Studies on Hypophosphorous Acid. Part I V. Its Reaction with Cupric Chloride

Total Page:16

File Type:pdf, Size:1020Kb

Studies on Hypophosphorous Acid. Part I V. Its Reaction with Cupric Chloride View Article Online / Journal Homepage / Table of Contents for this issue 1624 MITCHELL : STUDIES ON HYPOPHOSPHOROUS ACID. PART IV. CXC1V.-Studies on Hypophosphorous Acid. Part I V. Its Reaction with Cupric Chloride. By ALECDUNCAN MITCHELL. IT has been shown in previous communications (T., 1920, 117, 1322; 1921, 119, 1266) that hypophosphorous acid effects re- duction by means of an " active " form, which is designated, for purposes of formulation, as the fully hydroxylated compound H,PO,, but the precise constitution will, it is hoped, be eluci- dated by some projected experiments with alkyl derivatives-the dialkylphosphinic and alkylphosphinous acids. The active form reduces iodine and mercuric chloride rapidly, and the velocity of reduction is independent of the concentration of iodine or mer- curic chloride (unless it is very dilute) and is conditioned solely by the rate of formation of the active form from hypophosphorous acid molecules. It follows that the molecules are normally in Published on 01 January 1922. Downloaded by Cornell University Library 04/10/2016 02:07:31. equilibrium with a small proportion (probably much less than 1 per cent.) of this active form. Baly has suggested (Ann.Reports, 1921, 18, 41) that this time-reaction is due to the activation of the molecules by the catalyst, which is giving to them the required energy increment, but this is a physical generalisation which doubt- less constitutes a stage in all reactions, and in this case a purely chemical explanation for the time-reaction is quite possible. The oxy-acids of phosphorus exhibit a marked tendency to assume the quinquevalent form, as is shown by the monobasicity of hypo- phosphorous acid and the dibasicity of phosphorous acid, and Arbuzov (J.Russ. Phys. Chem. Xoc., 1906,38,687)has shown that the trialkyl oxygen-esters of phosphorous acid readily pass into the quinquevalent form, P(OR), -+ PRO(OR),, so that the possible existence of the tervalent form of hypophosphorous acid, HP(OH),, which would be very reactive, supplies a chemical explanation. View Article Online ITS REACTION WITH CUPRIC CHLORIDE. 1625 The reaction between hypophosphorous acid and copper sul- phate is interesting in that the salt is reduced ultimately to the hydride, Cu,H,. The products of this reaction in weakly acidic solution have been studied by Firth and Myers (T., 1911, 99, 1329), who showed that one obtained a mixture of hydride, phosphate, and suboxide, and it appeared to be of interest to follow the course of the reaction kinetically. A few preliminary experiments showed, however, that it was even more complicated than anticipated, and, in the hope of elucidating the earlier stages of the reaction, cupric chloride was studied instead, since, in the dilutions used, this is reduced only to cuprous chloride, and the hypophosphorous acid is oxidised only to phosphorous acid. It is found that, in this case also, the velocity of reduction is independent of the concen- tration of the copper if it exceeds decimolar, and is almost identical with the -rates of reduction of iodine and mercuric chloride in similar circumstances, being limited by the rate of change of hypo- phosphorous acid to its active form. The chief interest centred, therefore, in the examination of the reaction in very dilute solutions of copper chloride, where this reaction becomes so slow that it is of a lower order than that of the change H,PO,-+H,PO,, and is then the only measurable reaction. The change is repkesented stoicheiometrically by