The Antennae of Neopseustis Meyricki: 1Norphology and Phylogenetic I1nplications, with Special Reference to the Sensilla Basicon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae. -
Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case. -
Zootaxa, the Genus Neopseustis
Zootaxa 2089: 10–18 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) The genus Neopseustis (Lepidoptera: Neopseustidae) from China, with description of one new species LIUSHENG CHEN1, MAMORU OWADA2, MIN WANG1,3 & YANG LONG1 1Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China 2Department of Zoology, National Museum of Nature and Science, Tokyo, Japan 3Corresponding author. E-mail: [email protected] Abstract The members of the genus Neopseustis Meyrick, 1909 from China are reviewed, and a key to the species is given. Neopseustis moxiensis Chen & Owada is described as a new species, characterized by the monotonous fuscous hindwings, and by the compressed clavate tegumenal lobes as well as slender uncinate apex of valvae. All the type specimens of new species are deposited in the Department of Entomology, South China Agricultural University, Guangzhou, China. Neopseustis fanjingshana Yang, 1988 (type locality: Guizhou) is redescribed on the basis of a male specimen, collected in Hunan. Diagnoses, notes and collecting data are given for N. bicornuta, N. sinensis, N. meyricki and N. archiphenax. A checklist of the Neopseustidae (4 genera, 13 species) is provided with their distribution. Key words: Lepidoptera, Neopseustidae, Neopseustis, Neopseustis moxiensis, Neopseustis fanjingshana, new species, China Introduction The family Neopseustidae is a member of the primitive moth clade, Homoneurous Glossata, and hitherto was known to consist of four genera with twelve species, i.e., Neopseustis and Nematocentropus of Asia, and Apoplania and Synempora of South America. The genus Neopseustis was erected by Meyrick (1909), type species: N. -
Morphology and Phylogenetic Implications (Lepidoptera: Mnesarchaeoidea)
BULLETIN DE L'INSTJTUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE ENTOMOLOGIE, 78: 133-143, 2008 BULLETIN VAN HET KONlNKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN ENTOMOLOGIE, 78: 133-143, 2008 Antennal sensilla in the endemic New Zealand moth family Mnesarchaeidae: morphology and phylogenetic implications (Lepidoptera: Mnesarchaeoidea) By Michel J. FAUCHEUX, and George W. GIBBS Abstract de l'un des deux groupes d'especes coura=ent reconnus. Les sensi lles basiconiques ramifiees multipores sont presentes seulement A scanning electron microscope study of the antenna! sensilla in five dans le groupefa//ax (paracosma, espece l non decrite) tandis que species of Mncsarchaea, sole genus in the endemic New Zealand Jes sensilles auricillifonnes multipores et Jes sensilles styloconiques moth family Mnesarchaeidae was made to elucidate their potential atypiques a style court sont restreintes au groupe acuta (acuta, phylogenetic significance. Twelve sensillum types are described. ji1silel/a, especc 2 non decrite). Eight are common to all the species: multi porous long sensilla Les Mnesarchaeidae partagent avec quelqucs autres families de ba iconica, multiporous sensilla trichodea, multiporous sensilla Lepidopteres homoneures la presence de sensilles styloconiques a coeloconica, uniporous sensilla chaetica, aporous sensil!a chaetica, long poil, et avec les Neopseustidae le groupement des pores chez aporous long-haired sensilla styloconica, aporous Bi.ihm's sensilla quelques sous-types de sensilles basiconiques (ex. le type ramifie and sensi -
Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution -
A Revision of the North American Moths of the Superfamily Eriocranioidea with the Proposal of a New Family, Acanthopteroctetidae (Lepidoptera]
A Revision of the North American Moths of the Superfamily Eriocranioidea with the Proposal of a New Family, Acanthopteroctetidae (Lepidoptera] DONALD R. DAVIS SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 251 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Taxonomy of Microlepidoptera
KFRI Research Report No. 361 Taxonomy of Microlepidoptera George Mathew Kerala Forest Research Institute An Institution of Kerala State Council for Science, Technology and Environment (KSCSTE) Peechi – 680 653, Thrissur, Kerala, India March 2010 KFRI Research Report No. 361 Taxonomy of Microlepidoptera (Final Report of the Project KFRI/ 340/2001: All India Coordinated Project on the Taxonomy of Microlepidoptera, sponsored by the Ministry of Environment and Forests, Government of India, New Delhi) George Mathew Forest Health Division Kerala Forest Research Institute Peechi-680 653, Kerala, India March 2010 Abstract of Project Proposal Project No. KFRI/340/2001 1. Title of the project: Taxonomy of Microlepidoptera 2. Objectives: • Survey, collection, identification and preservation of Microlepidoptera • Maintenance of collections and data bank • Development of identification manuals • Training of college teachers, students and local communities in Para taxonomy. 