A Molecular Analysis of 22Q11.2 Deletion Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

A Molecular Analysis of 22Q11.2 Deletion Syndrome A Molecular Analysis of 22q11.2 Deletion Syndrome A thesis submitted for the Degree of Doctor of Philosophy at the School of Medicine, Cardiff University By Afnan Salah Salaka MRC Centre for Neuropsychiatric Genetics and Genomics Division of Psychological Medicine and Clinical Neuroscience School of Medicine Cardiff University 2017 Dedication My father, who passed away while I was doing this PhD and he could not see this dream come true. This thesis is dedicated to his soul. Daddy you were, are, and will always be around for me! i Acknowledgements First, I would like to thank Almighty Allah for the perseverance that he has bestowed upon me during this research project and indeed throughout my life. I believe that every single effort I’ve made, would not have happened without his mercy and blessing. I wish to express my sincere gratitude to my supervisor, Prof Nigel Williams, for his invaluable guidance, unfailing patience, and encouragement throughout the PhD. I owe my utmost gratitude to Prof Williams for considering me worthy of this opportunity and for constantly motivating me when I felt down and out. A special thank to my supervisory team, Prof Micelle Owen and Prof Marianne van den Bree for providing me with the permission to use the ECHO study samples to achieve this PhD. I would also like to thank the ECHO study team with special thanks to Miss Hayley Moss, Dr Maria Niarchou, and Dr Samuel Chawner for their great help in obtaining the biological samples and the supporting data for the participants. I am also extremely grateful to Dr Kiran Mantripragada and the lab core team in the MRC Centre for Neuropsychiatric Genetics and Genomics for their valuable support during my lab work. I would also thank the bioinformatics team in the department, Dr Antonio Pardinas, Dr Elliott Rees, Dr Leon Hubbard, and Dr Valentina Escott-Price, for their tremendous help in the bioinformatics analyses. Last but not least, I would like to thank the patients who provided the samples and without whose cooperation this project would not have been possible. I would like to thank my sponsor Umm Al-Qura University with special thanks to Dr Ahmed Asshi, Dr Mohammed Baslamah and the members of the Faculty of Applied Medical Sciences for their continues support. I will not forget to thank the Ministry of the Higher Education of Saudi Arabia and the Saudi Cultural Bureau who sponsored me for this great opportunity to learn, experience, and gain qualifications. I would like to express a special word of thanks with love to my friends especially Dr, Nada Almazrooa, Dr Rania Al-Otabi, Dr Amal Al Salamah, Dr Noa Carrera, Dr Isla Humphreys, and Dr Marisa Taylor, for your valuable friendship and your emotional support. You made my stay in Cardiff enjoyable and I hope to treasure your friendship forever. I am most grateful to my mother, Aunty Faizah, my sisters, and brothers for having a constant faith in me and for your continuous support in all of my life’s aspects. Your love and prayers are a big source of support during this PhD. I cannot thank my husband, Homam, enough for supporting me throughout doing my PhD, and for always being there whenever I needed him, and for being patient during my busy years of the PhD. I am greatly thankful to my father, who passed away while I was abroad for doing this PhD. I will always remember your supportive words of encouragement to continue my journey to learn and will always be praying for you. I love you daddy and I know that you are always around for me. ii Declaration This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ……….………....………………..…………………Date ……………………. Statement 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of PhD. Signed ……….………....………………..…………………Date ……………………. Statement 2 This thesis is the result of my own independent work/investigation, except where otherwise stated, and the thesis has not been edited by a third party beyond what is permitted by Cardiff University’s Policy on the Use of Third Party Editors by Research Degree Students. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ……….………....………………..…………………Date ……………………. Statement 3 I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed ……….………....………………..…………………Date ……………………. Statement 4 PREVIOUSLY APPROVED BAR ON ACCESS I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee. Signed ……….………....………………..…………………Date ……………………. iii Table of Contents Contents Dedication ................................................................................................................................. i Acknowledgements .................................................................................................................. ii Declaration .............................................................................................................................. iii Table of Contents .................................................................................................................... iv Abbreviations .......................................................................................................................... xi Summary ............................................................................................................................... xiv Associated Publications and Presentations ............................................................................ xv Chapter 1: General Introduction .............................................................................................. 1 1.1. 22q11.2 Deletion Syndrome ......................................................................................... 1 1.1.1. Incidence of 22q11.2DS ........................................................................................ 2 1.1.2. Molecular genetic of 22q11.2DS........................................................................... 2 1.1.2.1. Causes of 22q11.2DS ...................................................................................... 2 1.1.2.2. Complexity of 22q11.2 region ........................................................................ 3 1.1.2.2.1. Low copy repeats of chromosome 22q11.2 ............................................. 3 1.1.2.2.2. Non-allelic homologous recombination ................................................... 