Amphiesmenoptera

Total Page:16

File Type:pdf, Size:1020Kb

Amphiesmenoptera AMPHIESMENOPTERA - the “garment wings” The Major Groups of Holometabola Holometabola (=Endopterygota) Order Hymenoptera Superorder Neuropterida Order Raphidioptera Order Megaloptera Order Neuroptera Order Coleoptera Order Strepsiptera, incertae sedis Superorder Mecopterida (= Panorpida) Antliophora Order Mecoptera - scorpionflies Order Siphonaptera - fleas Order Diptera - true flies Amphiesmenoptera Order Trichoptera - caddisflies Order Lepidoptera - butterflies & moths AMPHIESMENOPTERA - the “garment wings” SYNAPOMORPHIES • Adult prelabium fused with hypopharynx • Pronotum with paired setose “warts” • Wings with extensive covering of setae • Anal veins of the forewing apparently looping up into a double-Y configuration • Presence of paired glands opening on sternum V • Male genital segment IX with tergum and sternum fused, forming a closed ring AMPHIESMENOPTERA - the “garment wings” SYNAPOMORPHIES (continued) • Anterior margin of female segment VIII and IX with long, rodlike apodemes accommodating the insertion of protractor/retractor muscles on the extensible oviscapt • Female heterogamety (female is XY, male is XX) • Chromosome number specialized (high, n=30 in Trichoptera, n=31 in Lepidoptera) • Larval prelabium and hypopharynx fused into a lobe apically carrying the salivary (silk) gland orifice And many more (see Kristensen, N.P. 1984. Studies on the morphology and systematics of primitive Lepidoptera. Steenstrupia 10(5): 141-191; Kristensen, N.P. 1997. Early evolution of the Lepidoptera + Trichoptera lineage: phylogeny and the ecological scenario. In: Grandcolas, P. (editor). The Origin of Biodiversity in Insects: Phylogenetic Tests of Evolutionary Scenarios. Mém. Mus. Natn. Hist. Nat., 173: 253-271.) Hypothetical amphiesmenopteran, from Kristensen (1984) LEPIDOPTERA - butterflies and moths LEPIDOPTERA - butterflies and moths SYNAPOMORPHIES • Wings with dense covering of broad scales • Wings with M 3-branched • Foretibia with single apical spur (or absent) • Foretibia with “epiphysis” on inner surface, spurlike process used to clean antennae • Median ocellus lost • Cerci lacking in both sexes • Tergum I desclerotized And many more (see Kristensen, N.P. 1984. Studies on the morphology and systematics of primitive Lepidoptera. Steenstrupia 10(5): 141-191. See also references cited therein) See also the most important work published to date on Lepidoptera phylogeny and taxonomy: N.P. Kristensen (editor). 1999. Lepidoptera, Moths and Butterflies, volumes 1 & 2. Handbook of Zoology, vol. 4, part 35. Walter de Gruyter Publishers. Berlin. LEPIDOPTERA - butterflies and moths Habitat & Habits • Adult moths generally nocturnal, butterflies and skippers diurnal • Adults suck nectar or feed on pollen; a very few noctuids suck blood • Largest group of plant feeding organisms, probably the most recent to have radiated with the angiosperms • Most are external leaf feeders, but habits and habitats of the larvae include leaf, woody stem, and fruit and nut borers; stored products and detritus feeders; fungus and lichen feeders; a few parasites and predators; some feed on decomposing plant and animal matter • Many are of great economic importance LEPIDOPTERA - butterflies and moths Diversity and Distribution • 150,000 described species worldwide, but probably 300,000 - 500,000 in existence, in 46 superfamilies and 121 families • About 12,000 species in U.S. and Canada “mandibulate moths” “mandibulate Micropterygidae Agathiphagidae 1 Heterobathmiidae Eriocraniidae 2 Acanthopteroctetidae GLOSSATA 3 Lophocoronidae COELOLEPIDA 4 Neopseustidae 5 EXOPORIA 7 6 (Mnesarchaeidae+Hepialoidea) MYOGLOSSATA HETERONEURA NEOLEPIDOPTERA LEPIDOPTERA - butterflies and moths Synapomorphies of the major groups 1- Agathiphagidae + Heterobathmiidae + GLOSSATA • Adult paraglossae lost • Pupal