Obituary of the Metropolitan Railway, Factories, and Workshops

Total Page:16

File Type:pdf, Size:1020Kb

Obituary of the Metropolitan Railway, Factories, and Workshops MAliC,ff'2lj.-I'll 11936 JOHN SCOTT HALDANE, C.H., M.lT, F.R.S. I!KD1CAL JOIIRNAL 67- which inquired into these matters and into the ventilation Obituary of the Metropolitan Railway, factories, and workshops. Br Med J: first published as 10.1136/bmj.1.3924.617 on 21 March 1936. Downloaded from He served on the Royal Commissions of 1906 and 1911 on coal mines and metalliferous mines, and was made a J. S. HALDANE, C.H., M.D., F.R.S. member of the Safety in Mines Research Board. In 1921 Honorary Professor, University of Birmingham the Doncastar coal-owners' research laboratory was trans- By the death of Professor Haldane, which took place at his ferred to Birmingham University, and Haldane was soon home in Oxford at midnight, March 14th-15th, medicine, made an honorary professor in that university. There he no less than physiology, has lost a man of genius and directed a large number of researches into such problems as one of the most outstanding personalities of the time. the ventilation of mines, the causes of spontaneous heating John Scott Haldane, son of Robert Haldane of Cloan, of coal and underground fires, mine rescue apparatus, the Auchterarder, Perthshire, and Mary, daughter of Richard effects of high temperatures on miners and the physiology Burdon Sanderson, was born in Edinburgh on May 2nd, of sweat production, the effects of stone dust and silicosis, 1860. He was brother to the late Lord Haldane, Sir and the causes of miners' nystagmus. He was indefatig- W. S. Haldane, W.S., and Miss Elizabeth Haldane, C.H. able in his efforts to reduce the risks to health to which He was educated at Edinburgh Academy, Edinburgh miners are exposed, and he spared neither time nor University, and the Univer- trouble where the miner's sity of Jena. From the bcgin- welfare was concerned. ning of his scientific work In 1905 he began for the he was specially interested in Admiralty an investigation of the physiology of respiration, the causes of the difficulties and having graduated in medV- and dangers encountered by cine at Edinburgh in 1884 :7:--- 1 l _l divers. He first showed that he became demonstrator at the limitation of the diver's University College, Dundee, capacity to do muscular work under Professor Carnelley, under water was due to the with whom he carried out high pressure of CO, present a thorough investigation of in the helmet, owing to the impurities of the air. Shortly inadequacy of the air pumps after the publication of this then in use. He then turned work in 1887 he became ..... to the more serious problem demonstrator in physiological of caisson disease, or divers' chemistry at Oxford under his paralysis. He noticed that uncle, Sir John Burdon Sander- symptoms never occurred un- son, and remained at Oxford less the man who had been for the rest of his life. The subjected to compressed air very important scientific work was decompressed rapidly to he did at Oxford was concerned normal atmospheric pressure with problems of two different, from a pressure which was at http://www.bmj.com/ but closely related, types- least one atmosphere in excess industrial hygiene and pure of the normal. It had been physiology. He soon took up recognized by Paul Bert that the study of impurities in the the cause of caisson disease air of mines and their effects was simple-namely, liberation on men. .In this he made of bubbles of nitrogen in the clear for the first time- the - body during decompression. true physiological action- of Haldane set to work to devise on 29 September 2021 by guest. Protected copyright. carbon monoxide, devised 'aa a method of decompression most valuable test for small H which should be safe and also but dangerous amounts of it, economical of time. In an and laid the foundation of an / extensive experimental investi- association with the mining gation, which he carried out industry which lasted throughout his life. The importance with Dr. Boycott and Lieutenant Damant, R.N., he proved of this work received recognition when he was made that the method of very slow decompression previously director of the Doncaster coal-owners' research labora- enjoined was in some respects actually harmful, and that it tory in 1912 and was elected president of the Institute was far safer, as well as quicker, to start decompression of Mining Engineers in 1924. He was called upon by the by halving the absolute pressure. On this basis he worked Home Office in 1896 to investigate the cause of death out the system of " stage decompression " which is now in three colliery explosions. His report was translated universally used and which has made it possible to carry into several languages, and was the foundation of