UNIVERSITY of CALIFORNIA, SAN DIEGO the Genus Salinispora As A

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO the Genus Salinispora As A UNIVERSITY OF CALIFORNIA, SAN DIEGO The genus Salinispora as a model organism for species concepts and natural products discovery A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Natalie Millán Aguiñaga Committee in charge: Paul R. Jensen, Chair Eric E. Allen William Fenical Joseph Pogliano Gregory W. Rouse 2016 Copyright Natalie Millán Aguiñaga, 2016 All rights reserved The dissertation of Natalie Millán Aguiñaga is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2016 iii DEDICATION To my parents Roberto and Yolanda. Thanks for sharing this dream come true and for continuing to support me in the dreams I still want to achieve. iv TABLE OF CONTENTS Signature Page ...................................................................................................... iii Dedication ............................................................................................................. iv Table of Contents ................................................................................................ v List of Figures ...................................................................................................... vii List of Tables ....................................................................................................... ix Acknowledgments ................................................................................................. x Vita ...................................................................................................................... xiv Abstract of the Dissertation .................................................................................. xvi Chapter 1 Introduction .................................................................................. 1 1.1. Overview of the dissertation .......................................................... 2 1.2. Bacterial species concepts: pre- and post-genomic era ................ 4 1.3. Actinomycetes and their potential for natural products ................ 12 1.4. Molecular targets .......................................................................... 15 1.5. Salinispora as a model organism .................................................. 17 1.6. References ...................................................................................... 19 Chapter 2 Multilocus sequence typing reveals evidence of homologous recombination linked to antibiotic resistance in the genus Salinispora ...................................................................................... 26 2.1. Abstract .......................................................................................... 27 2.2. Introduction ................................................................................... 28 2.3. Material and methods ..................................................................... 32 2.4. Results ........................................................................................... 38 2.5. Discussion ..................................................................................... 43 2.6. References ..................................................................................... 46 Chapter 3 Phylogenomic analyses and species delineations within the genus Salinispora ...................................................................................... 51 3.1. Abstract ......................................................................................... 52 3.2. Introduction ................................................................................... 53 v 3.3. Material and methods ..................................................................... 57 3.4. Results ........................................................................................... 62 3.5. Discussion ..................................................................................... 83 3.6. References ..................................................................................... 88 Chapter 4 Comparative genomics as a method to identify resistance genes in biosynthetic gene clusters ............................................................... 93 4.1. Abstract ....................................................................................... 94 4.2. Introduction ................................................................................. 94 4.3. Material and methods ..................................................................... 98 4.4. Results ......................................................................................... 100 4.5. Discussion ................................................................................... 112 4.6. References ................................................................................... 116 Chapter 5 Concluding remarks ....................................................................... 121 5.1. References ..................................................................................... 127 Appendix A Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora ................................................ 130 Appendix B CRISPR-Cas systems in the marine actinomycete Salinispora: linkages with phage defense, microdiversity and biogeography.. 142 vi LIST OF FIGURES Chapter 2 Figure 2.1. Collection sites and number of strains sequenced ............................. 36 Figure 2.2. The rpoB gene ................................................................................... 