mandible hypertrophied, angularly bent • Larva with only one maxillary endite lobe (probably the galea) • Larva with metathoracic spiracle non-functional 2 - GLOSSATA • Mandible non-functional after pupa/adult ecdysis, with genuine articulation basally (and often strongly reduced) • Maxilla devoid of sclerotized lacinia • Maxillary galeae forming a proboscis, spirally coiled in repose • Larva with articulated “spinneret” on the apex of the prelabio-hypopharyngeal lobe 3 - COELOLEPIDA • Hollow scales on wing surface 4 - Lophocoronidae + MYOGLOSSATA • Vein R (versus Rs) always unforked 5 - MYOGLOSSATA • Proboscis with an intrinsic musculature 6 - NEOLEPIDOPTERA • Pupa adecticious [pupa with immobile mandibles] • Pupa obtect [wings and appendages are appressed to the body and most abdominal segments are immovable], with backward pointing spines dorsally • Larva with musculated, crochet-bearing prolegs on abdominal segments III-VI & X 7 - EXOPORIA • Female genitalia exoporian HETERONEURA “monotrysian Heteroneura” (Nepticuloidea, Incurvarioidea, etc.) Tineoidea 8 9 Gracillarioidea Yponomeutoidea DITRYSIA Gelechoidea Zygaenoidea + Sesioidea/Cossoidea Tortricoidae 10 Pyraloidea 11 APODITRYSIA Noctuoidea OBTECTOMERA 12 Bombycoidea RHOPALOCERA MACROLEPIDOPTERA Drepanoidea Geometroidea LEPIDOPTERA - butterflies and moths Synapomorphies of the major groups 8- HETERONEURA • Venation heteroneurous due to simplification of hind wing venation (Sc and R fused and Rs unbranched) • Wing coupling with retinaculum and frenulum and jugum reduced in males 9 - DITRYSIA • Internal connection between copulatory opening and ovipore - ditrysian type • Large apodemes on abdominal sternite 2 • Muscles in proboscis with short bands, not long fibers 10 - APODITRYSIA • Apodemes of abdominal sternum 2 specialized, with short, large bases 11 - OBTECTOMERA • Pupal abdominal segment 1-4 immobile • Dorsal row of spines lost on pupal tergites 12 - MACROLEPIDOPTERA • Complete loss of CuP • Larval proleg crochets in a “mesoseries” LEPIDOPTERA - butterflies and moths Synapomorphies of the major groups 13 - RHOPALOCERA • Abdominal tergite 1 pouched Hedylidae • Eggs resting upright • Pupa girdled • 7 other characters 13 14 - Hesperiidae + Papilionoidea Hesperiidae • Brain with large optic lobe • 5 other characters RHOPALOCERA 14 15 - Papilionoidea 15 • 5 technical adult thoracic Papilionoidea characters LEPIDOPTERA - butterflies and moths Major features in lepidopteran evolution (more or less chronologically) • Basal families mandibulate, without proboscis • Proboscis (elongate, fused, “zipped” galeae of maxillae) evolved in Glossata; adult mandibles non-function or vestigial; proboscis extended by hemolymph with aid of resilin filament • Glossatan larvae with silk-secreting spinneret at tip of fused prelabium and hypopharynx • Hollow scales evolved in the Coelolepida; abwing surface with windows and perforations, also embedded with pigment granules • Adectitious, obtect pupae occurred in the Neolepidotera, • Double layer of wing scales evolved in the Neolepidoptera LEPIDOPTERA - butterflies and moths Major features in lepidopteran evolution (more or less chronologically) • Typical neolepidopteran larvae or “caterpillars” have musculated abdominal prolegs with crochets on segments 3-6 and 10 • Female neolepidopteran with separate copulatory and oviposition openings, but with no connection between the two (monotrysian condition, with a common cloaca opening to the outside is the primitive condition) • Retinaculo-frenate wing coupling occurred in the Heteroneura (jugate wing coupling the primitive condition) • In Ditrysia an internal connection evolved between the separate copulatory and oviposition openings - dytrisian condition • Basal ditrysian caterpillars are leaf miners, but most others external leaf feeds, some in webs or cases LEPIDOPTERA - butterflies and moths Mouthparts