4 1.1.2.3. Genes within these deletions ........................................................................... 6 1.1.2.4. Testing of 22q11.2 deletions ........................................................................... 7 1.1.2.4.1. Cytogenetic testing ................................................................................... 7 1.1.2.4.2. Molecular testing...................................................................................... 7 1.2. Phenotypic diversity of 22q11.2DS ............................................................................ 10 1.2.1. History of 22q11.2DS ......................................................................................... 10 1.2.2. Symptoms of 22q11.2DS .................................................................................... 12 1.2.2.1. Physical symptoms ........................................................................................ 12 1.2.2.1.1. Cardiovascular abnormalities ................................................................. 13 1.2.2.1.2. Craniofacial abnormalities ..................................................................... 13 1.2.2.1.3. Thymic aplasia/hypoplasia and related immune disorders .................... 15 1.2.2.1.4. Cleft palate and related velopharyngeal abnormalities .......................... 15 1.2.2.1.5. Hypocalcemia/Hypoparathyroidism ...................................................... 16 1.2.2.2. Cognitive and behavioural symptoms ........................................................... 16 1.2.2.2.1. Developmental trajectories of developmental, cognitive, and behavioural phenotypes ............................................................................................................. 17 1.3. Identifying 22q11.2 candidate genes for neuropsychiatric phenotypes ...................... 21 1.3.1. 22q11.2DS mice model ....................................................................................... 23 iv 1.3.1.1. Studies on Df1 mice model ........................................................................... 28 1.3.1.1.1. Behavioural and cognitive phenotypes in Df1 mice models .................. 28 1.3.1.1.2. Gene expression in Df1 mice models ..................................................... 29 1.3.1.2. Studies on a single 22q11.2 gene knocked out mice ..................................... 31 1.3.2. Analysis of genotypes on the haploinsufficient chromosome in 22q11.2DS ...... 33 1.3.2.1. COMT ........................................................................................................... 33 1.3.2.2. PRODH ........................................................................................................
Recommended publications
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Leukocyte-Specific Adaptor Protein Grap2 Interacts with Hematopoietic
    Oncogene (2001) 20, 1703 ± 1714 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Leukocyte-speci®c adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes Wenbin Ma1, Chunzhi Xia1, Pin Ling2, Mengsheng Qiu3, Ying Luo4, Tse-Hua Tan2 and Mingyao Liu*,1 1Department of Medical Biochemistry and Genetics, Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas, TX 77030, USA; 2Department of Immunology, Baylor College of Medicine, Houston, Texas, TX 77030, USA; 3Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, KY 40202, USA; 4Shanghai Genomics, Inc., Zhangjiang Hi-Tech Park, Pudong, Shangai 201204, P.R.C. Immune cell-speci®c adaptor proteins create various Introduction combinations of multiprotein complexes and integrate signals from cell surface receptors to the nucleus, Activation of resting T cells through the T-cell antigen modulating the speci®city and selectivity of intracellular receptor triggers a cascade of intracellular signaling signal transduction. Grap2 is a newly identi®ed adaptor events that lead to enhanced gene transcription, protein speci®cally expressed in lymphoid tissues. This cellular dierentiation and proliferation (Cantrell, protein shares 40 ± 50% sequence homology in the SH3 1996; Weiss and Littman, 1994; Chan and Shaw, and the SH2 domain with Grb2 and Grap. However, the 1996; Crabtree and Clipstone, 1994; Wange and Grap2 protein has a unique 120-amino acid glutamine- Samelson, 1996). Although components of the T-cell and proline-rich domain between the SH2 and C- receptor complex have no intrinsic kinase activity, the terminal SH3 domains.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • DGCR6 at the Proximal Part of the Digeorge Critical Region Is Involved in Conotruncal Heart Defects
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Repository : the EHIME area OPEN Citation: Human Genome Variation (2015) 2, 15004; doi:10.1038/hgv.2015.4 © 2015 The Japan Society of Human Genetics All rights reserved 2054-345X/15 www.nature.com/hgv ARTICLE DGCR6 at the proximal part of the DiGeorge critical region is involved in conotruncal heart defects Wenming Gao1, Takashi Higaki1, Minenori Eguchi-Ishimae1, Hidehiko Iwabuki1, Zhouying Wu1, Eiichi Yamamoto2, Hidemi Takata1, Masaaki Ohta1, Issei Imoto3, Eiichi Ishii1 and Mariko Eguchi1 Cardiac anomaly is one of the hallmarks of DiGeorge syndrome (DGS), observed in approximately 80% of patients. It often shows a characteristic morphology, termed as conotruncal heart defects. In many cases showing only the conotruncal heart defect, deletion of 22q11.2 region cannot be detected by fluorescence in situ hybridization (FISH), which is used to detect deletion in DGS. We investigated the presence of genomic aberrations in six patients with congenital conotruncal heart defects, who show no deletion at 22q11.2 in an initial screening by FISH. In these patients, no abnormalities were identified in the coding region of the TBX1 gene, one of the key genes responsible for the phenotype of DGS. However, when copy number alteration was analyzed by high-resolution array analysis, a small deletion or duplication in the proximal end of DiGeorge critical region was detected in two patients. The affected region contains the DGCR6 and PRODH genes. DGCR6 has been reported to affect the expression of the TBX1 gene. Our results suggest that altered dosage of gene(s) other than TBX1, possibly DGCR6, may also be responsible for the development of conotruncal heart defects observed in patients with DGS and, in particular, in those with stand-alone conotruncal heart defects.
