Factors That Influence the Performance of Complex Behaviors in a Terrestrial Vertebrate: Variability in the Kangaroo Rat Evasive Leap

Total Page:16

File Type:pdf, Size:1020Kb

Factors That Influence the Performance of Complex Behaviors in a Terrestrial Vertebrate: Variability in the Kangaroo Rat Evasive Leap UC Riverside UC Riverside Electronic Theses and Dissertations Title Factors That Influence the Performance of Complex Behaviors in a Terrestrial Vertebrate: Variability in the Kangaroo Rat Evasive Leap Permalink https://escholarship.org/uc/item/1x1820q4 Author Freymiller, Grace Publication Date 2021 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE AND SAN DIEGO STATE UNIVERSITY Factors That Influence the Performance of Complex Behaviors in a Terrestrial Vertebrate: Variability in the Kangaroo Rat Evasive Leap A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Evolutionary Biology by Grace Freymiller June 2021 Dissertation Committee: Dr. Rulon Clark, Co-Chairperson Dr. Timothy Higham, Co-Chairperson Dr. Christopher Clark Dr. Marshal Hedin Copyright by Grace Freymiller 2021 The Dissertation of Grace Freymiller is approved: ________________________________________________________ ________________________________________________________ ________________________________________________________ Committee Co-Chairperson ________________________________________________________ Committee Co-Chairperson University of California, Riverside San Diego State University ACKNOWLEDGEMENTS This research would not be possible without the help of many research assistants who each helped collect data in the field, stuck through difficult working conditions, and provided great company during long field seasons: Jessica Ryan, Drew Steele, Katherine Phillips, Colin Goodman, Regina Spranger, Frank Accardo, Corrina Tapia, Timothy Garvey, Devin Murphy, Arturo Barrett, Delaney Curran, Emily Zart, Antonio Ruvalcaba, Kaleb Hill, Dayna Levine, and Sara Friemuth. I am thankful for the staff of the Chiricahua Desert Museum, the Rancho Jamul Ecological Reserve, Sweeney Granite Mountains Desert Research Center, and the CSU Desert Studies Center for logistical support during field data collection, as well as the Marine Corps Air Station, Yuma and Abigail Rosenberg for providing us with access to the Barry M. Goldwater Range. I thank my committee members and collaborators for their insight and assistance during the development and structuring of my research: Timothy Higham, Christopher Clark, Marshal Hedin, Kevin Burns, and Craig McGowan. I would like to thank Rulon Clark, who has been an incredible mentor and friend. I’m honored to have had the privilege to work with you and address so many interesting questions about such an amazing system. iv I thank Earl, Lucy, and Christina Freymiller for their encouragement and inspiration. Thank you for fostering my love of science, fascination with animals, and motivation to push myself beyond what I ever thought was possible. And of course, I would like to thank Malachi Whitford for providing endless support during all aspects of this journey—I couldn’t imagine sharing these unforgettable memories with anyone else but you. This research was funded by the National Science Foundation, the American Society of Mammalogists, the Animal Behavior Society, the American Philosophical Society, and San Diego State University. The text of this dissertation, in part, is a reprint of the material as it appears in “Recent Interactions With Snakes Enhance Escape Performance of Desert Kangaroo Rats (Rodentia: Heteromyidae)” (2017) and “Escape Dynamics of Free-Ranging Desert Kangaroo Rats (Rodentia: Heteromyidae) Evading Rattlesnake Strikes” (2019). The co- author Rulon Clark listed in these publications directed and supervised the research which forms the basis for this dissertation. The co-author Timothy Higham listed in these publications provided technical expertise and feedback on the manuscripts. The co-author Malachi Whitford listed in these publications aided in data collection/analysis and provided feedback on the manuscripts. v ABSTRACT OF THE DISSERTATION Factors That Influence the Performance of Complex Behaviors in a Terrestrial Vertebrate: Variability in the Kangaroo Rat Evasive Leap by Grace Freymiller Doctor of Philosophy, Graduate Program in Evolutionary Biology University of California, Riverside and San Diego State University, June 2021 Dr. Rulon Clark and Dr. Timothy Higham, Co-Chairpersons Physical performance inextricably ties variation in physiology, morphology, and behavior to fitness. By studying how morphology is linked to performance, and the consequences of performance ability on survival and reproduction, evolutionary biologists can understand the selection pressures driving the evolution of particular morphological characteristics. However, many studies of performance are conducted in the lab in order to control external factors, allowing for detailed analyses of a few potentially influential variables but reducing the overall ecological realism of the results. The capacity for field studies to capture natural levels of variability helps to elucidate important ecological factors that influence locomotor performance and therefore drive individual fitness. This dissertation explores the evolution of bipedalism in rodents and the factors that affect their jump performance using a field- based approach. To do this, I investigated (1) the natural jump performance of kangaroo rats (Dipodomys) by filming their escapes from rattlesnake strikes, (2) the conditions under vi which they utilize these impressive jump escapes, (3) the relationship between hindlimb morphology and jump performance, and (4) how jump performance compares between bipedal and quadrupedal rodents. From these studies, I was able to determine their natural levels of performance, the ecological contexts that place selective pressure on jump performance, how those pressures on performance have shaped the evolution of their hindlimb morphology, and whether bipedality indeed confers improved jump performance when compared to quadrupedal rodents. vii TABLE OF CONTENTS Introduction ....................................................................................................................... 