LEPIDOPTERA - butterflies and moths Wing coupling From Insect of Australia, 2nd edition LEPIDOPTERA - butterflies and moths Female reproductive systems - monotrysian LEPIDOPTERA - butterflies and moths Female reproductive systems - exoporian LEPIDOPTERA - butterflies and moths Female reproductive systems - ditrysian LEPIDOPTERA - butterflies and moths Larva and pupa LEPIDOPTERA - butterflies and moths Synopsis of non-Heteroneuran Lepidoptera Micropterygidae - 120 species • Small, about 1 cm, generally diurnal moths with metallic-colored wings • Adults eat pollen, some feed on fern spores • Larvae feed on fungal hyphae, bryophytes, or lower parts of grasses, other flowering plants, or decaying material • Living sister group to all other Lepidoptera LEPIDOPTERA - butterflies and moths Synopsis of non-Heteroneuran Lepidoptera Agathiphagidae • One genus, Agathiphaga with 2 species, from southwest Pacific region • Adults nocturnal, small to medium sized, and superficially very similar to caddisflies • Mandibles are large, but it is unknown if they are functional • Larvae are apodous miners in seeds of kauri pines, Agathis (Araucariaceae). Common name "kauri moths". LEPIDOPTERA - butterflies and moths Synopsis of non-Heteroneuran Lepidoptera Heterobathmiidae • Recently discovered genus Heterobathmia of southern South America with only 10 species • Small, diurnal moths resembling Eriocraniidae • Found on flowering Nothofagus where adults eat pollen • Larvae are leaf miners in Nothofagus; larvae can leave and enter a new leaf, this behavior not common among other leaf mining insects LEPIDOPTERA - butterflies and moths Synopsis of non-Heteroneuran Lepidoptera Eriocraniidae Exclusively Holarctic family of about 20 described species. Small, diurnal moths with iridescent wing patterns. Do not visit flowers, but use short proboscis for drinking
Recommended publications
  • Moths Light a Way? by John Pickering, Tori Staples and Rebecca Walcott
    SOUTHERN LEPIDOPTERISTS NEWS VOLUME 38 NO4. (2016), PG. 331 SAVE ALL SPECIES – MOTHS LIGHT A WAY? BY JOHN PICKERING, TORI STAPLES AND REBECCA WALCOTT Abstract -- What would it take to save all species from snakes, and stinging insects, they pose no health risk. extinction? A new initiative, Save all species, plans to Moths are an exceedingly species-rich group, for which answer this question and provide the tools we need to do the diversity at a terrestrial site will typically exceed any so by 2050. Here we consider the merits and problems other taxon except for beetles. Because moth larvae are associated with inventorying moths to help decide which restricted in their diet to specific host taxa, differences in terrestrial areas to protect. We compare the the assemblages of resident moth species could reflect scientifically-described moth fauna of the British Isles differences across sites in plants and other hosts. If which, with 2,441 species, is taxonomically complete, that’s true, we may be able to use moth inventories as with 11,806 described species from North America north efficient proxies to compare surrounding plant of Mexico, the fauna of which is not fully described. As communities. a percentage of the described moth fauna, there are fewer “macro” moths (Geometroidea, Drepanoidea, Inventorying moths presents challenges, notably, Noctuoidea, Bombycoidea, Lasiocampidae) in the sampling smaller species, describing thousands of British Isles (34.9%) than those known for the United species new to science, and identifying specimens States and Canada (46.1%). We present data on 1,254 accurately. Our experience is that we can identify 99% species for an intensively-studied site in Clarke County, of moths from digital images to species, species-groups, Georgia and consider whether species in the British Isles which contain species of similar appearance, or are generally smaller than ones in Georgia.