the equation : H,PO, + 2CuC1, = H,PO, + Cu,Cl, + 2HC1, but mathematical analysis shows that this reaction also is composed of two stages. The results are necessarily very complex, and their interpretation rests, to some extent, on circumstantial evidence, since their complete mathematical treatment (although fairly confirmatory so far as it goes) is limited by lack of data as to the two-stage ionisation of cupric chloride. It is hoped, however, Published on 01 January 1922. Downloaded by Cornell University Library 04/10/2016 02:07:31. that the results will prove of use in the further study of the reaction with copper sulphate, which is relatively so slow that it is inde- pendent of the hypophosphorous acid change, and depends only on the reaction between “ active’’ acid and copper sulphate. The discussion can be divided into three parts : (a) Comparatively strong copper chloride solutions in which the slowest reaction is that concerning the change of hypophosphorous acid to its active form, and in which this constitutes the measur- able reaction ; (b) Weak copper chloride solutions, in which the foregoing reaction is relatively so fast as not to affect the measured velocity, which concerns only the subsequent changes ; and (c) Solutions intermediate in strength between these two classes, in which the reactions are of the same order and are superimposed. Gase (a)-For copper solutions of this class, the method of treat- VOL. CXXII; 3L View Article Online 1626 MITCHELL: STUDIES IN HYPOPHOSPHOROUS ACID. PART IV. ment adopted in previous communications (be.cit.) i6 applied, with a slight modification due to the effect of the copper chloride on the ionisation of the hydrochloric acid. The “total ion” hypothesis, of which use has previously been made, assumes that, in a mixture of two binary electrolytes having a common ion, each has the same degree of ionisation that it would have if present alone in the same total ion Concentration. This has not been extended to ternary electrolytes with any certainty, but is here adapted to the case of copper chloride as follows : the hypothesis is obviously equivalent to stating that the degree of ionisation for each electrolyte is the same as it would have been if present alone with the same concentration of the common ion, and in this form it is applied to the case under discussion. This modification is equally probable on theoretical grounds, in view of the theories of isohydric solutions, and is simpler in its application ; moreover, as the effect of the copper chloride in depressing the ionisation of the hydrochloric acid, as found by graphical means on this hypo- thesis, rarely exceeds 7 per cent., it is unlikely to cause an actual error of more than 1 per cent., but the error in the case of copper chloride itself may be much greater-a point which is discussed more fully later. As before, for the reaction H,PO,-+H,PO, catalysed by hydrogen ions, one deduces the equation since the “active” acid is being utilised as fast as it is formed and the reaction is therefore direct and not reversible ; l is the initial concentration of hypophosphorus acid and a its degree of ionisation, whence Z(l - a) is the concentration of the undis- sociated molecules ; h is the total hydrogen-ion concentration Published on 01 January 1922. Downloaded by Cornell University Library 04/10/2016 02:07:31. initially, and k is the velocity coefficient for the direct equilibrium change (kl,that for the reverse change, not being concerned in these cases). After a time t, s is the concentration of phosphorous acid formed or of hypophosphorous acid oxidised ; and the fore- going symbols have suffix t added : h, however, is nearly a linear function of s, and may be replaced by (h + ms), m being the mean coefficient of increase of h with s in any particular experiment; (1 - oca) is the value of (1 - a) half-way through each particular period. The integration of (1) gives : (1 - a=)(h + ml)kt = log& + m)/h+ logel/(l - s) = log, htth + log, J/lt (2) The values of k in case (a) are moderately concordant and the mean (111 x 10 - 6) is in fair agreement with those obtained in the cases of iodine and mercuric chloride, 128 x 10- and 134 x 10- 5, View Article Online ITS REACTION WITH CTJTRIC CHLORIDE. 