1 References ....................................................................................................................... 4 Chapter 1: Escape dynamics of free-ranging desert kangaroo rats (Rodentia: Heteromyidae) evading rattlesnake strikes Abstract ........................................................................................................................... 7 Introduction ..................................................................................................................... 8 Methods ......................................................................................................................... 11 Results ........................................................................................................................... 15 Discussion ..................................................................................................................... 17 References ..................................................................................................................... 24 Figures & Tables ........................................................................................................... 28 Chapter 2: Recent interactions with snakes enhance escape performance of desert kangaroo rats (Rodentia: Heteromyidae) during simulated attacks Abstract ......................................................................................................................... 31 Introduction ................................................................................................................... 32 Methods ......................................................................................................................... 35 Results ........................................................................................................................... 43 Discussion ..................................................................................................................... 46 References ..................................................................................................................... 54 Figures and Tables ........................................................................................................ 58 viii Chapter 3: Comparative analysis of Dipodomys species indicates that kangaroo rat hindlimb anatomy is adapted for rapid evasive leaping Abstract ......................................................................................................................... 60 Introduction ................................................................................................................... 61 Methods ......................................................................................................................... 66 Results ........................................................................................................................... 71 Discussion ..................................................................................................................... 72 References ..................................................................................................................... 77 Figures and Tables ........................................................................................................ 81 Chapter 4: Springing into action: comparing jump performance between bipedal and quadrupedal rodents Abstract ........................................................................................................................
Recommended publications
  • Classification of Mammals 61
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful.
    [Show full text]
  • The Beaver's Phylogenetic Lineage Illuminated by Retroposon Reads
    www.nature.com/scientificreports OPEN The Beaver’s Phylogenetic Lineage Illuminated by Retroposon Reads Liliya Doronina1,*, Andreas Matzke1,*, Gennady Churakov1,2, Monika Stoll3, Andreas Huge3 & Jürgen Schmitz1 Received: 13 October 2016 Solving problematic phylogenetic relationships often requires high quality genome data. However, Accepted: 25 January 2017 for many organisms such data are still not available. Among rodents, the phylogenetic position of the Published: 03 March 2017 beaver has always attracted special interest. The arrangement of the beaver’s masseter (jaw-closer) muscle once suggested a strong affinity to some sciurid rodents (e.g., squirrels), placing them in the Sciuromorpha suborder. Modern molecular data, however, suggested a closer relationship of beaver to the representatives of the mouse-related clade, but significant data from virtually homoplasy- free markers (for example retroposon insertions) for the exact position of the beaver have not been available. We derived a gross genome assembly from deposited genomic Illumina paired-end reads and extracted thousands of potential phylogenetically informative retroposon markers using the new bioinformatics coordinate extractor fastCOEX, enabling us to evaluate different hypotheses for the phylogenetic position of the beaver. Comparative results provided significant support for a clear relationship between beavers (Castoridae) and kangaroo rat-related species (Geomyoidea) (p < 0.0015, six markers, no conflicting data) within a significantly supported mouse-related clade (including Myodonta, Anomaluromorpha, and Castorimorpha) (p < 0.0015, six markers, no conflicting data). Most of an organism’s phylogenetic history is fossilized in their heritable genomic material. Using data from genome sequencing projects, particularly informative regions of this material can be extracted in sufficient num- bers to resolve the deepest history of speciation.