3. Date of commencement: March 2001 4. Scheduled date of completion: June 2009 5. Project team: Principal Investigator (for Kerala part): Dr. George Mathew Research Fellow: Shri. R.S.M. Shamsudeen 6. Study area: Kerala 7. Duration of the study: 2001- 2010 8. Project budget: Rs. 2.4 lakhs/ year 9. Funding agency: Ministry of Environment and Forests, New Delhi CONTENTS Abstract 1. Introduction………………………………………………………………… 1 1.1. Classification of Microheterocera………………………………………… 1 1.2. Biology and Behavior…………………………………………………….. 19 1.3. Economic importance of Microheterocera……………………………….. 20 1.4. General External Morphology……………………………………………. 21 1.5. Taxonomic Key for Seggregating higher taxa……………………………. 26 1.6. Current status of taxonomy of the group………………………………….. 28 2. Review of Literature……………………………………………………….. 30 2.1. Contributors on Microheterocera………………………………………….. 30 2.2. Microheteocera fauna of the world………………………………………… 30 2.3. -
02 October 2015 Radebeul-Germany
©Societas Europaea Lepidopterologica; download unter http://www.soceurlep.eu/ und www.zobodat.at XIXth European Congress Welcome .............................................................................................................................................................. 3 of Lepidopterology Programme ....................................................................................................................................................... 5 27 September – 02 October 2015 Monday, 28 September 2015 ........................................................................................................ 5 Radebeul · Germany Tuesday, 29 September 2015 ....................................................................................................... 7 Wednesday, 30 September 2015 ................................................................................................ 9 Thursday, 1 October 2015 ............................................................................................................ 10 Friday, 2 October 2015 ................................................................................................................... 14 Honouring Niels Peder Kristensen ............................................................................................... 15 Abstracts .......................................................................................................................................................... 16 Oral presentations .......................................................................................................................... -
Circumscriptional Names of Higher Taxa in Hexapoda
Bionomina 1: 15–55 (2010) ISSN 1179-7649 (print edition) www.mapress.com/bionomina/ Article BIONOMINA Copyright © 2010 • Magnolia Press ISSN 1179-7657 (online edition) Circumscriptional names of higher taxa in Hexapoda Nikita Julievich KLUGE Department of Entomology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia. <[email protected]>. Table of contents General nomenclatural principles . 16 Typified vs. circumscriptional names. 16 Type-based nomenclatures . 17 Type-based rank-based nomenclatures . 17 The type-based hierarchical nomenclature . 18 Another type-based nomenclature. 18 Circumscription-based nomenclatures . 18 The circumscriptional nomenclature. 19 Other rules for circumscription-based names . 20 Nomenclatures other than type-based and circumscription-based . 22 Application of circumscriptional nomenclature to high-level insect taxa . 22 Hexapoda . 25 Amyocerata. 26 Triplura . 26 Dermatoptera . 27 Saltatoria. 30 Spectra . 30 Pandictyoptera . 31 Parametabola . 34 Parasita . 34 Arthroidignatha. 36 Plantisuga . 38 Metabola . 39 Birostrata . 40 Rhaphidioptera . 42 Meganeuroptera . 42 Eleuterata . 42 Panzygothoraca. 43 Lepidoptera. 44 Enteracantha . 46 Acknowledgements . 47 References . 48 15 16 • Bionomina 1 © 2010 Magnolia Press KLUGE Abstract Testing non-typified names by applying rules of circumscriptional nomenclature shows that in most cases the traditional usage can be supported. However, the original circumscription of several widely used non-typified names does not fit the -
(Non-Ditrysian) (1975),Davls