    [Show full text]
  • Network Effects of the Neuropsychiatric 15Q13.3 Microdeletion on the Transcriptome and Epigenome in Human Induced Neurons
    bioRxiv preprint doi: https://doi.org/10.1101/772541; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Network effects of the neuropsychiatric 15q13.3 microdeletion on the transcriptome and epigenome in human induced neurons Siming Zhang (B.S., Stanford University), Xianglong Zhang (Ph.D., Stanford University), Shining Ma (Ph.D., Stanford University), Carolin Purmann (Ph.D., Stanford University), Kasey Davis (Ph.D., Stanford University), Wing Hung Wong (Ph.D., Stanford University), Jonathan Bernstein (MD, Ph.D., Stanford University), Joachim Hallmayer (MD, Stanford University), Alexander E Urban (Ph.D., Stanford University) Corresponding author: Alexander E Urban Address: 3165 Porter Drive, Stanford CA 94304 Phone: (650) 736-9528, Fax: (650) 725-4913 email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/772541; this version posted September 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Heterozygous deletions in the 15q13.3 region are associated with several neuropsychiatric disorders including autism, schizophrenia, and attention deficit hyperactivity disorder. Several genes within the 15q13.3 deletion region may play a role in neuronal dysfunction, based on association studies in humans and functional studies in mice, but the intermediate molecular mechanisms remain unknown.
    [Show full text]
  • CD28 Costimulation in Jurkat Cells Signaling Networks Triggered By
    Quantitative Analysis of Phosphotyrosine Signaling Networks Triggered by CD3 and CD28 Costimulation in Jurkat Cells This information is current as Ji-Eun Kim and Forest M. White of September 26, 2021. J Immunol 2006; 176:2833-2843; ; doi: 10.4049/jimmunol.176.5.2833 http://www.jimmunol.org/content/176/5/2833 Downloaded from References This article cites 47 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/176/5/2833.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Quantitative Analysis of Phosphotyrosine Signaling Networks Triggered by CD3 and CD28 Costimulation in Jurkat Cells1 Ji-Eun Kim and Forest M. White2 The mechanism by which stimulation of coreceptors such as CD28 contributes to full activation of TCR signaling pathways has been intensively studied, yet quantitative measurement of costimulation effects on functional TCR signaling networks has been lacking.
    [Show full text]
  • New Tests 2 Test Updates 4 CPT Code Updates 11 Deleted Tests 11 Diagnostics Update Volume XXI, No
    Volume XXI, No. 6 JUNE 2021 MONTHLY TEST UPDATES Diagnostics Update New Tests 2 Test Updates 4 CPT Code Updates 11 Deleted Tests 11 Diagnostics Update Volume XXI, No. 6 | JUNE 2021 New Tests Use Anti-DFS70 antibodies may help identify individuals who do not have an Anti-Carbamylated Protein (CarP) Antibody 520311 ANA-associated Autoimmune Rheumatic Disease (AARD) especially in the absence of significant clinical findings.1 Anti-DFS70 Ab, especially when positive CPT 83516 in isolation (i.e. in the absence of AARD-associated autoantibodies), may Synonyms Anti-CarP antigen antibody; RA marker prevent unnecessary referrals and examinations of ANA-positive individuals.2 Special Instructions This test has not been approved for NY state clients. Limitations This test should be used with clinical findings and other Specimen Serum autoimmune testing; it cannot be used alone to rule out autoimmune disease. Volume 1 mL This test was developed and its performance characteristics determined Minimum Volume 0.5 mL by Labcorp. It has not been cleared or approved by the Food and Drug Container Red-top tube; serum from red-top tube; serum from a gel tube; or Administration. serum gel tube Methodology Enzyme-linked immunosorbent assay (ELISA) Collection Separate serum from cells within one hour of collection. Transfer to a Additional Information Anti-DFS70 antibodies target the dense fine speckled plastic transport tube before shipping. protein of 70 kDa which is identical to Lens Epithelium-Derived Growth Factor Storage Instructions Refrigerate or freeze. or transcription co-activator p75 (LEDGFp75). They are detectable in 2% to 22% Stability of healthy individuals and in less than 1% of patients with AARD are of unknown Temperature Period clinical significance.