1627 respectively, there being a, variety of causes which makes the lower value less accurate. Experiment 25 is shown in detail and the remainder are summarised in Table I. Experiment 25. a = 99.7, m = 1.438, aCuCl,= 0-517, UHCl = 0.850. f. 2s. 1-8. H'HCl, a- 1 -UH' H*p. h. kx 105. 0 - 21.06 - 0.553 - 12.10 12.10 - 10 2-88 19-62 2-45 0-527 0-460 11.53 13.98 109 20 5.84 18.14 4-97 0.500 0.473 10.95 18.92 106 30 9.04 16-54 7.69 0-478 0.487 10.46 18-15 105 45 14.16 13-92 12.04 0.447 0.505 9.79 21.83 106 60 19-96 11.08 16.97 0.417 0-522 9-13 26.10 106 75 25.32 8.40 21-52 0.391 0.538 8.56 30.08 107 90 30.52 5-80 25.94 0-370 0.553 8-10 34.04 110 Mean 107 X TABLEI. Expt. a. 1. a. R.p = h. k x 105. uAc1. acuci* *26 19.76 21-96 0.544 12-22 104 0.913 0.700 30 39.72 20.60 0.553 11-83 111 0.885 0.637 33 79.76 21.06 0.549 11-83 107 0.859 0.551 33a 78.56 21-96 0.544 12.22 113 0.839 0.551 36 30.00 20.60 0.553 11.83 110 0.895 0.668 37 49.84 20.60 0.553 11.83 111 0.878 0.616 Mean 109 x Experiment 65. t. 28. 1-8. H' HCl- U. I-uH. H*p. h. k x 105. 0 - 10.58 - 0-650 - 7-02 7.02 - 5 0.27 10.44 0.23 0.646 0.352 6.98 7.21 104 10 0-58 10.29 0.50 0-640 0.354 6.91 7.41 106 20 1.18 9-98 1-03 0.630 0-360 6.80 7-83 106 30 1.83 9.66 1.57 0.618 0.365 6-68 8.25 105 45 2-88 9.14 2.48 0.602 0.372 6.50 8-98 107 Published on 01 January 1922.
Recommended publications
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • United States Patent [19] [11] Patent Number: 5,368,832 Buckholtz Et A1
    USOO5368832A United States Patent [19] [11] Patent Number: 5,368,832 Buckholtz et a1. [45] Date of Patent: Nov. 29, 1994 [54] ZERO DISCI'IARGE PRQCESS FOR 4,330,515 5/1982 Campbell .......................... .. 423/316 MANUFACI'URING OF PHOSPHOROUS 4,380,531 4/1983 Wisnouskas ....................... .. 423/316 ACID AND HYPOPHOSPHOROUS ACID FOREIGN PATENT DOCUMENTS [75] 1I1v¢m°rs= HWY E- Buckh‘?tz, Lewiswn; 0007493 2/1980 European Pat. Off. .......... .. 423/317 Mohan S. Saran, Grand Island, both 254166 11/1986 Japan _ Of N.Y.; Frederick C. Leiterf, 7900920 11/1979 WIPO ............................... .. 423/316 Madison; David A. Flautt, Ashtabula, both of Ohio Primary iExaminer-Michael Lewis Assistant Examiner—-Stephen G. Kalinchak [73] Assignee: gggiggg?gg? Corporation’ gltltglrgey, Agent, or Firm-Wayne A. Jones; Richard D. [21] Appl. No.: 711,841 [57] ' ABS Cr [22] Flled' : Jun . 7 ’ 1991 Dlsclosed. 1s. a method of making. phosphorous acid. or [51] Int. Cl.5 .................. .. C01B 25/165; COlB 25/163 hypophosphomus acid by reacting hydrogen chloride U:S. C1. ................................... .. 423/ 316; 423/ 317 with a sodium phosphite or a sodium hypophosphite’ [58] Field of Search ............. .. 423/ 167, 307, 316, 317, respectively, in the presence of water to precipitate 423/321 R sodium chloride crystals and form the acid. The acid is [56] References Cited separated from the sodium chloride crystals and-can be US PATENT DOCUMENTS passed through amon exchange column that 1s pref erably loaded with phosphite or hypophosphite lons, 2,595,198 4/1952 Leffore et a1. ............ .. 423/316 respectively, to remove'residual chloride ions_ 2,711,388 6/1955 Mottern et a1.