36 Figure 2.3. Concatenated neighbor-joining phylogeny from the 16S RNA, atpD, 41 gyrB, trpB, recA and rpoB(3) loci (3,330 bp.) ..................................................... Figure 2.4. Neighbor-joining phylogenetic tree based on 188 aa from rpoB(2) .... 42 Chapter 3 Figure 3.1. Geographic origins of strains ............................................................ 68 Figure 3.2. Core orthologous groups rarefaction curves ................................... 72 Figure 3.3. Rarefaction curves for the total number of orthologous groups ......... 72 Figure 3.4. Orthologous groups distribution in Salinispora spp. ...................... 73 Figure 3.5. Salinispora maximum likelihood phylogeny (concatenated) based on all shared single-copy genes, genes not under recombination and genes under recombination ........................................................................................................ 74 Figure 3.6. ASTRAL species tree phylogeny based on all the shared single-copy genes, genes not under recombination and genes under recombination ............. 75 Figure 3.7. Comparison of the concatenated tree using the genes not under recombination and the ASTRAL species tree using the same data ........................ 76 Figure 3.8. Average Nucleotide Identity (ANI) dendrogram for 119 Salinispora strains .................................................................................................................... 77 Figure 3.9. Average Nucleotide Identity and Alignment Fraction (ANI-AF) .... 78 Figure 3.10. Average Nucleotide Identity and Alignment Fraction (ANI-AF) networks based on the location of the strains ...................................................... 79 Figure 3.11. Circular phylogenetic tree derived from the concatenation of all the single-copy shared genes not under recombination and the ANI-AF networks .... 80 vii Figure 3.12. Comparison of the S. pacifica species tree with secondary metabolite gene clusters distribution, based on the presence/absence of predicted biosynthetic gene clusters ..................................................................................... 81 Figure 3.13. Comparison of the S. pacifica species tree with the matrix of gene content of the COG category of energy production and conversion [C] ............. 82 Chapter 4 Figure 4.1. Bioinformatic identification of candidate resistance genes .............. 104 Figure 4.2. Phylogenetic tree of the 12 duplicated orthologous groups of FabF/B homologous in comparison with the platensimycin (Ptm) and platencin (Ptn) ....... 109 Figure 4.3. Comparison of the tlm locus in six Salinispora strains and their position in the Salinispora species phylogenetic tree ........................................ 110 Figure 4.4. Likelihood reconstruction showing the distribution of the orthologous group Salin8269 that is related with the resistance gene in the Salinispora phylogeny .......................................................................................... 111 viii LIST OF TABLES Chapter 2 Table 2.1. List of PCR primers and conditions .................................................. 37 Table 2.2. Population parameters calculated using nucleotide sequences ........... 40 Table 2.3. Regions 1 and 2 of the translated rpoB gene ......................................... 40 Chapter 3 Table 3.1. Distribution of clusters of orthologous groups (COGs) based on major functional gene categories .................................................................................. 61 Table 3.2. General characteristics of the 119 Salinispora strains ........................
Recommended publications
  • Estimation of Antimicrobial Activities and Fatty Acid Composition Of
    Estimation of antimicrobial activities and fatty acid composition of actinobacteria isolated from water surface of underground lakes from Badzheyskaya and Okhotnichya caves in Siberia Irina V. Voytsekhovskaya1,*, Denis V. Axenov-Gribanov1,2,*, Svetlana A. Murzina3, Svetlana N. Pekkoeva3, Eugeniy S. Protasov1, Stanislav V. Gamaiunov2 and Maxim A. Timofeyev1 1 Irkutsk State University, Irkutsk, Russia 2 Baikal Research Centre, Irkutsk, Russia 3 Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Karelia, Russia * These authors contributed equally to this work. ABSTRACT Extreme and unusual ecosystems such as isolated ancient caves are considered as potential tools for the discovery of novel natural products with biological activities. Acti- nobacteria that inhabit these unusual ecosystems are examined as a promising source for the development of new drugs. In this study we focused on the preliminary estimation of fatty acid composition and antibacterial properties of culturable actinobacteria isolated from water surface of underground lakes located in Badzheyskaya and Okhotnichya caves in Siberia. Here we present isolation of 17 strains of actinobacteria that belong to the Streptomyces, Nocardia and Nocardiopsis genera. Using assays for antibacterial and antifungal activities, we found that a number of strains belonging to the genus Streptomyces isolated from Badzheyskaya cave demonstrated inhibition activity against Submitted 23 May 2018 bacteria and fungi. It was shown that representatives of the genera Nocardia and Accepted 24 September 2018 Nocardiopsis isolated from Okhotnichya cave did not demonstrate any tested antibiotic Published 25 October 2018 properties. However, despite the lack of antimicrobial and fungicidal activity of Corresponding author Nocardia extracts, those strains are specific in terms of their fatty acid spectrum.