    [Show full text]
  • Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
    Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades.
    [Show full text]
  • Missense Mutations in the Human Nanophthalmos Gene TMEM98 Cause Retinal Defects in the Mouse
    Genetics Missense Mutations in the Human Nanophthalmos Gene TMEM98 Cause Retinal Defects in the Mouse Sally H. Cross,1 Lisa Mckie,1 Margaret Keighren,1 Katrine West,1 Caroline Thaung,2,3 Tracey Davey,4 Dinesh C. Soares,*,1 Luis Sanchez-Pulido,1 and Ian J. Jackson1 1MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom 2Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom 3University College London Institute of Ophthalmology, London, United Kingdom 4Electron Microscopy Research Services, Newcastle University, Newcastle, United Kingdom Correspondence: Sally H. Cross, PURPOSE. We previously found a dominant mutation, Rwhs, causing white spots on the retina MRC Human Genetics Unit, MRC accompanied by retinal folds. Here we identify the mutant gene to be Tmem98. In humans, Institute of Genetics and Molecular mutations in the orthologous gene cause nanophthalmos. We modeled these mutations in Medicine, University of Edinburgh, mice and characterized the mutant eye phenotypes of these and Rwhs. Crewe Road, Edinburgh EH4 2XU, UK; METHODS. The Rwhs mutation was identified to be a missense mutation in Tmem98 by genetic [email protected]. mapping and sequencing. The human TMEM98 nanophthalmos missense mutations were Current affiliation: *ACS International made in the mouse gene by CRISPR-Cas9. Eyes were examined by indirect ophthalmoscopy Ltd., Oxford, United Kingdom and the retinas imaged using a retinal camera. Electroretinography was used to study retinal function. Histology, immunohistochemistry, and electron microscopy techniques were used Submitted: October 10, 2018 Accepted: May 28, 2019 to study adult eyes. Citation: Cross SH, Mckie L, Keighren RESULTS.
    [Show full text]
  • Recurrent Activating Mutations of CD28 in Peripheral T-Cell Lymphomas
    Leukemia (2016), 1–9 © 2016 Macmillan Publishers Limited All rights reserved 0887-6924/16 www.nature.com/leu ORIGINAL ARTICLE Recurrent activating mutations of CD28 in peripheral T-cell lymphomas J Rohr1,2,14, S Guo3,14, J Huo4, A Bouska1, C Lachel1,YLi2, PD Simone5, W Zhang1, Q Gong2, C Wang1,2,6, A Cannon1, T Heavican1, A Mottok7,8, S Hung7,8, A Rosenwald9, R Gascoyne7,8,KFu1, TC Greiner1, DD Weisenburger2, JM Vose10, LM Staudt11, W Xiao12, GEO Borgstahl13, S Davis4, C Steidl7,8, T McKeithan2, J Iqbal1 and WC Chan2 Peripheral T-cell lymphomas (PTCLs) comprise a heterogeneous group of mature T-cell neoplasms with a poor prognosis. Recently, mutations in TET2 and other epigenetic modifiers as well as RHOA have been identified in these diseases, particularly in angioimmunoblastic T-cell lymphoma (AITL). CD28 is the major co-stimulatory receptor in T cells which, upon binding ligand, induces sustained T-cell proliferation and cytokine production when combined with T-cell receptor stimulation. We have identified recurrent mutations in CD28 in PTCLs. Two residues—D124 and T195—were recurrently mutated in 11.3% of cases of AITL and in one case of PTCL, not otherwise specified (PTCL-NOS). Surface plasmon resonance analysis of mutations at these residues with predicted differential partner interactions showed increased affinity for ligand CD86 (residue D124) and increased affinity for intracellular adaptor proteins GRB2 and GADS/GRAP2 (residue T195). Molecular modeling studies on each of these mutations suggested how these mutants result in increased affinities. We found increased transcription of the CD28-responsive genes CD226 and TNFA in cells expressing the T195P mutant in response to CD3 and CD86 co-stimulation and increased downstream activation of NF-κB by both D124V and T195P mutants, suggesting a potential therapeutic target in CD28-mutated PTCLs.
    [Show full text]