SPECIAL SECTION Civilisation Dated 1900-1600 BC Has a Circle's Circumference Instead of the Statement That Implicates a Value of Area
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History of the Numerical Methods of Pi
History of the Numerical Methods of Pi By Andy Yopp MAT3010 Spring 2003 Appalachian State University This project is composed of a worksheet, a time line, and a reference sheet. This material is intended for an audience consisting of undergraduate college students with a background and interest in the subject of numerical methods. This material is also largely recreational. Although there probably aren't any practical applications for computing pi in an undergraduate curriculum, that is precisely why this material aims to interest the student to pursue their own studies of mathematics and computing. The time line is a compilation of several other time lines of pi. It is explained at the bottom of the time line and further on the worksheet reference page. The worksheet is a take-home assignment. It requires that the student know how to construct a hexagon within and without a circle, use iterative algorithms, and code in C. Therefore, they will need a variety of materials and a significant amount of time. The most interesting part of the project was just how well the numerical methods of pi have evolved. Currently, there are iterative algorithms available that are more precise than a graphing calculator with only a single iteration of the algorithm. This is a far cry from the rough estimate of 3 used by the early Babylonians. It is also a different entity altogether than what the circle-squarers have devised. The history of pi and its numerical methods go hand-in-hand through shameful trickery and glorious achievements. It is through the evolution of these methods which I will try to inspire students to begin their own research. -
Perimeter, Area, and Volume
Perimeter, Area, and Volume Perimeter is a measurement of length. It is the distance around something. We use perimeter when building a fence around a yard or any place that needs to be enclosed. In that case, we would measure the distance in feet, yards, or meters. In math, we usually measure the perimeter of polygons. To find the perimeter of any polygon, we add the lengths of the sides. 2 m 2 m P = 2 m + 2 m + 2 m = 6 m 2 m 3 ft. 1 ft. 1 ft. P = 1 ft. + 1 ft. + 3 ft. + 3 ft. = 8 ft. 3ft When we measure perimeter, we always use units of length. For example, in the triangle above, the unit of length is meters. For the rectangle above, the unit of length is feet. PRACTICE! 1. What is the perimeter of this figure? 5 cm 3.5 cm 3.5 cm 2 cm 2. What is the perimeter of this figure? 2 cm Area Perimeter, Area, and Volume Remember that area is the number of square units that are needed to cover a surface. Think of a backyard enclosed with a fence. To build the fence, we need to know the perimeter. If we want to grow grass in the backyard, we need to know the area so that we can buy enough grass seed to cover the surface of yard. The yard is measured in square feet. All area is measured in square units. The figure below represents the backyard. 25 ft. The area of a square Finding the area of a square: is found by multiplying side x side. -
Rectangles with the Same Numerical Area and Perimeter
Rectangles with the Same Numerical Area and Perimeter About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection questions, and student materials. While the primary use of Illustrations is for teacher learning about the SMP, some components may be used in the classroom with students. These include the mathematics task, student dialogue, and student materials. For additional Illustrations or to learn about a professional development curriculum centered around the use of Illustrations, please visit mathpractices.edc.org. About the Rectangles with the Same Numerical Area and Perimeter Illustration: This Illustration’s student dialogue shows the conversation among three students who are trying to find all rectangles that have the same numerical area and perimeter. After trying different rectangles of specific dimensions, students finally develop an equation that describes the relationship between the width and length of a rectangle with equal area and perimeter. Highlighted Standard(s) for Mathematical Practice (MP) MP 1: Make sense of problems and persevere in solving them. MP 2: Reason abstractly and quantitatively. MP 7: Look for and make use of structure. MP 8: Look for and express regularity in repeated reasoning. Target Grade Level: Grades 8–9 Target Content Domain: Creating Equations (Algebra Conceptual Category) Highlighted Standard(s) for Mathematical Content A.CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A.CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. -
Area and Perimeter What Is the Formula for Perimeter and How Is It Applied in Construction?