the out successfully salvage operations at great depths. He measures which are now generally adopted in dealing with worked out tables giving the times during which a diver the dangers consequent on explosions and fires in mines. might stay at different depths and the times for each stage From that time on Haldane continued to do most of the ascent. Returning to this problem in 1935 he valuable work in connexion with the hygiene of mining| extended the decompression tables for still greater depths. and industry in general. He investigated the anaemia of Hc also gave the Admiralty valuable help with regard to Cornish miners and the incidence of ankylostomiasis, and the ventilation of battleships and the purification of the also became keenly interested in miners' phthisis. In 1905 air in submarines. he carried out an important investigation on regulation of Haldane did important work for the Army, and served body temperature in hot surroundings, and demonstratedl as a member of a committee appointed to inquire into the importance of the wet-bulb temperature as a limiting the physiological needs of the soldier as regards food, factor to man's power of adjustment to such conditions. clothing, and training. The upshot was a radical change He served on a number of Departmental Committees- in the scale of rations for active service, which un- - , .,.Miita 2s,toss yokx HALDANF,,'C.HMI.D, P-- 618 Mac 2 '3O{ CT ADN- J. .. -j,F.RA-. 618~~~~~~~~~~~~~~ doubtedly had an important effect in reducing sickness kidneys and the regulation of the water content of the a on colour and contrast. among the troops during the war. When the Germans body, and published paper visicn Br Med J: first published as 10.1136/bmj.1.3924.617 on 21 March 1936. Downloaded from began to use chlorine as a poison gas Haldane was called In 1912 he published Methods of Air Analysis, in which upon to advise, and at once went out to the front. There he described fully the apparatus which he designed and he quickly verified the gas used and the nature of its which has greatly simplified the accurate analysis of gases. effects. He returned to England and, recognizing the In conjunction with Dr. Ivon Graham, deputy director need for the immediate provision of protection for the of the Coal Owners' Research Laboratory, he published troops, did all he could to speed up the production of an the fourth edition in 1935. The Silliman Lectures, which effective emergency respirator. He realized clearly that Haldane had been invited to deliver at Yale University only respirators of the box type could afford satisfactory in 1915, had to be postponed till 1916, owing to the war. protection, and that it must necessarily take some time He published a short summary in 1917 under the title of to design and supply them. Such respirators were, of Organism and Environment as Illustrated by the Physio- course, adopted later; but Haldane, though his wide logy of the Breathing," but the lectures could not be knowledge of respiration and of the effects of toxic gases published in full till 1922. They then appeared in a would have been invaluable, was not invited to join the volume entitled Respiration. In this Haldane gave a full committee which was appointed to deal with the whole account of his work on the pure physiology of respiration, question of poison gas warfare. Nevertheless he did and discussed many of his investigations in appli2d valuable work on the pathology and treatment of gas physiology. A new edition of this book, in rewriting poisoning, and drew attention to the importance in many which one of his old pupils (Dr. J. G. Priestley) had cases of oxygen administration, for which he designed an the privilege of helping him, was published in 1935. efficient and portable apparatus which has also proved From his earliest days Haldane was deeply interested its worth in civil medical practice. He was one of the in philosophy, and many of his writings were devoted to gas referees under the Board of Trade for many years, and the enunciation of philosophical arguments, on which he took a keen interest in their work. based the whole of his scientific work. Even as a medical Haldane did not, however, confine himself to problems student he found that the teaching of physiology was in applied physiology, but did an immense amount of work unsatisfactory, in that it was not founded on wide philo- on general problems of phvsiology, especially respiration. sophical conceptions, and his dissatisfaction caused him In his earlier work in this field he devised and introduced to think deeply about the fundamental principles under- many new methods for investigating the respiratory func- lying physiological phenomena, only insight into which, tions, including respiratory exchange, the determination he believed, would make these phenomena intelligible.