    [Show full text]
  • Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents
    Review Biomol Ther 27(2), 127-133 (2019) Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents Myung-A Cho, Songhee Han, Young-Ran Lim, Vitchan Kim, Harim Kim and Donghak Kim,* Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea Abstract The study of the genus Streptomyces is of particular interest because it produces a wide array of clinically important bioactive molecules. The genomic sequencing of many Streptomyces species has revealed unusually large numbers of cytochrome P450 genes, which are involved in the biosynthesis of secondary metabolites. Many macrolide biosynthetic pathways are catalyzed by a series of enzymes in gene clusters including polyketide and non-ribosomal peptide synthesis. In general, Streptomyces P450 enzymes accelerate the final, post-polyketide synthesis steps to enhance the structural architecture of macrolide chemistry. In this review, we discuss the major Streptomyces P450 enzymes research focused on the biosynthetic processing of macrolide therapeutic agents, with an emphasis on their biochemical mechanisms and structural insights. Key Words: Streptomyces, P450, CYP, Biosynthesis, Macrolide, Secondary metabolite INTRODUCTION isms became important to human health with the discovery of penicillin in 1928 by Fleming, and the discovery of the anti- The phylum actinobacteria is one of the major lineages cur- tuberculosis agent streptomycin from Streptomyces griseus rently recognized within bacteria (Ventura et al., 2007). Acti- in 1944 by Waksman (Ikeda, 2017). More recently, the 2015 nobacteria are widely distributed in terrestrial, especially soil, Nobel prize in Physiology or Medicine was awarded to Omura and aquatic ecosystems (McCarthy and Williams, 1992; Stach and Campbell for their contributions to the discovery of the and Bull, 2005).
    [Show full text]
  • Multi-Locus Sequence Analysis: Taking Prokaryotic Systematics to the Next Level11
    CHAPTER Multi-locus Sequence Analysis: Taking Prokaryotic Systematics to the Next Level11 Xiaoying Rong, Ying Huang1 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China 1Corresponding author: e-mail address: [email protected] 1 INTRODUCTION The study of genetic variation among prokaryotes is fundamental for understanding their evolution, and untangling their ecology and evolutionary theory-based system- atics. Recently, advances in DNA sequencing technology, the exploration of neglected habitats and the discovery of new species and products have forced micro- bial systematists to undertake comprehensive analyses of genetic variation within and between species and determine its impact on evolutionary relationships. 16S rRNA gene sequence analyses have enhanced our understanding of prokaryotic diversity and phylogeny, including that of non-culturable microorganisms (Doolittle, 1999; Head, Saunders, & Pickup, 1998; Mason et al., 2009). However, 16S rRNA gene phy- logenetic analyses have major drawbacks, notably providing insufficient resolution, especially for distinguishing between closely related species. In addition, there are well-documented cases in which individual prokaryotic organisms have been found to contain divergent 16S rRNA genes, thereby suggesting the potential for horizontal exchange of rRNA genes; such problems pose a challenge for reconstructing the evolutionary history of prokaryotic species and complicate efforts to classify them (Acinas, Marcelino, Klepac-Ceraj, & Polz, 2004; Cilia, Lafay, & Christen, 1996; Michon et al., 2010; Pei et al., 2010; Rokas, Williams, King, & Carroll, 2003). Multi-locus sequence analysis/typing (MLSA/MLST) is a nucleotide sequence- based approach for the unambiguous characterization of prokaryotes via the Internet, which directly characterizes DNA sequence variations in a set of housekeeping genes and evaluates relationships between strains based on their unique allelic profiles or sequences (Maiden, 2006).
    [Show full text]
  • Production of an Antibiotic-Like Activity by Streptomyces Sp. COUK1 Under Different Growth Conditions Olaitan G