Name: Basic Carpentry Coop Tech Morning/Afternoon Canarsie HS Campus Mr. Pross Finding Area and Perimeter What is the formula for perimeter and how is it applied in construction? 1. Perimeter: The perimeter of a rectangle is the distance around it. Therefore, the perimeter is the sum of all four sides. Perimeter is important when calculating estimates for materials needed for completing a job. Example: Before ordering baseboard trim, the must wrap around the entire room, the perimeter of a 12’ 12 ft x 18 ft room must be found. What is the perimeter of the room? 18’ What is the formula for perimeter? Write it below. _______________________ 1. This is the formula you will need to follow in order to calculate area. = 2 (12 ft + 18 ft) 2. Add the length and width in parentheses. The length plus the width represent halfway around the room. = 2 (30 ft) 3. Multiply the sum of the length and width by 2 to find the entire distance around. = 60 ft. Practice A client asked that you to install a new window. The framing though is too small and you need to demolish it and rebuild it. First you need to find the perimeter of the window. If this window measures 32 inches by 42 inches, what is the perimeter? Name: Basic Carpentry Coop Tech Morning/Afternoon Canarsie HS Campus Mr. Pross 2. Area: The area of a square is the surface included within a set of lines. In carpentry, this means the total space of a room or even a building. Area, like permiter, is an important mathematical formula for estimating material and cost in construction. -
Perimeter , Area and Volume with Changed Dimensions
Perimeter , Area and Volume with changed dimensions Given a rectangle with dimensions of 6 by 4. Perimeter: __________ Area: ______________ Double the dimensions of the rectangle (multiply each side by 2) New Perimeter: ___________ New Area: _______________ Compare the effects on the perimeter and area when dimensions of a shape are changed (dilated) proportionally. Complete the chart below: Smaller Larger Ratio of larger Rectangle Rectangle dimension to smaller dimension Length Width Perimeter Area Conclusion: Perimeter , Area and Volume with changed dimensions If the dimensions of the rectangle are doubled (scale factor of 2): the perimeter is___________ If the dimensions of the rectangles are doubled (scale factor of 2): the area is ____________ Extension: If the dimensions of the rectangle are tripled (scale factor of 3): the perimeter is ______________ If the dimensions of the rectangle are triples (scale factor of 3): the area is ___________________ What do you think will happen to volume when dimensions are changed proportionally? Given a rectangular prism with dimensions of 6 by 4 by 2: Volume: _____________ Double the dimensions of the prism: New Volume: __________ Perimeter , Area and Volume with changed dimensions Smaller Rectangle Larger Rectangle Ratio of larger dimension to smaller dimension Length Width Height Volume Since each dimension was dilated (multiplied) by 2, then the volume was multiplied by 8: or 23 (scale factor cubed) Why do you think the volume is “cubed”? Perimeter , Area and Volume with changed dimensions Effects on perimeter, area and volume when dimensions of a shape are changed proportionally: Original Scale factor Perimeter Area Volume times 2 times 2=___ times 22=___ times 23=___ times 3 times 4 1 times 2 2 times 3 3 times 4 Examples: 1. -
Π and Its Computation Through the Ages