Recommended publications
  • History of Hyperbaric Medicine ROBERT S
    American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida How Did We Get From Here History of Hyperbaric Medicine ROBERT S. MICHAELSON, DO, MPH MARCH 14, 2015 To Here 3 History of Hyperbaric Medicine Discuss history of diving Discovery of the atmosphere Five major milestones in the development of hyperbaric medicine Triger’s caisson Eads and Brooklyn Bridge Haldane and staged decompression Rescue of the USS Squalus Donnell and Norton 5 Gourd Breathing About 375 AD Diving as a Profession Salvage Operations From as early as 9th century BC Pay scale based on depth of dive Military Operations Early attempts to bore into hull of ships or attach crude explosives to vessels Confined to shallow waters and for short duration dives Very Hard to be Stealthy and Effective T-1 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida DivingHood by Flavius Vegetius Renatus about 375 AD in Leonardo’s (1452-1519) Design For Swim Fins Epitome Institutionum Rei Militaris Diving Rig of Niccolo Tartaglia Canon Recovery Mid-1600’s about 1551 Probably First Diving Bell Mid-1600’s T-2 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida T-3 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida Diving as a Profession Salvage Operations From as early as 9th century BC Pay scale based on depth on dive Military Operations Early attempts to bore into hull of ships or attach crude explosives to vessels Confined to shallow waters and for short duration dives Very Hard to be Stealthy and Effective Diving Bell-1664 Klingert’s Diving Suit -1797 The Vasa, a Swedish ship sunk within a This equipment is the first to be called mile of her maidenvoyage in 1628.
    [Show full text]
  • Nitrox CONFIRME
    Formation théorique NITROX Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Sommaire de la formation • Rappels • La réglementation • La crise Hyperoxique l’effet Paul Bert l’effet Lorrain Smith • La table NOAA • Le compteur SNC • Les UPDT ou OTU • Les autres effets physiologiques La syncope Hypoxique Effet vasoconstricteur de l’O2 • La fabrication des mélanges Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Composition de l’air L'air sec au voisinage du sol est approximativement composé de: • 78,08 % d’azote, • 20,95 % d’oxygène, • moins de 1 % d'autres gaz dont : • argon 0,93%, • néon 0,0018%, • krypton 0,00011%, • xénon 0,00009% • dioxyde de carbone 0,033 %. Il contient aussi des traces d'hydrogène 0,000072%, mais aussi d'ozone et de radon. Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Composition de l’air Nous considérons que la composition de l’air est la suivante : - Oxygène (O²) 21 % - Azote (N²) 79 % Convention d’appellation Par convention, on désigne ce mélange en citant en premier sa teneur en O² puis sa teneur en N², on obtient une indication du type : O²/N² ou XX / YY . un mélange définit comme suit : 40/60 Désigne un NITROX contenant 40 % d’O² et 60 % de N² Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Limites et contraintes Liés à l’augmentation de la pression partielle d’oxygène (PpO²) - Limitation de la profondeur maximum par rapport à l’air( PpO²max = 1,6b .) - Limitation variable de la profondeur en fonction du mélange respiré - Risque d’accident hyperoxique si les profondeurs planchées ou la durée d’utilisation sont dépassés, - Manipulation plus contraignante et plus dangereuse, - Nécessite un matériel spécifique ( compresseur, équipement spécifique si Nitrox > 40/60) - Planification des plongées obligatoires et plus complexes - Prix de revient plus élevé que l’air.