    [Show full text]
  • Plant and Rodent Communities of Organ Pipe Cactus National Monument
    Plant and rodent communities of Organ Pipe Cactus National Monument Item Type text; Thesis-Reproduction (electronic) Authors Warren, Peter Lynd Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 16:51:51 Link to Item http://hdl.handle.net/10150/566520 PLANT AND RODENT COMMUNITIES OF ORGAN PIPE CACTUS NATIONAL.MONUMENT by Peter Lynd Warren A Thesis Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 9 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • 91 Table F-10 Golden Eagle REA Mitigation
    91 Table F-10 Golden Eagle REA Mitigation: Extrapolation of the Relative Productivity of Electric Pole Retrofitting in 2011 Over the 30 Years Associated with the Average Life Cycle of Wind Energy Projects Table F-11 Golden Eagle REA Scaling: Mitigation Owed for a 5-Year Permitted Take of 25 Golden Eagles (5 Eagles Annually) (REA Step 16) Total Debit 485.74 PV bird-years for 5 years of Golden Eagle take ÷ Relative Productivity of Electric Pole Retrofitting ÷4.20 Avoided loss of PV bird-years per retrofitted pole = Mitigation owed =115.61 Poles to be retrofitted to achieve no net loss PV=Present Value 92 APPENDIX G COMPENSATORY MITIGATION CASE STUDY7: POWER POLE RETROFITTING TO COMPENSATE FOR TAKE OF GOLDEN EAGLES To offset projected and permitted take, retrofitting of non- Avian Power Line Interaction Committee (APLIC) compliant power poles has been selected by the Service as the initial focus of compensatory mitigation projects. Raptor electrocution is a known source of eagle mortality in the United States (Franson et al. 1995, Millsap et al. 2004, APLIC 2006, Lehman et al. 2007, Lehman et al. 2010). In particular, Golden Eagles are electrocuted more than any other raptor in North America; Lehman et al. (2007) noted Golden Eagles accounted for 50 – 93% of all reported mortalities of raptor electrocutions. Eagles often come into contact with non-APLIC compliant electric transmission poles. These poles are often responsible for the high incidence of eagle mortality, especially in open habitat devoid of natural perches. Specific utility poles and line spans in need of retrofit due to known mortalities of eagles and other large raptors will be reviewed by the Service and selected for retrofit based on criteria specified below.