π and its computation through the ages Xavier Gourdon & Pascal Sebah http://numbers.computation.free.fr/Constants/constants.html August 13, 2010 The value of π has engaged the attention of many mathematicians and calculators from the time of Archimedes to the present day, and has been computed from so many different formulae, that a com- plete account of its calculation would almost amount to a history of mathematics. - James Glaisher (1848-1928) The history of pi is a quaint little mirror of the history of man. - Petr Beckmann 1 Computing the constant π Understanding the nature of the constant π, as well as trying to estimate its value to more and more decimal places has engaged a phenomenal energy from mathematicians from all periods of history and from most civilizations. In this small overview, we have tried to collect as many as possible major calculations of the most famous mathematical constant, including the methods used and references whenever there are available. 1.1 Milestones of π's computation • Ancient civilizations like Egyptians [15], Babylonians, China ([29], [52]), India [36],... were interested in evaluating, for example, area or perimeter of circular fields. Of course in this early history, π was not yet a constant and was only implicit in all available documents. Perhaps the most famous is the Rhind Papyrus which states the rule used to compute the area of a circle: take away 1/9 of the diameter and take the square of the remainder therefore implicitly π = (16=9)2: • Archimedes of Syracuse (287-212 B.C.). He developed a method based on inscribed and circumscribed polygons which will be of practical use until the mid seventeenth. -
Section 3.3: Circles 3
Section 3.3: Circles 3 Contents at a Glance Pretest 167 Section Challenge 172 Lesson A: What’s in a Circle? 173 Lesson B: What is Pi? 187 Lesson C: Circumference of a Circle 197 Lesson D: Area of a Circle 211 Section Summary 225 Learning Outcomes By the end of this section you will be better able to: • identify the components and characteristics of circles. • describe the relationships between the parts of a circle. • construct circles using geometric tools. • apply a formula to fi nd the circumference and area of a circle. • solve problems that involve fi nding the circumference or area of a circle. • solve problems involving the area of triangles, parallelograms, and/or circles. © Open School BC MATH 7 eText 165 Module 3, Section 3 166 MATH 7 eText © Open School BC Module 3, Section 3 Pretest 3.3 Pretest 3.3 Complete this pretest if you think that you already have a strong grasp of the topics and concepts covered in this section. Mark your answers using the key found at the end of the module. If you get all the answers correct (100%), you may decide that you can omit the lesson activities. 1. Fill in the blanks: a. The ____________________ is a point inside a circle from which all points on the circumference are the same distance. b. The ________________ is the longest chord that can be drawn inside a circle. c. The diameter is ____________________ times as large as the radius. d. The ____________________ is the distance around the circle. e. A diameter is a line segment drawn from one point on a circle to another point that passes through the ____________________. -
1.7 Find Perimeter, Circumference, and Area
&IND 0ERIMETER #IRCUMFERENCE AND !REA 'OAL + &IND DIMENSIONS OF POLYGONS &/2-5,!3 &/2 0%2)-%4%2 0 !2%! ! !.$ 9OUR .OTES #)2#5-&%2%.#% # 3QUARE 2ECTANGLE SIDE LENGTH S LENGTH * AND WIDTH W 0 Ê{ÃÊ 0 ÊÓ*ÊzÓÜÊ ! Ê ÃÓÊ ! Ê *ÜÊ 4RIANGLE #IRCLE SIDE LENGTHS A B RADIUS R AND C BASE B # ÊÓ:ÀÊ AND HEIGHT H ! Ê :À ÓÊ 0 Ê >ÊzLÊzVÊ 0I : IS THE RATIO OF A £ ! ÊÊÊ]ÊÊÊL z Ê CIRCLEgS CIRCUMFERENCE TO Ó ITS DIAMETER %XAMPLE &IND THE PERIMETER AND AREA OF A RECTANGLE 4ENNIS 4HE IN BOUNDS PORTION OF A SINGLES TENNIS COURT IS SHOWN &IND ITS PERIMETER AND AREA 0ERIMETER !REA 0 * W ! *W ÊÇnÊ ÊÓÇÊ ÊÇnÊÊÓÇÊ ÊÓ£äÊ ÊÓ£äÈÊ 4HE PERIMETER IS ÊÓ£äÊ FT AND THE AREA IS ÊÓ£äÈÊ FT #HECKPOINT #OMPLETE THE FOLLOWING EXERCISE )N %XAMPLE THE WIDTH OF THE IN BOUNDS RECTANGLE INCREASES TO FEET FOR DOUBLES PLAY &IND THE PERIMETER AND AREA OF THE IN