    [Show full text]
  • Hyperbaric Physiology the Rouse Story Arrival at Recompression
    Hyperbaric Physiology The Rouse Story • Oct 12, 1992, off the New Jersey coast • father/son team of experienced divers • explore submarine wreck in 230 ft (70 m) • breathing compressed air • trapped in wreck & escaped with no time for decompression Chris and Chrissy Rouse Arrival at recompression Recompression efforts facility • Both divers directly ascend to dive boat • Recompression starts about 3 hrs after • Helicopter arrives at boat in 1 hr 27 min ascent • Bronx Municipal Hospital recompression facility – put on pure O2 and compressed to 60 ft – Chris (39 yrs) pronounced dead • extreme pain as circulation returned – compressed to 165 ft, then over 5.5 hrs – Chrissy (22 yrs) gradually ascended back to 30 ft., lost • coherent and talking consciousness • paralysis from chest down • no pain – back to 60 ft. Heart failure and death • blood sample contained foam • autopsy revealed that the heart contained only foam Medical Debriefing Gas Laws • Boyle’s Law • Doctors conclusions regarding their – P1V1 = P2V2 treatment • Dalton’s Law – nothing short of recompression to extreme – total pressure is the sum of the partial pressures depths - 300 to 400 ft • Henry’s Law – saturation treatment lasting several days – the amt of gas dissolved in liquid at any temp is – complete blood transfusion proportional to it’s partial pressure and solubility – deep helium recompression 1 Scuba tank ~ 64 cf of air Gas problems during diving Henry, 1 ATM=33 ft gas (10 m) dissovled = gas Pp & tissue • Rapture of the deep (Nitrogen narcosis) solubility • Oxygen
    [Show full text]
  • Scuba Diving History
    Scuba diving history Scuba history from a diving bell developed by Guglielmo de Loreno in 1535 up to John Bennett’s dive in the Philippines to amazing 308 meter in 2001 and much more… Humans have been diving since man was required to collect food from the sea. The need for air and protection under water was obvious. Let us find out how mankind conquered the sea in the quest to discover the beauty of the under water world. 1535 – A diving bell was developed by Guglielmo de Loreno. 1650 – Guericke developed the first air pump. 1667 – Robert Boyle observes the decompression sickness or “the bends”. After decompression of a snake he noticed gas bubbles in the eyes of a snake. 1691 – Another diving bell a weighted barrels, connected with an air pipe to the surface, was patented by Edmund Halley. 1715 – John Lethbridge built an underwater cylinder that was supplied via an air pipe from the surface with compressed air. To prevent the water from entering the cylinder, greased leather connections were integrated at the cylinder for the operators arms. 1776 – The first submarine was used for a military attack. 1826 – Charles Anthony and John Deane patented a helmet for fire fighters. This helmet was used for diving too. This first version was not fitted to the diving suit. The helmet was attached to the body of the diver with straps and air was supplied from the surfa 1837 – Augustus Siebe sealed the diving helmet of the Deane brothers’ to a watertight diving suit and became the standard for many dive expeditions.
    [Show full text]
  • Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC
    Environmental Extremes: Alternobaric Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC RICHARD A. SCHEURING, DO, MS*; WILLIAM RAINEY JOHNSON, MD†; GEOFFREY E. CIARLONE, PhD‡; DAVID KEYSER, PhD§; NAILI CHEN, DO, MPH, MASc¥; and FRANCIS G. O’CONNOR, MD, MPH¶ INTRODUCTION DEFINITIONS MILITARY HISTORY AND EPIDEMIOLOGY Altitude Aviation Undersea Operations MILITARY APPLIED PHYSIOLOGY Altitude Aviation Undersea Operations HUMAN PERFORMANCE OPTIMIZATION STRATEGIES FOR EXTREME ENVIRONMENTS Altitude Aviation Undersea Operations ONLINE RESOURCES FOR ALTERNOBARIC ENVIRONMENTS SUMMARY *Colonel, Medical Corps, US Army Reserve; Associate Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sci- ences, Bethesda, Maryland †Lieutenant, Medical Corps, US Navy; Undersea Medical Officer, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland ‡Lieutenant, Medical Service Corps, US Navy; Research Physiologist, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland §Program Director, Traumatic Injury Research Program; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¥Colonel, Medical Corps, US Air Force; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¶Colonel (Retired), Medical Corps, US Army; Professor and former Department Chair, Military and Emergency Medicine, Uniformed Services University of the Health Sciences,