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2014 Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions Olaitan G. Akintunde East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biology Commons Recommended Citation Akintunde, Olaitan G., "Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions" (2014). Electronic Theses and Dissertations. Paper 2412. https://dc.etsu.edu/etd/2412 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions A thesis presented to the faculty of the Department of Health Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology by Olaitan G. Akintunde August 2014 Dr. Bert Lampson Dr. Eric Mustain Dr. Foster Levy Keywords: Streptomyces, antibiotics, natural products, bioactive compounds ABSTRACT Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions by Olaitan Akintunde Streptomyces are known to produce a large variety of antibiotics and other bioactive compounds with remarkable industrial importance. Streptomyces sp. COUK1 was found as a contaminant on a plate in which Rhodococcus erythropolis was used as a test strain in a disk diffusion assay and produced a zone of inhibition against the cultured R.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Genome Mining Coupled with OSMAC-Based Cultivation Reveal Differential Production of Surugamide a by the Marine Sponge Isolate Streptomyces Sp
    microorganisms Article Genome Mining Coupled with OSMAC-Based Cultivation Reveal Differential Production of Surugamide A by the Marine Sponge Isolate Streptomyces sp. SM17 When Compared to Its Terrestrial Relative S. albidoflavus J1074 Eduardo L. Almeida 1 , Navdeep Kaur 2, Laurence K. Jennings 2 , Andrés Felipe Carrillo Rincón 1, Stephen A. Jackson 1,3 , Olivier P. Thomas 2 and Alan D.W. Dobson 1,3,* 1 School of Microbiology, University College Cork, T12 YN60 Cork, Ireland; [email protected] (E.L.A.); [email protected] (A.F.C.R.); [email protected] (S.A.J.) 2 Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland; [email protected] (N.K.); [email protected] (L.K.J.); [email protected] (O.P.T.) 3 Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland * Correspondence: [email protected] Received: 12 August 2019; Accepted: 24 September 2019; Published: 26 September 2019 Abstract: Much recent interest has arisen in investigating Streptomyces isolates derived from the marine environment in the search for new bioactive compounds, particularly those found in association with marine invertebrates, such as sponges. Among these new compounds recently identified from marine Streptomyces isolates are the octapeptidic surugamides, which have been shown to possess anticancer and antifungal activities. By employing genome mining followed by an one strain many compounds (OSMAC)-based approach, we have identified the previously unreported capability of a marine sponge-derived isolate, namely Streptomyces sp. SM17, to produce surugamide A.
    [Show full text]
  • Schneider-Dissertation-2019
    Biosynthetic Investigation, Synthesis, and Bioactivity Evaluation of Putative Peptide Aldehyde Natural Products From the Human Gut Microbiota The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Schneider, Benjamin Aaron. 2019. Biosynthetic Investigation, Synthesis, and Bioactivity Evaluation of Putative Peptide Aldehyde Natural Products From the Human Gut Microbiota. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029686 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA !"#$%&'()'"*+,&-)$'"./'"#&0+1%&'()$"$0+/&2+!"#/*'"-"'%+3-/45/'"#&+#6+75'/'"-)+7)8'"2)+ 942)(%2)+:/'5;/4+7;#25*'$+6;#<+'()+=5</&+>5'+?"*;#@"#'/+ ! "!#$%%&'()($*+!,'&%&+(&#!! -.! /&+0)1$+!")'*+!234+&$#&'! (*! 54&!6&,)'(1&+(!*7!84&1$%('.!)+#!84&1$3)9!/$*9*:.! ! ! $+!,)'($)9!7;97$991&+(!*7!(4&!'&<;$'&1&+(%! 7*'!(4&!#&:'&&!*7! 6*3(*'!*7!=4$9*%*,4.! $+!(4&!%;-0&3(!*7! 84&1$%('.! ! ! >)'?)'#!@+$?&'%$(.! 8)1-'$#:&A!B"! ! ! ",'$9!CDEF! ! ! G!CDEF!/&+0)1$+!")'*+!234+&$#&'! "99!'$:4(%!'&%&'?&#H! ! ! 6$%%&'()($*+!"#?$%*'I!='*7&%%*'!J1$9.!=H!/)9%K;%!! /&+0)1$+!")'*+!234+&$#&'+ ! !"#$%&'()'"*+,&-)$'"./'"#&0+1%&'()$"$0+/&2+!"#/*'"-"'%+3-/45/'"#&+#6+75'/'"-)+7)8'"2)+ 942)(%2)+:/'5;/4+7;#25*'$+6;#<+'()+=5</&+>5'+?"*;#@"#'/+
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE 1. PERSONAL INFORMATION 1.1 NAME: Sterling Gaylen Bradley 1.2 PLACE OF BIRTH: Springfield, MO 1.3 CITIZENSHIP: U. S. A. 1.4 MARITAL STATUS: Married, 5 adult children 1.5 HOME ADDRESSES: 234 Cedar Club Circle (residence) Chapel Hill NC 27517-2712 phone (717) 903-7533 email [email protected] 2. EDUCATION Northwestern University, Evanston, Illinois, 1950 to 1954. Specialization: Microbiology; Minor: Biochemistry. Degrees conferred: M. S. (1952) and Ph. D. (1954) Missouri State University, Springfield, Missouri, 1947 to 1950. Majors: Biology and Chemistry; Minor: Mathematics. Degrees conferred, B.A. and B.S. 3. POSTDOCTORAL TRAINING or SPECIAL EXPERIENCE Postdoctoral Fellow, University of Wisconsin, Department of Genetics, 1954 to 1956 Duke University, Durham, North Carolina, Medical Mycology, Summer, 1957 Visiting Scientist, Cambridge University, UK, Department of Pharmacology, 