid and hind legs When the aquarium was set up a few mayfly cream. Anterior wing veins purple, remainder nymphs were seen amongst the litter, and a few clear. Abdominal terga I-IX purplish brown, on days later the decomposing bodies of adults were III-VIII with a median pale interruption, IX with floating on the surface.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Ecosystem Services Provided by the Freshwater Fauna of Madagascar's
    Biodiversity International Journal Research Article Open Access Ecosystem services provided by the freshwater fauna of Madagascar’s tropical rainforest: Case of the eastern coast (Andasibe) and the highlands (Antenina) Abstract Volume 5 Issue 1 - 2021 This study contributes to relevant information on the value of biodiversity and aquatic Ranalison Oliarinony,1 Ravakiniaina ecosystems in the rainforest of Madagascar. Freshwater biodiversity provides multiple 1 2 invaluable benefits to human life through their ecosystem services. This paper is a synthesis Rambeloson, Danielle Aurore Doll Rakoto 1Zooogy and Animal Biodiversity, University of Antananarivo, of two research studies. The first study took place at Andasibe rain forest in the eastern cost of Madagascar Madagascar and the second research was in the Antenina forest which is a tropical rainforest 2Fundamental and applied biochemistry Department, University located in the Highlands, in the Vakinankaratra region. Forests streams were characterized of Antananarivo, Madagascar by the high diversity (Shannon Index: from 12 to 15). 66 taxa were identified in the eastern cost of Madagascar, and 46 taxa in the highlands area. So, freshwater fauna Predators are Correspondence: Ranalison Oliarinony, Zoology and dominant like Odonata who contribute to the control of the density and dynamics of prey Animal Biodiversity, University of Antananarivo, Antananarivo, such as malaria mosquitoes. The filter feeders purify the water in the freshwater ecosystem Madagascar, Tel +261(0)3301 466 87, while the collectors eat the organic particles in suspension. Therefore, they recover organic Email matter from erosion. Shredders and grazers feed on detritus and coarse particles. These feeding groups play important roles in the flow of matter and nutrients cycling and are Received: April 28, 2021 | Published: June 21, 2021 part of the regulating and support ecosystem services.
    [Show full text]
  • 313 the TRICORYTHIDAE of the ORIENTAL REGION Pavel Sroka1and Tomáš Soldán2 1 Biological Faculty, the University of South Bohe
    THE TRICORYTHIDAE OF THE ORIENTAL REGION Pavel Sroka1and Tomáš Soldán2 1 Biological Faculty, the University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic Abstract Based on detailed taxonomic revision of predominantly larval material of the family Tricorythidae (Ephemeroptera) so far available from the Oriental Region, a new genus, Sparsorythus gen. n., is established to include six new species: S. bifurcatus sp. n. (larva, imago male and female), S. dongnai sp. n. (larva, imago male and female), S. gracilis sp. n. (larva), S. grandis sp. n. (larva), and S. ceylonicus sp. n. (larva), and S. multilabeculatus sp. n. (imago male), respective differential diagnoses are presented. S. jacobsoni (Ulmer 1913) comb. n. is transferred from the genus Tricorythus, now supposed to cover only a part of Afrotropic species of this family. Further five species are described but left unnamed since the larval stage is still unknown. The egg stage (a single polar cap and usually hexagonal exochorionic structures) is described for the first time, relationships of Sparsorythus gen. n. to all other genera of the family and their composition are discussed with regard to classical extent of knowledge and rather confusing data in the past. Available data on biology of this new genus are summarized and its distribution with regard to historical biogeography id briefly discussed. Key words: Tricorythidae; Oriental region; Sparsorythus gen. n; new species; taxonomy; biogeography. Introduction Eaton (1868) established the genus Tricorythus on the basis of Caenis varicauda Pictet, 1843–1845 described in adult stage from the Upper Egypt.
    [Show full text]