    [Show full text]
  • Self-Repair and Self-Cleaning of the Lepidopteran Proboscis
    Clemson University TigerPrints All Dissertations Dissertations 8-2019 Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Suellen Floyd Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Pometto, Suellen Floyd, "Self-Repair and Self-Cleaning of the Lepidopteran Proboscis" (2019). All Dissertations. 2452. https://tigerprints.clemson.edu/all_dissertations/2452 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SELF-REPAIR AND SELF-CLEANING OF THE LEPIDOPTERAN PROBOSCIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ENTOMOLOGY by Suellen Floyd Pometto August 2019 Accepted by: Dr. Peter H. Adler, Major Advisor and Committee Co-Chair Dr. Eric Benson, Committee Co-Chair Dr. Richard Blob Dr. Patrick Gerard i ABSTRACT The proboscis of butterflies and moths is a key innovation contributing to the high diversity of the order Lepidoptera. In addition to taking nectar from angiosperm sources, many species take up fluids from overripe or sound fruit, plant sap, animal dung, and moist soil. The proboscis is assembled after eclosion of the adult from the pupa by linking together two elongate galeae to form one tube with a single food canal. How do lepidopterans maintain the integrity and function of the proboscis while foraging from various substrates? The research questions included whether lepidopteran species are capable of total self- repair, how widespread the capability of self-repair is within the order, and whether the repaired proboscis is functional.
    [Show full text]
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • Erection of a New Family in the Lepidopterous Suborder Dacnonypha
    Entomologiske M eddelelser 35 (1967) 341 Erection of a New Family in the Lepidopterous Suborder Dacnonypha. By N. P. Kristensen Zoological Institute, University of Copenhagen. The homoneurous moth genus Jlgathiphaga was described by Dumbleton in 1952. The genus comprises two species, occuring in Queensland (Australia) and on Fiji, respectively; the larvae of both feed in the seeds of Kauri pines (Agathis). The adult ana­ tomy indicated affinities to both Micropterygidae and Eriocranii­ dae; Dumbleton decided however, that the weight of evidence was for considering Agathiphaga as a specialized genus of Micropte­ rygidae. On the other hand Hinton (1958) after examining the Agathiphaga-larvae found these to possess several apomorph characters characteristic of Dacnonypha and higher Lepidoptera and to be devoid of any of the features characteristic of the Micropterygid larvae. He therefore concluded that the genus belongs to the Eriocraniidae or a closely related family. The correctness of the transferring of Agathiphaga to the suborder Dacnonypha cannot be doubted; however, in the adult anatomy the genus differs from the Eriocraniidae as well as from the other dacnonyphous families (Mnesarchaeidae, Neopseustidae) in many important features, and consequently has to be regarded as con­ stituting a separate family, which is defined below. Agathiphagidae fam. nov. Type-genus: Agathiphaga Dumbleton, 1952. D i a g no si s. Adult: Articulated mandibles present, galeae nol haustellate, lobular lacinia present, tibia 2 and 3 with paired subapical and apical spurs, forewing with closed cell between M and Cu, d -genitalia with long and simple, dorsally curved valvae, phallus with short posteriorly directed ventral apodeme. 22* 342 N.