    [Show full text]
  • Medical News. Regulations for the M.B
    605 interested in the welfare of Epsom College, which he did so Smith, M.B. Liverp., Liverpool University; Frank Harold much to Stephens, St. Mary’s Hospital; Hugh Stott, Guy’s Hospital; Gilbert promote. Francis Syms, Guy’s Hospital; Wilfrid Reginald Taylor, St. Mary’s Dr. Galton leaves a widow and five daughters. The funeral Hospital; Ernest William Toulmin, St. Mary’s Hospital; took place at Shirley cemetery on Feb. llth. The ceremony Nusserwanji Hormasji Vakeel, Bombay University and St. Bar- attended old friends and and tholomew’s Hospital; Cuthbert Ferguson Walker, B.A., Royal was largely by patients many University of Ireland. Galway, Belfast, and St. Mary’s Hospital; medical men from London and his neighbourhood, amongst Alan Geoffrpy Wells, St. Mary’s Hospital; Ernest Godfrey Wheat, those present being Mr. Edmund Owen, Mr. Frederic Cambridge University and King’s College Hospital; James Norman Durham, Dr. Henry Hetley, Mr. J. B. Lamb (secretary of Wheeler, B.A. Cantab., Cambridge University and St. Thomas’s Mr. and Hospital; Edward Barton Cartwright White, London Hospital ; Epsom College), G. C. Parnell, Mr. J. Sidney Turner, William Cecil Wigan, Oxford University and St. Bartholomew’s Mr. E. Oswald Oxford Williams, St. Bartholomew’s Hos- Reynolds Ray. - Hospital; Cyril pital ; Rajaiya Robert Williams, L.R.C.P. & S. Edin., Edinburgh, Madras, and University College Hospital; John Samuel Williamson, DEATHS OF EMINENT FOREIGN MEDICAL MEN.-The deaths St. Bartholomew’s Hospital; and William Louis Rene Wood, L.S.A. of the following eminent foreign medical men are announced : Leeds University. - Dr. Martin Bloch, formerly assistant to the late Professor Diplomas of M.R.C.S.
    [Show full text]
  • Adm Issue 10 Finnished
    4x4x4x4 Four times a year Four times the copy Four times the quality Four times the dive experience Advanced Diver Magazine might just be a quarterly magazine, printing four issues a year. Still, compared to all other U.S. monthly dive maga- zines, Advanced Diver provides four times the copy, four times the quality and four times the dive experience. The staff and contribu- tors at ADM are all about diving, diving more than should be legally allowed. We are constantly out in the field "doing it," exploring, photographing and gathering the latest information about what we love to do. In this issue, you might notice that ADM is once again expanding by 16 pages to bring you, our readers, even more information and contin- ued high-quality photography. Our goal is to be the best dive magazine in the history of diving! I think we are on the right track. Tell us what you think and read about what others have to say in the new "letters to bubba" section found on page 17. Curt Bowen Publisher Issue 10 • • Pg 3 Advanced Diver Magazine, Inc. © 2001, All Rights Reserved Editor & Publisher Curt Bowen General Manager Linda Bowen Staff Writers / Photographers Jeff Barris • Jon Bojar Brett Hemphill • Tom Isgar Leroy McNeal • Bill Mercadante John Rawlings • Jim Rozzi Deco-Modeling Dr. Bruce Wienke Text Editor Heidi Spencer Assistants Rusty Farst • Tim O’Leary • David Rhea Jason Richards • Joe Rojas • Wes Skiles Contributors (alphabetical listing) Mike Ball•Philip Beckner•Vern Benke Dan Block•Bart Bjorkman•Jack & Karen Bowen Steve Cantu•Rich & Doris Chupak•Bob Halstead Jitka Hyniova•Steve Keene•Dan Malone Tim Morgan•Jeff Parnell•Duncan Price Jakub Rehacek•Adam Rose•Carl Saieva Susan Sharples•Charley Tulip•David Walker Guy Wittig•Mark Zurl Advanced Diver Magazine is published quarterly in Bradenton, Florida.