The LepidopterologicalSocietyLepidopterological Society of Japan 98 ec 8 ua Tyb to Ga Vol. 33, No. 1 & 2, 1982 3. Review of the Higher Classificatien of the Lepidoptera, with Special Referenee to Lower Heteroneuralls Ebbe Schmiclt NIELsEN Zoological Museum, Copenhagen, Denmark Present address: Division of Entomology, CSIRO, P.O, Box 1700, Canberra City, A.C,T. 2601, Australia Our knowledge ofthe phylogeny (on the suborder level) of the Lepidoptera has increased markedly during the last four decades. primarily because of increasing studies of the morphelogy and diversity of the primitive (non-ditrysian) Lepidoptera and because ef the ayailability of a well-reasoned meth- odology (HENNiG, 1966) for phylegenetic analysis. - The first phylogenetic classification of the Lepidoptera proposed by HENN[G (1953 mainly based on HiNToN7s (1946) obseryations) has since proved basically correct and has bcen further substantiated by several authors (see discussion and further references in CoMMoN (1975), DAvls (1978) and KRisTEN- SEN & NIELsEN (l980, 1981)), The presently recognized phylogeny of the lowest Lepidoptera is presented in Fig, 1, and the phylogeny of the Heteroneura is illustrated in Fig, 2. T7ze sister-gromp qf the LEPIDOI)7:ERA, The orders Lepidoptera and Trichoptera constitute the Amphiesmenoptera, the monophyly of which is generally accepted and considered among the best documented within the Insecta (HENNiG, 1969; KRIsTENsEN, 1975). A4bnophyly qf'the LEPIDOPTLERA. The monophyly of the Lepidoptera (including the Zeugloptera) is well documented by a suite of autapomorphies, some of which are: (1) absence of a median ocellus, (2) presence of a pit containing sensilla on apical segment of labial palp, (3) presence of rnedian posterior process on corporotentorium, (4) presence of protibial epiphysis and (5) presence of scale cover on wings (see discussion in KRisTENsEN, 1975). -
Repair of the Proboscis of Brush-Footed Butterflies (Lepidoptera: Nymphalidae)" (2014)
Clemson University TigerPrints All Theses Theses 8-2014 REPAIR OF THE PROBOSCIS OF BRUSH- FOOTED BUTTERFLIES (LEPIDOPTERA: NYMPHALIDAE) Suellen Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Entomology Commons Recommended Citation Pometto, Suellen, "REPAIR OF THE PROBOSCIS OF BRUSH-FOOTED BUTTERFLIES (LEPIDOPTERA: NYMPHALIDAE)" (2014). All Theses. 1881. https://tigerprints.clemson.edu/all_theses/1881 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. REPAIR OF THE PROBOSCIS OF BRUSH-FOOTED BUTTERFLIES (LEPIDOPTERA: NYMPHALIDAE) ______________________________________ A Thesis Presented to the Graduate School of Clemson University ______________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology ______________________________________ by Suellen Floyd Pometto August 2014 ______________________________________ Accepted by: Dr. John C. Morse, Committee Co-Chair Dr. Peter H. Adler, Committee Co-Chair Dr. John Hains ABSTRACT A key feature of the order Lepidoptera is the coilable proboscis, present in over 99% of lepidopteran species. The proboscis is used to obtain liquid nutrition, usually floral nectar. The proboscis is assembled from two elongate galeae immediately after emergence of the adult from the pupa. What happens if the galeae become separated? I studied the process of repair of the proboscis, behaviorally and functionally, at the organismal level. My research questions were as follows: 1) is the proboscis capable of repair, 2) is saliva necessary to proboscis repair, and 3) is the repaired proboscis able to acquire fluids? Test organisms were Danaus plexippus (Linnaeus) (Lepidoptera: Nymphalidae: Danainae) and Vanessa cardui (Linnaeus) (Lepidoptera: Nymphalidae: Nymphalinae). -
Fine Structure and Olfactory Reception of the Labial Palps of Spodoptera Frugiperda
ORIGINAL RESEARCH published: 03 August 2021 doi: 10.3389/fphys.2021.680697 Fine Structure and Olfactory Reception of the Labial Palps of Spodoptera frugiperda Qiuyan Chen1,2, Xiaolan Liu1, Song Cao1,3, Baiwei Ma1, Mengbo Guo1,3, Jie Shen2 and Guirong Wang1,3* 1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China, 2Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China, 3Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China The olfactory system of insects is essential in many crucial behaviors, such as host seeking, mate recognition, and locating oviposition sites. Lepidopteran moths possess two main Edited by: Peng He, olfactory organs, including antennae and labial palps. Compared to antennae, the labial Guizhou University, palps are relatively specific and worthy of further investigation due to the labial-palp pit China organ (LPO), which contains a large number of sensilla located on the tip segment. The Reviewed by: fall armyworm, Spodoptera frugiperda, is a worldwide lepidopteran pest, which can Hongbo Jiang, Southwest University, damage more than 350 plants and cause significant economic losses. In this study, China we surveyed the structure of the labial palps and LPO of S. frugiperda using a super-high Zhao-Qun Li, Chinese Academy of Agricultural magnification lens zoom 3D microscope. Then, the distribution and fine structure of sensilla Sciences (CAAS), China located in the LPO of S.