    [Show full text]
  • A New Macrolepidopteran Moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican Amber
    ZooKeys 965: 73–84 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.965.54461 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber Weiting Zhang1,2, Chungkun Shih3,4, YuHong Shih5, Dong Ren3 1 Hebei GEO University, 136 Huaiandonglu, Shijiazhuang 050031, China 2 State Key Laboratory of Pal- aeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China 3 College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisan- huanbeilu, Haidian District, Beijing 100048, China 4 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA 5 Laboratorio Dominicano De Ambar Y Gemas, Santo Domingo, Dominican Republic Corresponding author: Weiting Zhang ([email protected]) Academic editor: Gunnar Brehm | Received 19 May 2020 | Accepted 12 August 2020 | Published 3 September 2020 http://zoobank.org/05E273DB-B590-42D1-8234-864A787BE6A0 Citation: Zhang W, Shih C, Shih YH, Ren D (2020) A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber. ZooKeys 965: 73–84. https://doi.org/10.3897/zookeys.965.54461 Abstract A new genus and species of fossil moth, Miogeometrida chunjenshihi Zhang, Shih & Shih, gen. et sp. nov., assigned to Geometridae, is described from Miocene Dominican amber dating from 15–20 Mya. The new genus is characterized by the forewing without a fovea, R1 not anastomosing with Sc, no areole formed by veins R1 and Rs, R1 and Rs1 completely coincident, M2 arising midway between M1 and M3, anal veins 1A and 2A fused for their entire lengths; and the hind wing with Rs running close to Sc + R1 and M2 absent.
    [Show full text]
  • Origin of a Complex Key Innovation in an Obligate Insect–Plant Mutualism
    Origin of a complex key innovation in an obligate insect–plant mutualism Olle Pellmyr*† and Harald W. Krenn‡ *Department of Biology, Vanderbilt University, Box 1812 Station B, Nashville, TN 37235; and ‡Department of Evolutionary Biology, Institute of Zoology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved January 30, 2002 (received for review November 2, 2001) Evolutionary key innovations give organisms access to new eco- cles to propose a possible developmental genetic basis for the logical resources and cause rapid, sometimes spectacular adaptive trait. radiation. The well known obligate pollination mutualism between yuccas and yucca moths is a major model system for studies of The Function of the Tentacles. The pollinating yucca moth genera coevolution, and it relies on the key innovation in the moths of Tegeticula and Parategeticula constitute a monophyletic group complex tentacles used for pollen collecting and active pollination. within the Prodoxidae (Fig. 1). Jointly they contain at least 25 These structures lack apparent homology in other insects, making extant species (5), two of which are derived nonpollinating them a rare example of a novel limb. We performed anatomical and Tegeticula species that oviposit into yucca fruit created by behavioral studies to determine their origin and found evidence of coexisting pollinator species (16). The sister group Prodoxus a remarkably simple mechanism. Morphological analyses of the coexists with the pollinators on yuccas but feed as larvae on plant tentacles and adjacent mouthparts in pollinators and closely re- parts other than the seeds. Their radiation was thus directly lated taxa showed that the tentacle appears abruptly in female facilitated by the pollinator radiation.
    [Show full text]
  • Butterflies of Ontario & Summaries of Lepidoptera
    ISBN #: 0-921631-12-X BUTTERFLIES OF ONTARIO & SUMMARIES OF LEPIDOPTERA ENCOUNTERED IN ONTARIO IN 1991 BY A.J. HANKS &Q.F. HESS PRODUCTION BY ALAN J. HANKS APRIL 1992 CONTENTS 1. INTRODUCTION PAGE 1 2. WEATHER DURING THE 1991 SEASON 6 3. CORRECTIONS TO PREVIOUS T.E.A. SUMMARIES 7 4. SPECIAL NOTES ON ONTARIO LEPIDOPTERA 8 4.1 The Inornate Ringlet in Middlesex & Lambton Cos. 8 4.2 The Monarch in Ontario 8 4.3 The Status of the Karner Blue & Frosted Elfin in Ontario in 1991 11 4.4 The West Virginia White in Ontario in 1991 11 4.5 Butterfly & Moth Records for Kettle Point 11 4.6 Butterflies in the Hamilton Study Area 12 4.7 Notes & Observations on the Early Hairstreak 15 4.8 A Big Day for Migrants 16 4.9 The Ocola Skipper - New to Ontario & Canada .17 4.10 The Brazilian Skipper - New to Ontario & Canada 19 4.11 Further Notes on the Zarucco Dusky Wing in Ontario 21 4.12 A Range Extension for the Large Marblewing 22 4.13 The Grayling North of Lake Superior 22 4.14 Description of an Aberrant Crescent 23 4.15 A New Foodplant for the Old World Swallowtail 24 4.16 An Owl Moth at Point Pelee 25 4.17 Butterfly Sampling in Algoma District 26 4.18 Record Early Butterfly Dates in 1991 26 4.19 Rearing Notes from Northumberland County 28 5. GENERAL SUMMARY 29 6. 