    [Show full text]
  • Rats, Kangaroo
    Volney W. Howard, Jr. Professor of Wildlife Science Department of Fishery and KANGAROO RATS Wildlife Sciences New Mexico State University Las Cruces, New Mexico 88003 Fig. 1. The Ord’s kangaroo rat, Dipodomys ordi Identification and Range Fumigants Damage Prevention and There are 23 species of kangaroo rats Control Methods Aluminum phosphide and gas car- (genus Dipodomys) in North America. tridges are registered for various Fourteen species occur in the lower 48 Exclusion burrowing rodents. states. The Ord’s kangaroo rat (D. ordi, Fig. 1) occurs in 17 US states, Canada, Rat-proof fences may be practical only Trapping and Mexico. Other widespread species for small areas of high-value crops. Live traps. include the Merriam kangaroo rat Cultural Methods Snap traps. (D. merriami), bannertail kangaroo rat (D. spectabilis), desert kangaroo rat Plant less palatable crops along field Other Methods (D. deserti), and Great Basin kangaroo edges and encourage dense stands rat (D. microps). of rangeland grass. Use water to flush kangaroo rats from burrows. Repellents Kangaroo rats are distinctive rodents with small forelegs; long, powerful None are registered. hind legs; long, tufted tails; and a pair Toxicants of external, fur-lined cheek pouches similar to those of pocket gophers. Zinc phosphide. They vary from pale cinnamon buff to a dark gray on the back with pure white underparts and dark markings PREVENTION AND CONTROL OF WILDLIFE DAMAGE — 1994 Cooperative Extension Division Institute of Agriculture and Natural Resources University of Nebraska - Lincoln United States Department of Agriculture Animal and Plant Health Inspection Service Animal Damage Control B-101 Great Plains Agricultural Council Wildlife Committee their burrows for storage.
    [Show full text]
  • Multiple Molecular Evidences for a Living Mammalian Fossil
    Multiple molecular evidences for a living mammalian fossil Dorothe´ e Huchon†‡, Pascale Chevret§¶, Ursula Jordanʈ, C. William Kilpatrick††, Vincent Ranwez§, Paulina D. Jenkins‡‡, Ju¨ rgen Brosiusʈ, and Ju¨ rgen Schmitz‡ʈ †Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; §Department of Paleontology, Phylogeny, and Paleobiology, Institut des Sciences de l’Evolution, cc064, Universite´Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France; ʈInstitute of Experimental Pathology, University of Mu¨nster, D-48149 Mu¨nster, Germany; ††Department of Biology, University of Vermont, Burlington, VT 05405-0086; and ‡‡Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved March 18, 2007 (received for review February 11, 2007) Laonastes aenigmamus is an enigmatic rodent first described in their classification as a diatomyid suggests that Laonastes is a 2005. Molecular and morphological data suggested that it is the living fossil and a ‘‘Lazarus taxon.’’ sole representative of a new mammalian family, the Laonastidae, The two research teams also disagreed on the taxonomic and a member of the Hystricognathi. However, the validity of this position of Laonastes. According to Jenkins et al. (2), Laonastes family is controversial because fossil-based phylogenetic analyses is either the most basal group of the hystricognaths (Fig. 2A)or suggest that Laonastes is a surviving member of the Diatomyidae, nested within the hystricognaths (Fig. 2B). According to Dawson a family considered to have been extinct for 11 million years. et al. (3), Laonastes and the other Diatomyidae are the sister According to these data, Laonastes and Diatomyidae are the sister clade of the family Ctenodactylidae (i.e., gundies), a family that clade of extant Ctenodactylidae (i.e., gundies) and do not belong does not belong to the Hystricognathi, but to which it is to the Hystricognathi.