1978 New England Biolabs Workshop Molecular Biol. Biotechnol., Smith College, Summer 1994 4. ACADEMIC APPOINTMENTS or OTHER SIGNIFICANT WORK EXPERIENCE Consultant. Biocritique, 2009 to date. Visiting Professor, Penn State Univ. College of Medicine, Dept. Biochem. & Molec. Biol July 1, 2005-2012, Dept. Pharmacology May 2001 to June 2007; Dept. Humanities, July 1999- June 2001.Interim Director Technology Development, Penn State University, 16 July 2005 -2012. Senior Associate Director of Research Admin., Penn State Univ., 1 July 2000 to 30 June 2005 Senior Associate Director of Technology Transfer, Penn State Univ., 1 Oct. 1999 to 30 June 2000 Vice President for Academic Affairs, University of Maryland Biotechnology Institute, 1 July 1996- 30 June 1999 Professor, Department of Microbiology and Immunology, Virginia Commonwealth University, 1968 to 1996 Dean, School of Basic Health Sciences, Virginia Commonwealth University, 1982 to 1993; Dean emeritus, 1996 to date.
    [Show full text]
  • Chemical Interrogation of Cell Division in Streptomyces
    CHEMICAL INTERROGATION OF CELL DIVISION IN STREPTOMYCES CHEMICAL INTERROGATION OF SPORULATION AND CELL DIVISION IN STREPTOMYCES By CHARUL JANI, M.Sc. Wayne State University, 2009 A Thesis Submitted to the School of Graduate Studies at McMaster University in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Charul Jani, May 2015 DOCTOR OF PHILOSOPHY (2015) McMaster University (Biochemistry & Biomedical Sciences) Hamilton, Ontario TITLE: Chemical Interrogation Of Sporulation And Cell Division In Streptomyces AUTHOR: Charul Jani, M.S. (Wayne State University) SUPERVISOR: Professor J.R. Nodwell NUMBER OF PAGES: xiv, 184 ii ABSTRACT Cell division is essential for spore formation but not for viability in the filamentous streptomycetes bacteria. Failure to complete cell division instead blocks spore formation, a phenotype that can be visualized by the absence of gray (in Streptomyces coelicolor) and green (in Streptomyces venezuelae) spore-associated pigmentation. The streptomycetes divisome is however, similar to that of other prokaryotes. We hypothesized chemical inhibitors of sporulation in model streptomycetes might interfere with cell division in rod shaped bacteria. To test this, we investigated 196 compounds that inhibit sporulation in Streptomyces coelicolor. We show that 19 of these compounds cause filamentous growth in Bacillus subtilis, consistent with impaired cell division. One of the compounds is a DNA damaging agent and inhibits cell division by activating the SOS response. The remaining 18 act independently of known stress responses and may therefore act on the divisome or on divisome positioning and stability. Three of the compounds (Fil-1, 2 and 3) confer distinct cell division defects on B.
    [Show full text]
  • Streptomyces Monashensis Sp. Nov., a Novel Mangrove Soil
    www.nature.com/scientificreports Corrected: Author Correction OPEN Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Received: 13 September 2018 Accepted: 21 January 2019 Malaysia with antioxidative Published online: 28 February 2019 potential Jodi Woan-Fei Law1, Hooi-Leng Ser1,2,3, Nurul-Syakima Ab Mutalib 4, Surasak Saokaew 1,5,6, Acharaporn Duangjai1,5,7, Tahir Mehmood Khan2,8, Kok-Gan Chan 9,10, Bey-Hing Goh2,3,5 & Learn-Han Lee1,3,5 A new Streptomyces species discovered from Sarawak mangrove soil is described, with the proposed name – Streptomyces monashensis sp. nov. (strain MUSC 1JT). Taxonomy status of MUSC 1JT was determined via polyphasic approach. Phylogenetic and chemotaxonomic properties of strain MUSC 1JT were in accordance with those known for genus Streptomyces. Based on phylogenetic analyses, the strains closely related to MUSC 1JT were Streptomyces corchorusii DSM 40340T (98.7%), Streptomyces olivaceoviridis NBRC 13066T (98.7%), Streptomyces canarius NBRC 13431T (98.6%) and Streptomyces coacervatus AS-0823T (98.4%). Outcomes of DNA–DNA relatedness between strain MUSC 1JT and its closely related type strains covered from 19.7 ± 2.8% to 49.1 ± 4.3%. Strain MUSC 1JT has genome size of 10,254,857 bp with DNA G + C content of 71 mol%. MUSC 1JT extract exhibited strong antioxidative activity up to 83.80 ± 4.80% in the SOD assay, with signifcant cytotoxic efect against colon cancer cell lines HCT-116 and SW480. Streptomyces monashensis MUSC 1JT (=DSM 103626T = MCCC 1K03219T) could potentially be a producer of novel bioactive metabolites; hence discovery of this new species may be highly signifcant to the biopharmaceutical industry as it could lead to development of new and useful chemo-preventive drugs.