1990 SUMMARY OF ONTARIO BUTTERFLIES, SKIPPERS & MOTHS 32 Hesperiidae 32 Papilionidae 42 Pieridae 44 Lycaenidae 48 Libytheidae 56 Nymphalidae 56 Apaturidae 66 Satyr1dae 66 Danaidae 70 MOTHS 72 CONTINUOUS MOTH CYCLICAL SUMMARY 85 7.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Any Reader Who Knew the British Butterflies in The
    VOLUME 50, NUMBER 2 ]53 Any reade r who knew the British butterflies in the 1950s and before will have memories of rich localities, of pastures, woods and downland from which once common species have long vanished, even if the land seems superficially to have survved. This book misses no opportunity for optimism, however: a few expanding ranges, of the Essex Skipper (Thymelicl1s lineola), the Speckled Wood (Pararge aegeria), and perhaps the White Admiral (Ladoga camilla), are recorded, together with current conservation efforts to keep now highly restricted and threatened species on the British l.'st. To read this book in conjunction with South or Frohawk reveals the general and rapid decline of a fauna, for long relatively stable, for which the blame lies almost entirely with habitat change and degradation, in their richly varied aspects. The illustrations, by Richard Lewington, have neve r, ill my vi.cw, been surpassed. Each butterfly is shown by an upperside (of both sexes where appreciably dimorphic) in "set" position, and by an underside in "perching" pose. British lepidopterists have for long paid much attention to aberrations, and many very remarkable examples of these variants are shown. Other figures, illustrating the butterflies at rest or nectaring are particularly striking through Lewington's use of black and white pencil for the plart or other perching site, against which the beauty of the painted butterflies is seen to best advantage. The effect achieved, for example, by a mating pair of Black Hairstreaks (Strymonidia pruni) on a penciled blackthorn twig, of a male Purple Hairstreak (Ql1ercl1sia quercus) basking on a an oak twig, or the once widespread but now endange red High Brown Fritillary (Argyrmis adippe) perching on a bramble, selected for the title page, is brilliant.
    [Show full text]
  • African Butterfly News Can Be Downloaded Here
    LATE SUMMER EDITION: JANUARY / AFRICAN FEBRUARY 2018 - 1 BUTTERFLY THE LEPIDOPTERISTS’ SOCIETY OF AFRICA NEWS LATEST NEWS Welcome to the first newsletter of 2018! I trust you all have returned safely from your December break (assuming you had one!) and are getting into the swing of 2018? With few exceptions, 2017 was a very poor year butterfly-wise, at least in South Africa. The drought continues to have a very negative impact on our hobby, but here’s hoping that 2018 will be better! Braving the Great Karoo and Noorsveld (Mark Williams) In the first week of November 2017 Jeremy Dobson and I headed off south from Egoli, at the crack of dawn, for the ‘Harde Karoo’. (Is there a ‘Soft Karoo’?) We had a very flexible plan for the six-day trip, not even having booked any overnight accommodation. We figured that finding a place to commune with Uncle Morpheus every night would not be a problem because all the kids were at school. As it turned out we did not have to spend a night trying to kip in the Pajero – my snoring would have driven Jeremy nuts ... Friday 3 November The main purpose of the trip was to survey two quadrants for the Karoo BioGaps Project. One of these was on the farm Lushof, 10 km west of Loxton, and the other was Taaiboschkloof, about 50 km south-east of Loxton. The 1 000 km drive, via Kimberley, to Loxton was accompanied by hot and windy weather. The temperature hit 38 degrees and was 33 when the sun hit the horizon at 6 pm.