    [Show full text]
  • A Primer for Technical Diving Decompression Theory
    SCUBA AA PPRRIIMMEERR FFOORR TECH TTEECCHHNNIICCAALL DDIIVVIINNGG DDEECCOOMMPPRREESSSSIIOONN PHILIPPINES TTHHEEOORRYY 1 | P a g e ©Andy Davis 2015 www.scubatechphilippines.com Sidemount, Technical & Wreck Guide | Andy Davis First Published 2016 All documents compiled in this publication are open-source and freely available on the internet. Copyright Is applicable to the named authors stated within the document. Cover and logo images are copyright to ScubaTechPhilippines/Andy Davis. Not for resale. This publication is not intended to be used as a substitute for appropriate dive training. Diving is a dangerous sport and proper training should only be conducted under the safe supervision of an appropriate, active, diving instructor until you are fully qualified, and then, only in conditions and circumstances which are as good or better than the conditions in which you were trained. Technical scuba diving should be taught by a specialized instructor with training credentials and experience at that level of diving. Careful risk assessment, continuing education and skill practice may reduce your likelihood of an accident, but are in no means a guarantee of complete safety. This publication assumes a basic understanding of diving skills and knowledge. It should be used to complement the undertaking of prerequisite training on the route to enrolling upon technical diving training. 2 | P a g e ©Andy Davis 2015 www.scubatechphilippines.com This primer on decompression theory is designed as a supplement to your technical diving training. Becoming familiar with the concepts and terms outlined in this document will enable you to get the most out of your theory training with me; and subsequently enjoy safer, more refined dive planning and management in your technical diving activities.
    [Show full text]
  • The Changing Face of Emergency Oxygen Therapy Carol Ann Kelly1* and Dave Lynes2
    Kelly and Lynes. Int J Crit Care Emerg Med 2015, 1:1 ISSN: 2474-3674 International Journal of Critical Care and Emergency Medicine Review Article: Open Access To Give or Not To Give – Is that the Question?: The Changing Face of Emergency Oxygen Therapy Carol Ann Kelly1* and Dave Lynes2 1Postgraduate Medical Institute, Faculty of Health and Social Care, Edge Hill University, UK 2Faculty of Health & Social Care, Edge Hill University, UK *Corresponding author: Carol Ann Kelly, Postgraduate Medical Institute, Faculty of Health and Social Care, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4QP, UK, Tel: 0044-1695-657090, E-mail: [email protected] Abstract Historical Context and Contemporary Issues Oxygen’s image, together with its reputation, is changing. No longer It is interesting to note that caution regarding the use of oxygen is it regarded as a benign panacea for all clinical presentations; therapy isn’t new; indeed it has been surrounded by contradiction indeed it is now increasingly evident that oxygen has the potential and controversy since its discovery in the late 18th century. The first to contribute to clinical deterioration and mortality. reference to the potential detrimental effects of too much oxygen was There is an emerging recognition that oxygen is a drug when made by Joseph Priestly himself in 1774 [2], who warned that in the administered as a therapeutic intervention and should be used presence of oxygen that: with caution. Contemporary guidelines offer criteria and directives for administration and prescription of oxygen, dependant on the “as a candle burns out much faster in [oxygen] than in common patient’s condition, acuity and care setting, yet clinical audit and air, so we might, as may be said, live out too fast ..