BOUNDS RECTANGLE ÊÊ«iÀiÌiÀ\ÊÓÓnÊvÌ]Ê>Ài>\ÊÓnänÊvÌÓ ,ESSON s 'EOMETRY .OTETAKING 'UIDE #OPYRIGHT Ú -C$OUGAL ,ITTELL(OUGHTON -IFFLIN #OMPANY 9OUR .OTES %XAMPLE &IND THE CIRCUMFERENCE AND AREA OF A CIRCLE !RCHERY 4HE SMALLEST CIRCLE ON AN /LYMPIC TARGET IS 4HE APPROXIMATIONS CENTIMETERS IN DIAMETER &IND THE APPROXIMATE AND ]zARE CIRCUMFERENCE AND AREA OF THE SMALLEST CIRCLE COMMONLY USED AS APPROXIMATIONS 3OLUTION FOR THE IRRATIONAL &IRST FIND THE RADIUS 4HE DIAMETER IS CENTIMETERS NUMBER : 5NLESS SO THE RADIUS IS ]zÊ£ÓÊ ÊÈÊ CENTIMETERS TOLD OTHERWISE USE FOR : 4HEN FIND THE CIRCUMFERENCE AND AREA 5SE FOR : 0 :R yzÊΰ£{Ê ÊÈÊ ÊÎǰÈnÊVÊ ! :R yzÊΰ£{ÊÊÈÊ Ê££Î°ä{ÊVÓÊ #HECKPOINT &IND THE APPROXIMATE -
Daf Ditty Eruvin 14 Pi, Revised X2
Daf Ditty Eruvin 14: Pi, the Ratio of God “Human beings, vegetables, or cosmic dust, we all dance to a mysterious tune intoned in the distance by an invisible player.” – Albert Einstein “The world isn't just the way it is. It is how we understand it, no? And in understanding something, we bring something to it, no? Doesn't that make life a story?” "Love is hard to believe, ask any lover. Life is hard to believe, ask any scientist. God is hard to believe, ask any believer... be excessively reasonable and you risk throwing out the universe with the bathwater." Yann Martel, Life of Pi 1 The mishna continues: If the cross beam is round, one considers it as though it were square. The Gemara asks: Why do I need this clause as well? Similar cases were already taught in the mishna. The Gemara answers: It was necessary to teach the last clause of this section, i.e., the principle that any circle with a circumference of three handbreadths is a handbreadth in diameter. 2 The Gemara asks: From where are these matters, this ratio between circumference and diameter, derived? Rabbi Yoḥanan said that the verse said with regard to King Solomon: And he made the molten sea of ten cubits from 23 גכ את ַַַויּﬠֶשׂ - ָוּ,מצםיַּה ָ:ק ֶֶﬠשׂ ר אָ בּ מַּ הָ הָ מַּ אָ בּ ר brim to brim, round in compass, and the height thereof תוֹפדשּׂﬠ ְִָמַ - ﬠוֹתְשׂפ סלָגָ ִ,יבָבֹ בּשְׁמחו ַהמֵָּאָ ָ ַהמֵָּאָ בּשְׁמחו ִ,יבָבֹ סלָגָ ﬠוֹתְשׂפ was five cubits; and a line of thirty cubits did compass וֹקמ ,וֹתָ וקוה ו( קְ ָ )ו םיִשׁhְ שׁ אָ בּ מַּ ,הָ סָ י בֹ וֹתֹ א וֹתֹ א בֹ סָ י ,הָ מַּ אָ בּ םיִשׁhְ שׁ )ו ָ קְ ו( וקוה ,וֹתָ וֹקמ .it round about ִי.בָסב I Kings 7:23 “And he made a molten sea, ten cubits from the one brim to the other: It was round all about, and its height was five cubits; and a line of thirty cubits did circle it roundabout” The Gemara asks: But isn’t there its brim that must be taken into account? The diameter of the sea was measured from the inside, and if its circumference was measured from the outside, this ratio is no longer accurate. -
Section 2.2: Perimeter and Area
Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose sides are straight lines can be found by adding up the length of each side. Example: the perimeter of this rectangle is 7+3+7+3 = 20 Example: the perimeter of this regular pentagon is 3+3+3+3+3 = 5×3 = 15 There are formulas that can help us find the perimeter of a few standard shapes. However, if a two dimensional shape has a border that consists of only straight lines simply adding up the lengths of each side will be sufficient to find the perimeter. I will need to use a formula to find the perimeter (circumference) of a circle as its border is not made of straight lines. Perimeter Formulas Triangle Perimeter = a + b + c Square Perimeter = 4 × a a = length of side Rectangle Perimeter = 2 × (w + h) Or 2(length + width) w = width h = height Quadrilateral Perimeter = a + b + c + d Circle Circumference = 2πr r = radius Example: Use the appropriate formula to find the perimeter of the rectangle below. I will use the formula: Perimeter = 2(length + width) It is customary to call the longer side of a rectangle the length. I will replace the length in the formula with 7 yards, and the width with 4 yards. Perimeter = 2(7 yards + 4 yards) = 2(11 yards) Answer: Perimeter = 22 yards (The units in a perimeter problem are linear and do not have squares.) Example: Find the circumference of the following circle. -