    [Show full text]
  • EXTRACTION EQUILIBRIA of HYPOPHOSPHOROUS, PHOSPHOROUS and PHOSPHORIC ACIDS by TOLUENE SOLUTION of TRI-N-OCTYLAMINE
    ARS SEPARATORIA AA ACTA Ars Separatoria Acta 2 (2003) 125-138 www.ars_separatoria.chem. uni.torun.pl EXTRACTION EQUILIBRIA OF HYPOPHOSPHOROUS, PHOSPHOROUS AND PHOSPHORIC ACIDS BY TOLUENE SOLUTION OF TRI-n-OCTYLAMINE Takashi SANA2, Koichiro SHIOMORI1, and Yoshinobu KAWANO1* 1 Department of Applied Chemistry, Miyazaki Univ., Miyazaki 889-2192, Japan e-mail: [email protected] 2 Yoshitama Surface Finishing Co., LTD, Nobeoka 882-0024, Japan ABSTRACT The extraction equilibria of hypophosphorous, phosphorous and phosphoric acids with tri-n-octylamine as an extractant in toluene were measured at 303K. Under these conditions, undissociated acid (A') reacts with the amine (B) to form various complexes in toluene. The complexes formed and equilibrium constants were estimated by a graphical analysis method. The complexes formed in these systems were found to be A'nB type species for hypophosphorous acid, A'nBm type species for phosphorous acid, (A'B)n type species for phosphoric acid, respectively. The experimental results could be explained by reaction models and equilibrium constants for each acid. Keywords: Hypophosphorous acid; Phosphorous acid; Phosphoric acid; Tri-n-octylamine; Extraction equilibrium INTRODUCTION Solvent extraction gives the advantage of selective separation in the recycling of useful materials [1,2]. The nonelectrolytic nickel-plating wastewater consists of nickel, some organic acids, hypophosphorous acid, phosphorous acid, and phosphoric acid. In order to design a new wastewater treatment equipment of nonelectrolytic nickel-plating, it is necessary to clarify the extraction equilibrium and kinetics for each component contained in wastewater. For that fundamental knowledge, the extraction equilibrium and kinetic for nickel with 5-dodecylsalicylaldoxime [3,4] as well as * Corresponding author 125 Sana, et.al.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0103330 A1 Liu Et Al
    US 20080 103330A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0103330 A1 Liu et al. (43) Pub. Date: May 1, 2008 (54) PROCESS FOR THE PREPARATION OF Publication Classification HIGHLY PURIFIED, (51) Int. Cl. DALKYDTHOPHOSPHINC COMPOUNDS C07F 9/30 (2006.01) C07F 9/34 (2006.01) (76) Inventors: Leo Zhaoqing Liu, Shanghai (CN); (52) U.S. Cl. ............................................... 562/9:568/14 Gary Woodward, Northwich (57) ABSTRACT Cheshire (GB) An improved process for production of dialkyldithiophos phinic acid including Sulfurizing a purified dialkylphosphinic Correspondence Address: acid by: reacting a hypophosphorous acid or salt with a sto Kevin E. McVeigh ichiometric excess of an alpha olefin in the presence of a free RHODANC. radical initiator to form a reaction product comprising 8 Cedar Brook Drive monoalkylphosphinic acid and dialkylphosphinic acid; add Cranbury, NJ 08512-7500 ing Sufficient aqueous base to the reaction product to i) form the salts of the phosphinic acids, and ii) establish an aqueous phase and an organic phase, wherein a monoalkylphosphinic (21) Appl. No.: 11/977,620 acid solubilizes into an aqueous phase; separating the organic phase from the aqueous phase; acidifying the organic phase (22) Filed: Oct. 25, 2007 and removing the olefin from the organic phase; isolating the purified dialkylphosphinic acid product; and Sulfurizing the Related U.S. Application Data purified dialkylphosphinic acid product to form a dialky dithiophosphinic acid. The present invention also provides a (60) Provisional application No. 60/854.279, filed on Oct. process for preparing purified dialkylthiophosphinic chlo 25, 2006, provisional application No. 60/914,558, ride, and a process for preparing purified dialkylmonothio filed on Apr.