    [Show full text]
  • Animal Health Requirements for Importation of Rodents, Hedgehogs, Gymnures and Tenrecs Into Denmark
    INTERNATIONAL TRADE DIVISION ANIMAL HEALTH REQUIREMENTS FOR IMPORTATION OF RODENTS, HEDGEHOGS, GYMNURES AND TENRECS INTO DENMARK. La 23,0-2111 These animal health requirements concern veterinary import requirements and certification re- quirements alone and shall apply without prejudice to other Danish and EU legislation. Rodents, hedgehogs, gymnures and tenrecs meaning animals of the Genera/Species listed below: Order Family Rodentia Sciuridae (Squirrels) (except Petaurista spp., Biswamoyopterus spp., Aeromys spp., Eupetaurus spp., Pteromys spp., Glaucomys spp., Eoglaucomys spp., Hylopetes spp., Petinomys spp., Aeretes spp., Trogopterus spp., Belomys, Pteromyscus spp., Petaurillus spp., Iomys spp.), Gliridae (Dormous’), Heteromyidae (Kangaroo rats, kangaroo mice and rock pocket mice), Geomyidae (Gophers), Spalaci- dae (Blind mole rats, bamboo rats, root rats, and zokors), Calomyscidae (Mouse-like hamsters), Ne- somyidae (Malagasy rats and mice, climbing mice, African rock mice, swamp mice, pouched rats, and the white-tailed rat), Cricetidae (Hamsters, voles, lemmings, and New World rats and mice), Muridae (mice and rats and gerbils), Dipodidae (jerboas, jumping mice, and birch mice), Pedetidae (Spring- hare), Ctenodactylidae (Gundis), Diatomyidae (Laotian rock rat), Petromuridae (Dassie Rat), Thryon- omyidae (Cane rats), Bathyergidae (Blesmols), Dasyproctidae (Agoutis and acouchis), Agoutidae (Pacas), Dinomyidae (Pacarana), Caviidae (Domestic guinea pig, wild cavies, mara and capybara), Octodontidae (Rock rats, degus, coruros, and viscacha rats), Ctenomyidae (Tuco-tucos), Echimyidae (Spiny rats), Myocastoridae (Coypu ), Capromyidae (Hutias), Chinchillidae (Chinchillas and visca- chas), Abrocomidae (Chinchilla rats). Erinaceomorpha Erinaceidae (Hedgehogs and gymnures) Afrosoricida Tenrecidae (Tenrecs) The importation of rodents, hedgehogs, gymnures and tenrecs to Denmark (excluding import to ap- proved bodies, institutes and centres as defined in Art. 2, 1, (c) of Directive 92/65/EEC) must comply with the requirements of Danish order no.
    [Show full text]
  • Nocturnal Rodents
    Nocturnal Rodents Peter Holm Objectives (Chaetodipus spp. and Perognathus spp.) and The monitoring protocol handbook (Petryszyn kangaroo rats (Dipodomys spp.) belong to the 1995) states: “to document general trends in family Heteromyidae (heteromyids), while the nocturnal rodent population size on an annual white-throated woodrats (Neotoma albigula), basis across a representative sample of habitat Arizona cotton rat (Sigmodon arizonae), cactus types present in the monument”. mouse (Peromyscus eremicus), and grasshopper mouse (Onychomys torridus), belong to the family Introduction Muridae. Sigmodon arizonae, a native riparian Nocturnal rodents constitute the prey base for species relatively new to OPCNM, has been many snakes, owls, and carnivorous mammals. recorded at the Dos Lomitas and Salsola EMP All nocturnal rodents, except for the grasshopper sites, adjacent to Mexican agricultural fields. mouse, are primary consumers. Whereas Botta’s pocket gopher (Thomomys bottae) is the heteromyids constitute an important guild lone representative of the family Geomyidae. See of granivores, murids feed primarily on fruit Petryszyn and Russ (1996), Hoffmeister (1986), and foliage. Rodents are also responsible for Petterson (1999), Rosen (2000), and references considerable excavation and mixing of soil layers therein, for a thorough review. (bioturbation), “predation” on plants and seeds, as well as the dispersal and caching of plant seeds. As part of the Sensitive Ecosystems Project, Petryszyn and Russ (1996) conducted a baseline Rodents are common in all monument habitats, study originally titled, Special Status Mammals are easily captured and identified, have small of Organ Pipe Cactus National Monument. They home ranges, have high fecundity, and respond surveyed for nocturnal rodents and other quickly to changes in primary productivity and mammals in various habitats throughout the disturbance (Petryszyn 1995, Petryszyn and Russ monument and found that murids dominated 1996, Petterson 1999).