    [Show full text]
  • Bionomics of Bagworms (Lepidoptera: Psychidae)
    ANRV363-EN54-11 ARI 27 August 2008 20:44 V I E E W R S I E N C N A D V A Bionomics of Bagworms ∗ (Lepidoptera: Psychidae) Marc Rhainds,1 Donald R. Davis,2 and Peter W. Price3 1Department of Entomology, Purdue University, West Lafayette, Indiana, 47901; email: [email protected] 2Department of Entomology, Smithsonian Institution, Washington D.C., 20013-7012; email: [email protected] 3Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011-5640; email: [email protected] Annu. Rev. Entomol. 2009. 54:209–26 Key Words The Annual Review of Entomology is online at bottom-up effects, flightlessness, mating failure, parthenogeny, ento.annualreviews.org phylogenetic constraint hypothesis, protogyny This article’s doi: 10.1146/annurev.ento.54.110807.090448 Abstract Copyright c 2009 by Annual Reviews. The bagworm family (Lepidoptera: Psychidae) includes approximately All rights reserved 1000 species, all of which complete larval development within a self- 0066-4170/09/0107-0209$20.00 enclosing bag. The family is remarkable in that female aptery occurs in ∗The U.S. Government has the right to retain a over half of the known species and within 9 of the 10 currently recog- nonexclusive, royalty-free license in and to any nized subfamilies. In the more derived subfamilies, several life-history copyright covering this paper. traits are associated with eruptive population dynamics, e.g., neoteny of females, high fecundity, dispersal on silken threads, and high level of polyphagy. Other salient features shared by many species include a short embryonic period, developmental synchrony, sexual segrega- tion of pupation sites, short longevity of adults, male-biased sex ratio, sexual dimorphism, protogyny, parthenogenesis, and oviposition in the pupal case.
    [Show full text]
  • Supplementary Documentation on Phylogenetic Relations Used to Build the Working Tree
    Supplementary documentation on phylogenetic relations used to build the working tree: 'Non-Ditrysian' and 'Lowest Ditrysian' families in the traditional sense were adapted as far as possible after Yen et al (2005), Niehuis et al (2006), Turner et al (2010), Kawahara et al (2011) , Grehan (2012), Regier et al (2012a), Sohn et al (2013), Moraes & Duarte M (2014): Grehan JR (2012) Morphological evidence for phylogenetic relationships within the Hepialidae (Lepidoptera: Exoporia). Bulletin of the Buffalo Society of Natural Sciences 42: 33-62. Kawahara AY, Ohshima I, Kawakita A, Regier JC, Mitter C, Cummings MP, Davis DR, Wagner DL, De Prins J, Lopez-Vaamonde C (2011) Increased gene sampling strengthens support for higher-level groups within leaf-mining moths and relatives (Lepidoptera: Gracillariidae). BMC Evolutionary Biology 11: 182. Moraes SS, Duarte M (2014) Phylogeny of Neotropical Castniinae (Lepidoptera: Cossoidea: Castniidae): testing the hypothesis of the mimics as a monophyletic group and implications for the arrangement of the genera. Zoological Journal of the Linnean Society 170: 362-399. Niehuis O, Yen SH, Naumann CM, Misof B (2006) Higher phylogeny of zygaenid moths (Insecta : Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Molecular Phylogenetics and Evolution 39: 812-829. Regier JC, Brown JW, Mitter C, Baixeras J, Cho S, Cummings MP, Zwick A (2012a) A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLoS ONE 7(4): e35574. Sohn J-C, Regier JC, Mitter C, Davis D, Landry J-F, Zwick A, Cummings MP (2013) A molecular phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and its implications for classification, biogeography and the evolution of host plant use.
    [Show full text]