    [Show full text]
  • Safe Handling and Disposal of Chemicals Used in the Illicit Manufacture of Drugs
    Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Safe handling and disposal of chemicals used in the illicit manufacture of drugs United Nations publication USD 26 Printed in Austria ISBN 978-92-1-148266-9 Sales No. E.11.XI.14 ST/NAR/36/Rev.1 V.11-83777—September*1183777* 2011—300 Guidelines for the Safe handling and disposal of chemicals used in the illlicit manufacture of drugs UNITED NATIONS New York, 2011 Symbols of United Nations documents are composed of letters combined with figures. Mention of such symbols indicates a reference to a United Nations document. ST/NAR/36/Rev.1 UNITED NATIONS PUBLICATION Sales No. E.11.XI.14 ISBN 978-92-1-148266-9 eISBN 978-92-1-055160-1 © United Nations, September 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Requests for permission to reproduce this work are welcomed and should be sent to the Secretary of the Publications Board, United Nations Headquarters, New York, N.Y. 10017, U.S.A. or also see the website of the Board: https://unp.un.org/Rights.aspx. Governments and their institutions may reproduce this work without prior authoriza- tion but are requested to mention the source and inform the United Nations of such reproduction.
    [Show full text]
  • Process for the Production of Substituted Aromatic Hydrocarbons
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 663 379 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: C07C 17/35, C07C 25/13 of the grant of the patent: 23.12.1998 Bulletin 1998/52 (21) Application number: 95300226.8 (22) Date of filing: 13.01.1995 (54) Process for the production of substituted aromatic hydrocarbons from corresponding anilines by dediazoniation Verfahren zur Herstellung von substituierten aromatischen Kohlenwasserstoffen durch Dediazonierung der ubereinstimmenden Anilinen Procede pour la production d'hydrocarbures aromatiques substitues par dediazonisation des anilines correspondantes (84) Designated Contracting States: (74) Representative: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL Ellis-Jones, Patrick George Armine et al PT SE J.A. KEMP & CO. 14 South Square (30) Priority: 13.01.1994 GB 9400569 Gray's Inn London WC1R 5LX (GB) (43) Date of publication of application: 19.07.1995 Bulletin 1995/29 (56) References cited: WO-A-93/19026 (73) Proprietor: RHODIA LIMITED Watford, Herts WD1 1QM (GB) • CHEMICAL ABSTRACTS, vol. 115, no. 15, 14 October 1991, Columbus, Ohio, US; abstract no. (72) Inventors: 158599, K AKIN AMI T ET AL 'Indirect synthesis • Mercier, Claude of bromo-substituted aromatic compounds' & Sneyd Park, Bristol BS9 1 RU (GB) UBE KOGYO KOTO SENMON GAKKO KENKYU • Scott, Graham Vaughan HOKOKU (UKKHDQ,03864359);91; VOL.37,; Chew-Magna, Avon BS18 8SX (GB) PP.43-7, UBE TECH. COLL.;UBE; JAPAN (JP) • PATENT ABSTRACTS OF JAPAN vol. 015, no. 163 (C-0826) 24 April 1991 & JP-A-03 034 944 (TOOKEMU PROD:KK) 14 February 1991 DO O) Is- CO CO CO CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted.