    [Show full text]
  • Effects on Health of Prolonged Exposure to Low Concentrations of Carbon Monoxide C L Townsend, R L Maynard
    708 Occup Environ Med: first published as 10.1136/oem.59.10.708 on 1 October 2002. Downloaded from SHORT REPORT Effects on health of prolonged exposure to low concentrations of carbon monoxide C L Townsend, R L Maynard ............................................................................................................................. Occup Environ Med 2002;59:708–711 he effects on health of prolonged but low level exposure to exposures to CO have tended to be of short duration: up to carbon monoxide (CO) are unclear. Studies of carbon mon- several hours. Toxide exposure focus mainly on short term effects in More recently it has been suggested that prolonged experimental settings, or on long term effects in cases of exposure (days-months) to low concentrations of CO may accidental poisoning. Exposures in long term case studies are have subtle effects on the brain. If true, this is clearly worrying often of unknown levels and duration. Patients are sometimes as such exposure may well occur as a result of malfunctioning exposed to short periods of acute intoxication, in addition to the heating devices in people’s homes. Daily exposure, leading to low level, chronic exposure; thus the difficulty in determining symptoms including headache and malaise are often reported which type of exposure is responsible for any subsequent health with periods of recovery to normality occurring when problems. Anecdotal evidence suggests that chronic exposure to exposure stops. Thus recovery during the working day with a CO may produce mild neurological effects. Although there are recurrence of symptoms during the evening, or recovery dur- as yet no conclusive studies showing such a correlation, the evi- ing a holiday with deterioration on return, has been dence in its favour is accumulating.
    [Show full text]
  • April 2009 429 Association News
    President’s Page Dear Colleagues and Friends; Some of you may wonder whether or not AsMA has any impact on the Aeromedical community as a whole; whether there is anything more to our organiza- tion than our annual meeting, networking, and our monthly journal. I can tell you that due to the efforts of so many of you who serve on committees, working groups, and in a host of leadership roles, AsMA contin- ues to be recognized as the voice of international aero- space medicine. Here are but a few examples. There are a number of programs and 'tools’ that are employed by the airlines and military that are de- signed to proactively identify and control those behav- Andrew H. Bellenkes, Ph.D. iors that have the potential to contribute to or directly cause mishaps. Several of these programs involve the released a point paper concerning medical standards as- voluntary and anonymous reporting by aircrews and sociated with civilian passengers who will be on board ground personnel of such behaviors via various means. commercial sub-orbital flights. As a follow-up to this ef- This type of reporting is founded on the principle of fort, AsMA Home Office has been working with both non-attribution and is theoretically non-punitive. One of our Space Medicine Association (Ms. Genie Bopp, these, the Aviation Safety Action Program (ASAP), has President) and Society of NASA Flight Surgeons (Dr. J. been used by airlines for some time. It recently came to Michael Duncan, President) as well as an an Ad Hoc AsMA’s attention, however, that several airlines had group to help define aeromedical standards for the opted to terminate the use of ASAP in the course of their crews of these flights.
    [Show full text]
  • Vacuum in the 17Th Century and Onward the Beginning of Experimental Sciences Donald M
    HISTORY CORNER A SHORT HISTORY: VACUUM IN THE 17TH CENTURY AND ONWARD THE BEGINNING OF Experimental SCIENCES Donald M. Mattox, Management Plus Inc., Albuquerque, N.M. acuum as defined as a space with nothing in it (“perfect Early Vacuum Equipment vacuum”) was debated by the early Greek philosophers. The early period of vacuum technology may be taken as the V The saying “Nature abhors a vacuum” (horror vacui) is gener- 1640s to the 1850s. In the 1850s, invention of the platinum- ally attributed to Aristotle (Athens ~350 BC). Aristotle argued to-metal seal and improved vacuum pumping technology al- that vacuum was logically impossible. Plato (Aristotle’s teach- lowed the beginning of widespread studies of glow discharges er) argued against there being such a thing as a vacuum since using “Geissler tubes”[6]. Invention of the incandescent lamp “nothing” cannot be said to exist. Hero (Heron) of Alexandria in the 1850s provided the incentive for development of indus- (Roman Egypt) attempted using experimental techniques to trial scale vacuum technology[7]. create a vacuum (~50 AD) but his attempts failed although he did invent the first steam engine (“Heron’s steam engine”) and Single-stroke Mercury-piston Vacuum Pump “Heron’s fountain,” often used in teaching hydraulics. Hero It was the latter part of 1641 that Gasparo Berti demonstrated wrote extensively about siphons in his book Pneumatica and his water manometer, which consisted of a lead pipe about 10 noted that there was a maximum height to which a siphon can meters tall with a glass flask cemented to the top of the pipe “lift” water.
    [Show full text]