    [Show full text]
  • Streptomyces As a Source of Geosmin and 2-Methylisoborneol Associated Taste and Odour Episodes in Drinking Water Reservoirs
    Streptomyces as a Source of Geosmin and 2-methylisoborneol Associated Taste and Odour Episodes in Drinking Water Reservoirs Elise Anne Asquith BEnvScMgt (Hons) A thesis submitted to the University of Newcastle, Australia, in fulfilment of requirements for admission to the degree of Doctor of Philosophy February 2015 1 DECLARATION The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968. ………………………………….. Elise Anne Asquith I ACKNOWLEDGEMENTS There are a number of individuals who have been of immense support during my PhD candidature who I wish to acknowledge. It has been a challenging and enduring experience, but the end result has to be recognised as a great sense of academic achievement and personal gratification. I would like to express my deep appreciation and gratitude to my supervisors. Dr Craig Evans has undoubtedly been the most important person guiding my research over the past three years and has been a tremendous mentor for me. I am truly grateful for his advice, patience and support. In particular, I wish to thank him for accompanying me on all of my visits to Grahamstown and Chichester Reservoirs and generously dedicating much time to reviewing my thesis.
    [Show full text]
  • The Conserved Actinobacterial Two-Component System Mtrab
    fmicb-08-01145 June 27, 2017 Time: 14:11 # 1 ORIGINAL RESEARCH published: 28 June 2017 doi: 10.3389/fmicb.2017.01145 The Conserved Actinobacterial Two-Component System MtrAB Coordinates Chloramphenicol Production with Sporulation in Streptomyces venezuelae NRRL B-65442 Edited by: Yuji Morita, 1† 2† 1 1 2 Aichi Gakuin University, Japan Nicolle F. Som , Daniel Heine , Neil A. Holmes , John T. Munnoch , Govind Chandra , Ryan F. Seipke1,3, Paul A. Hoskisson4, Barrie Wilkinson2* and Matthew I. Hutchings1* Reviewed by: Margarita Díaz, 1 School of Biological Sciences, University of East Anglia, Norwich, United Kingdom, 2 Department of Molecular Microbiology, University of Salamanca, Spain John Innes Centre, Norwich, United Kingdom, 3 School of Molecular and Cellular Biology, Astbury Centre for Structural Marie Elliot, Molecular Biology, University of Leeds, Leeds, United Kingdom, 4 Strathclyde Institute of Pharmacy and Biomedical McMaster University, Canada Sciences, University of Strathclyde, Glasgow, United Kingdom David L. Jakeman, Dalhousie University, Canada Streptomyces bacteria make numerous secondary metabolites, including half of all *Correspondence: Barrie Wilkinson known antibiotics. Production of antibiotics is usually coordinated with the onset of [email protected] sporulation but the cross regulation of these processes is not fully understood. This Matthew I. Hutchings [email protected] is important because most Streptomyces antibiotics are produced at low levels or †These authors have contributed not at all under laboratory conditions and this makes large scale production of these equally to this work. compounds very challenging. Here, we characterize the highly conserved actinobacterial two-component system MtrAB in the model organism Streptomyces venezuelae and Specialty section: This article was submitted to provide evidence that it coordinates production of the antibiotic chloramphenicol Antimicrobials, Resistance with sporulation.
    [Show full text]