    [Show full text]
  • 21 CFR Ch. I (4–1–12 Edition) § 184.1764
    § 184.1764 21 CFR Ch. I (4–1–12 Edition) limitation other than current good § 184.1768 Sodium lactate. manufacturing practice. The affirma- (a) Sodium lactate (C3H5O3Na, CAS tion of this ingredient as generally rec- Reg. No. 72–17–3) is the sodium salt of ognized as safe (GRAS) as a direct lactic acid. It is prepared commercially human food ingredient is based upon by the neutralization of lactic acid the following current good manufac- with sodium hydroxide. turing practice conditions of use: (b) The ingredient must be of a pu- (1) The ingredient is used as a pH rity suitable for its intended use. control agent as defined in § 170.3(o)(23) (c) In accordance with § 184.1(b)(1), of this chapter and as a processing aid the ingredient is used in food with no as defined in § 170.3(o)(24) of this chap- limitation other than current good ter. manufacturing practice. This regula- (2) The ingredient is used in foods at tion does not authorize its use in in- levels not to exceed current good man- fant foods and infant formulas. The af- ufacturing practice. firmation of this ingredient as gen- (d) Prior sanctions for this ingredient erally recognized as safe (GRAS) as a different from the uses established in direct human food ingredient is based this section do not exist or have been upon the following current good manu- waived. facturing practice conditions of use: (1) The ingredient is used as an emul- [48 FR 52444, Nov. 18, 1983] sifier as defined in § 170.3(o)(8) of this chapter; a flavor enhancer as defined in § 184.1764 Sodium hypophosphite.
    [Show full text]
  • Electrolytic Production of Hypophosphorous Acid
    Patentamt Europaisches || || 1 1| || || || || || || 1 1|| || || (19) J European Patent Office Office europeen des brevets (11) EP 0 701 860 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt. CI.6: B01 D 61/44, C01 B 25/1 65, 20.03.1996 Bulletin 1996/12 C25B 1/22 (21) Application number: 95111697.9 (22) Date of filing: 25.07.1995 (84) Designated Contracting States: • Thomson, Donald CH DE FR GB IT LI NL Northport, New York 1 1 768 (US) • Garay, Luis Henry (30) Priority: 16.09.1994 US 307923 Rockville Center, New York 1 1 570 (US) (71 ) Applicant: LeaRonal, Inc. (74) Representative: Hansen, Bernd, Dr. Dipl.-Chem. et Freeport, N.Y. 11 520 (US) al Hoffmann, Eitle & Partner, (72) Inventors: Patentanwalte, • Nobel, Fred I. Arabellastrasse 4 Sands Point, New York 1 1 050 (US) D.81 925 Munchen (DE) • Brasch, William Nesconset, New York 1 1 767 (US) (54) Electrolytic production of hypophosphorous acid (57) Methods for preparing hypophosphorous acid the insoluble anode to a cathode (24, 124) in electrical are disclosed comprising contacting an insoluble anode contact with the aqueous solution to generate H+ ions in (12,112) with an aqueous solution of hypophosphite ani- the aqueous solution thereby forming a hypophospho- ons (27, 127) and applying a current (30, 130) through rous acid solution. FIG. 1 o CO CO o r»- o Q_ LU Printed by Rank Xerox (UK) Business Services 2.9.13/3.4 1 EP 0 701 86050 A1 2 Description the anions are transported across an anion permeable membrane into the anolyte, where they are converted to FIELD OF THE INVENTION acids or halogens.
    [Show full text]
  • 5439 Hypophosphorous Acid
    Material Safety Data Sheet 255 Norman. EMERGENCY NUMBERS: Lachine (Montreal), Que (USA) CHEMTREC : 1(800) 424-9300 (24hrs) H8R 1A3 (CAN) CANUTEC : 1(613) 996-6666 (24hrs) (USA) Anachemia : 1(518) 297-4444 (CAN) Anachemia : 1(514) 489-5711 WHMIS Protective Clothing TDG Road/Rail WHMIS CLASS: E TDG CLASS: 8 PIN: UN1760 PG: III Section I. Product Identification and Uses Product name HYPOPHOSPHOROUS ACID CI# Not available. Chemical formula H3PO2 CAS# 6303-21-5 Synonyms Potassium citrate monohydrate, Tripotassium Code AC-5110P 2-hydroxy-1,2,3-propanecarboxylic acid, Tripotassium citrate monohydrate, AC-5110P, 47702 Formula weight 66.00 Supplier Anachemia Canada. Supersedes 255 Norman. Lachine (Montreal), Que H8R 1A3 Material uses For laboratory use only. Section II. Ingredients Name CAS # % TLV 1) HYPOPHOSPHOROUS ACID 6303-21-5 49-52 Not established by ACGIH 2) SODIUM SULFATE 7757-82-6 0-0.4 Not established by ACGIH 3) WATER 7732-18-5 48-51 Not established by ACGIH Toxicity values of the HYPOPHOSPHOROUS ACID: hazardous ingredients LD50: Not available. LC50: Not available. Section III. Physical Data HYPOPHOSPHOROUS ACID page 2/4 Physical state and Clear, colorless liquid. appearance / Odor pH (1% soln/water) Not available. Odor threshold Not available. Percent volatile 100% (w/w). ( Water). Freezing point -25°C Boiling point 108°C Specific gravity 1.21- 1.23 @ 25°C (Water = 1) Vapor density Not applicable. Vapor pressure Not applicable. Water/oil dist. coeff. Not available. Evaporation rate Not available. Solubility Miscible in water. Section IV. Fire and Explosion Data Flash point Not applicable. Flammable limits Not applicable.