    [Show full text]
  • Over 40% of All Mammal Species in the Next 2 Labs
    Rodents Class Rodentia 5 (depends) Suborders 33 (maybe more) Families about 481 genera, 2277+ species Over 40% of all mammal species in the next 2 labs Sciuromorpha: squirrels, dormice, mountain beaver, and relatives Castorimorpha: beavers, gophers, kangaroo rats, pocket mice, and relatives Myomorpha: mice, rats, gerbils, jerboas, and relatives Anomaluromorpha: scaly-tailed squirrels and springhares Hystricomorpha: hystricognath rodents...lots of South American and African species, mostly Because rodents are such a Why rodents are evil... diverse and speciose group, their higher-level taxonomy keeps being revised. Hard to keep up! In recent decades, there have been 2, 3, 4 or 5 Suborders, depending on the revision, and Families keep getting pooled and split. We’ll just focus on some of the important Families and leave their relationships to future generations. They are a diverse and Why rodents are fun... speciose group, occur in just about every kind of habitat and climate, and show the broadest ecological diversity of any group of mammals. There are terrestrial, arboreal, scansorial, subterranean, and semiaquatic rodents. There are solitary, pair-forming, and social rodents. There are plantigrade, cursorial, You could spend your whole fossorial, bipedal, swimming life studying this group! and gliding rodents. (Some do.) General characteristics of rodents •Specialized ever-growing, self-sharpening incisors (2 upper, 2 lower) separated from cheek teeth by diastema; no canines •Cheek teeth may be ever-growing or rooted, but show a variety of cusp patterns, often with complex loops and folds of enamel and dentine reflecting the diet; cusp patterns also often useful taxonomically •Mostly small, average range of body size is 20-100 g, but some can get pretty large (capybara is largest extant species, may reach 50 kg) •Mostly herbivorous (including some specialized as folivores and granivores) or omnivorous •Females with duplex uterus, baculum present in males •Worldwide distribution, wide range of habitats and ecologies And now, on to a few Families..
    [Show full text]
  • Microhabitat Use and Population Decline in Banner-Tailed Kangaroo Rats
    Journal of Mammalogy, 84(3):1031±1043, 2003 MICROHABITAT USE AND POPULATION DECLINE IN BANNER-TAILED KANGAROO RATS PETER M. WASER* AND JAMES M. AYERS Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA Numbers of banner-tailed kangaroo rats, Dipodomys spectabilis, have declined sharply in Downloaded from https://academic.oup.com/jmammal/article/84/3/1031/903815 by guest on 24 September 2021 some but not all populations monitored in southeastern Arizona over the past 20 years. We describe concurrent changes in vegetation and report the results of microhabitat manipu- lation experiments in which we removed broom snakeweed, Gutierrezia sarothrae, from 1.00-ha (pilot) or 0.56-ha (replicate follow-up) plots. D. spectabilis became extinct on control plots, but populations remained stable on plots where snakeweed was removed. On a larger scale, declines in numbers of kangaroo rats coincided with increases in density of woody plants. The data substantiate the preferences of this species for structurally open microhabitats and document that survival rates are higher in areas that are more open. Large kangaroo rat species like D. spectabilis are often regarded as keystone species, and our results indicate that they are vulnerable to grassland degradation. Key words: desert scrub, Dipodomys spectabilis, grassland, heteromyids, kangaroo rats, keystone species, microhabitat use, population dynamics, snakeweed Kangaroo rats (Dipodomys spp.) exert and the banner-tailed kangaroo rat, D. spec- strong in¯uences on other members of their tabilis. community. As competitors, they exert po- The large size of banner-tailed kangaroo tent negative effects on sympatric grani- rats makes them effective interference com- vores (Bowers 1986; Brown et al.