Perimeter, Diameter and Area of Convex Sets in the Hyperbolic Plane
PERIMETER, DIAMETER AND AREA OF CONVEX SETS IN THE HYPERBOLIC PLANE. EDUARDO GALLEGO AND GIL SOLANES Abstract. In this paper we study the relation between the asymptotic values of the ratios area/length (F/L) and diameter/length (D/L) of a sequence of convex sets expanding over the whole hyperbolic plane. It is known (cf. [3] and [2]) that F/L goes to a value between 0 and 1 depending on the shape of the contour. Here, rst of all it is seen that D/L has limit value between 0 and 1/2 in strong contrast with the euclidean situation in which the lower bound is 1/ (D/L = 1/ if and only if the convex set has constant width). Moreover, it is shown that, as the limit of D/L approaches to 1/2, the possible limit values of F/L reduce. Examples of all possible limits F/L and D/L are given. 1. Introduction In hyperbolic geometry, given a point p exterior to a line l there are innitely many non secant lines. These lines lie between the two so called parallel lines to l. When the distance from p to l grows to innity, the angle between the parallel lines goes to 0. This fact leads to the ambiguous idea that, in some sense, given a line l, the probability that a random line meets l is zero. In order to formalize this idea let us restrict our attention to the interiors of a sequence (Kn) of convex sets in the hyperbolic plane expanding to ll it. -
AREA and VOLUME WHERE DO the FORMULAS COME FROM? Roger Yarnell John Carroll University, [email protected]
John Carroll University Carroll Collected Masters Essays Theses, Essays, and Senior Honors Projects Spring 2016 AREA AND VOLUME WHERE DO THE FORMULAS COME FROM? Roger Yarnell John Carroll University, [email protected] Follow this and additional works at: http://collected.jcu.edu/mastersessays Part of the Geometry and Topology Commons Recommended Citation Yarnell, Roger, "AREA AND VOLUME WHERE DO THE FORMULAS COME FROM?" (2016). Masters Essays. 33. http://collected.jcu.edu/mastersessays/33 This Essay is brought to you for free and open access by the Theses, Essays, and Senior Honors Projects at Carroll Collected. It has been accepted for inclusion in Masters Essays by an authorized administrator of Carroll Collected. For more information, please contact [email protected]. AREA AND VOLUME WHERE DO THE FORMULAS COME FROM? An Essay Submitted to the Office of Graduate Studies College of Arts & Sciences of John Carroll University In Partial Fulfillment of the Requirements For the Degree of Masters of Arts in Mathematics By Roger L Yarnell 2016 This essay of Roger L. Yarnell is hereby accepted: ________________________________________________ __________________ Advisor – Douglas Norris Date I certify that this is the original document ________________________________________________ __________________ Author – Roger L. Yarnell Date TABLE OF CONTENTS 1. Introduction 2 2. Basic Area Formulas 4 3. Pi and the Circle 10 4. Basic Volume Formulas 14 5. Sphere 17 6. Pythagorean Theorem 20 7. Conclusion 23 8. References 24 1 1. INTRODUCTION What are area and volume? This was a question that was posed to incoming geometry students that have previously worked with these measurements in middle school. There were a variety of responses to the question, how are area and volume defined? Approximately half of the students had a general idea of what area and volume measure.