    [Show full text]
  • The Effect of Monovalent Cations on Electroless Nickel Plating
    The Effect of Monovalent Cations On Electroless Nickel Plating By Glenn O. Mallory and Konrad Parker + + + The effect of increasing concentrations of NH4 , Li , Na of the Ni-P deposit deteriorate, as evidenced by increasing and K+ on plating rate and bath stability were investi- porosity and tensile stress. Blistering on aluminum is com- gated in a lactate-acetate EN plating solution. The mon after three MTOs. relationship between sulfate and phosphite salt The solubilities of alkali phosphite and sulfate salts are solubilities and metal turnovers was studied. Deposi- shown in Tables 2 and 3. As expected, the ammonium salts tion potentials, microstructures and phosphorus are most soluble. The nickel and lithium phosphites have the contents were also determined. lowest solubilities in water. Because a mixture of sodium and potassium sulfates is present in the used plating bath, the ince its industrial development in the 1950s, electro- actual phosphite solubilities are lower than in water alone. less nickel (EN) has found increasing use on a wide The nickel phosphite solubility depends on the chelating variety of parts, primarily for functional engineering acids used in the EN formulation, and which control the “free S applications requiring corrosion and/or wear resis- nickel” ion concentration.2 tance. Although its growth has slowed in the last few years, Sodium and potassium sulfate often crystallize when the the total value of EN coatings in the U.S. is estimated at $200 spent bath is stored below 5 °C. The phosphite anion can be million.1 precipitated as the calcium or magnesium salt; however, the EN plating has three major disadvantages compared to plating solution will then contain calcium or magnesium electrolytic nickel plating: cations that impair deposit properties.3 The use of lithium • High chemical cost ($0.40 to 0.70/L) salts in an EN bath has not been previously reported.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 27-May-2008 Revision Date 27-Dec-2020 Revision Number 2 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Hypophosphorous acid, 50% w/w aqueous solution Cat No. : 14142 Synonyms Phosphinic acid. Molecular Formula H3 O2 P Unique Formula Identifier (UFI) YG7D-UUM6-1W01-DTWD 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) Poison Centre - Emergency Ireland : National Poisons Information Centre (NPIC) - information services 01 809 2166 (8am-10pm, 7 days a week) Malta : +356 2395 2000 Cyprus : +357 2240 5611 SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards ______________________________________________________________________________________________ ALFAA14142 Page 1 / 10 SAFETY DATA SHEET Hypophosphorous acid, 50% w/w aqueous solution Revision Date 27-Dec-2020 ______________________________________________________________________________________________ Based on available data, the classification criteria are not met Health hazards Skin Corrosion/Irritation Category 1 B (H314) Serious Eye Damage/Eye Irritation Category 1 (H318) Environmental hazards Based on available data, the classification criteria are not met Full text of Hazard Statements: see section 16 2.2.
    [Show full text]