    [Show full text]
  • Postcranial Morphology and Springing Adaptations in Pedetidae from Arrisdrift, Middle Miocene (Namibia)
    Palaeont. afr., 34, 101 -109 (1997) POSTCRANIAL MORPHOLOGY AND SPRINGING ADAPTATIONS IN PEDETIDAE FROM ARRISDRIFT, MIDDLE MIOCENE (NAMIBIA). by Brigitte Senut Laboratoire de Paleontologie du Museum national d' Histoire naturelle; URA 12 CNRS; 8 rue Bu.ffon, 75005 Paris, France ABSTRACT Arrisdrift, an early MiddJe Miocene site in the Proto-Orange river deposits of Namibia, was excavated in the mid 1970s by Corvinus and since 1993 by the Namibia Palaeontology Expedition. These excavations resulted in the discovery of several postcranial elements of springhares. Generally, these appear to have been smaller than those of modem Pedetes capensis or P. surdasrer, but more robust that those of the extant taxa. The Arri sdrift pedetid was larger than the lower Miocene Namibian species, Parapedetes namaquensis; must smaller and less robust than the lower M iocene East African species, Megapedetes pentadactylus; but larger than Pedetes laeroliensis from the Pliocene site ofLaeto li (Tanzania). The limb proportions, morphology of the proximal femur, distal tibia, astragalus and the calcaneum suggest that the pedetid from Arrisdrift was saltatorial, but to a lesser degree than modern springhares. lt exhibits features probably related to locomotor behaviour which are different from Parapedetes, Megapedetes and Pedetes suggest that they may represent a different genus in accordance with results of research on the cranio-dental remains (Mein & Senut, in prep.) KEYWORDS: Pedetidae, Middle Miocene, Namibia, post-cranial anatomy, Arrisdrift. INTRODUCTION Mein et at. in press) led to the discovery of other The earliest representatives of the family Pedetidae pedetids which are still under study. have been found in the early Miocene of East Africa in Miocene Pedetidae have been known in Nambia Kenya (Songhor, Rusinga) and in Uganda (Napak) with since 1926 when Stromer published the first remains, Megapedetes p entadacty lus (M acinnes 1957; Parapedetes namaquensis, from the early Miocene site, Macinnes in Bishop 1962; Lavocat 1973) and a smaller Elizabethfeld.
    [Show full text]
  • Comparative Anatomy: Circulatory Systems in Vertebrates
    Comparative Anatomy: Circulatory Systems in Vertebrates WARM-UP: 1. WHAT ARE THE FUNCTIONS OF THE CIRCULATORY SYSTEM? 2. HOW DOES THE CIRCULATORY SYSTEM DEPEND ON THE RESPIRATORY SYSTEM? 3. DO YOU THINK ENDOTHERMS OR ECTOTHERMS NEED MORE EFFICIENT CIRCULATORY SYSTEMS? JUSTIFY YOUR ANSWER. Structures and Functions of the Circulatory System Functions Transports nutrients, oxygen, waste, hormones, and cells throughout the body. Helps stabilize body temperature Maintains the pH inside the body Structures and Functions of the Circulatory System Functions Transports nutrients, oxygen, waste, hormones, and cells throughout the body. Helps stabilize body temperature Maintains the pH inside the body Structures Heart Blood Blood vessels: Veins, Arteries and Capillaries Class Osteichthyes Internal Transport Closed circulatory system-blood is contained within blood vessels such as veins, arteries, and capillaries Two-chambered heart (atrium, ventricle) Class Amphibia: Internal Transport Adults: Three chambered heart Improved heart to deliver more oxygen to walking muscles. Tadpoles have a two-chambered heart Class Reptilia: Internal Transport Can be argued that they have a three or four chamber heart (both are correct) Crocodiles have a four chambered heart. All others have a partially devided ventricle Class Aves: Internal Transport Four-chambered heart Quick Questions #2 Class Mammalia: Internal Transport 4-chambered heart Quick Question #3 UNIT 10 NERVOUS SYSTEM AND SENSE ORGANS Structure 10.1 Introduction Objectives 10.2 Nervous Tissue in Vertebrates 10.3 Central Nervous System Cavities of the Brain and Spinal Cord The Spinal Cord The Brain 10.4 Peripheral Nervous System Splnal Nerves Cranial Nerves Autonomic Nerves 10.5 Brain -A Comparative Account Jawless Vertebrates Jawed Vertebrates 10.6 Sense Organs The Eye The Ear Olfactory Organs 10.7 Specialised Sensory Organs Lateral Line System in Fishes Pit Organs in Snakes Echolocation in Bats 10.8 Summary 10.9 Terminal Questions 10.10 Answers 10.
    [Show full text]