Satisfiability 6 the Decision Problem 7

Total Page:16

File Type:pdf, Size:1020Kb

Satisfiability 6 the Decision Problem 7 Satisfiability Difficult Problems Dealing with SAT Implementation Klaus Sutner Carnegie Mellon University 2020/02/04 Finding Hard Problems 2 Entscheidungsproblem to the Rescue 3 The Entscheidungsproblem is solved when one knows a pro- cedure by which one can decide in a finite number of operations So where would be look for hard problems, something that is eminently whether a given logical expression is generally valid or is satis- decidable but appears to be outside of P? And, we’d like the problem to fiable. The solution of the Entscheidungsproblem is of funda- be practical, not some monster from CRT. mental importance for the theory of all fields, the theorems of which are at all capable of logical development from finitely many The Circuit Value Problem is a good indicator for the right direction: axioms. evaluating Boolean expressions is polynomial time, but relatively difficult D. Hilbert within P. So can we push CVP a little bit to force it outside of P, just a little bit? In a sense, [the Entscheidungsproblem] is the most general Say, up into EXP1? problem of mathematics. J. Herbrand Exploiting Difficulty 4 Scaling Back 5 Herbrand is right, of course. As a research project this sounds like a Taking a clue from CVP, how about asking questions about Boolean fiasco. formulae, rather than first-order? But: we can turn adversity into an asset, and use (some version of) the Probably the most natural question that comes to mind here is Entscheidungsproblem as the epitome of a hard problem. Is ϕ(x1, . , xn) a tautology? The original Entscheidungsproblem would presumable have included arbitrary first-order questions about number theory. This would indeed be where ϕ is a Boolean formula, with variables x , . , x . very difficult, truth in arithmetic requires a monster oracle (ω). 1 n ∅ Close, but no cigar. We need something less ambitious and closer to real algorithms. Satisfiability 6 The Decision Problem 7 For technical reasons, it is better to ask the very similar question Problem: Satisfiability (SAT) Instance: A Boolean formula ϕ(x1, . , xn). Is ϕ(x1, . , xn) satisfiable? Question: Is ϕ satisfiable? Obviously, ϕ is a tautology iff ϕ fails to be satisfiable, so nothing is n lost. ¬ The difficulty here comes from the fact that there are 2 possible truth assignments σ : Var 2 . Even though we can evaluate ϕ[σ] in linear time, any algorithm→ using brute-force search will be exponential, But, as we will see, satisfiability is slightly better behaved than tautology something like 2npoly(n). if one is concerned about resource bounds. This has to do with convenient normal forms: ϕ may be in normal form (such as CNF), but ϕ is not. Of course, that does not mean that there is no better algorithm, ¬ brute-force is just the most obvious line of attack. It would also work for Tautology. Aside: Problem Specification 8 Mighty SAT 9 Since Garey and Johnson published their famous Computers and Intractability in 1979, it has become standard to specify a decision If you think of a Boolean formula as the kind to little thingy you problem like so: encountered in 151, they might seem pretty feeble. E.g., (A B) (B C) (A C) Problem: Problem Name (catchy acronym) ⇒ ⇒ ⇒ ⇒ ⇒ Instance: Description of an instance x. Question: Does x have property such-and-such? is clearly a tautology (the infamous cut rule). It is quite useful as a logcical axiom in a formal system, though. In fact, all the logical axioms in any of the standard systems are obviously tautologies. The description has to be in terms of a finite data structure, ultimately a string x 2?. But there is no need to spell out all the details, we have ∈ But: what if the formula has 10000 variables, and takes a megabyte of reasonable standard conventions (e.g., numbers are written in binary). memory just to write it down? Your intuition will tell you zip about a monster like that. Unfortunately, big formulae are where the action is. The question must have a clear Yes/No answer (no counting, no data structures, . ). Example 1: VC to SAT 10 Coding Covers 11 As a warm-up exercise showing off the expressiveness of SAT, we will The idea is simply that show how to translate the Vertex Cover problem into a satisfiability σ = p x is in the alleged cover problem. | x ⇐⇒ So the truth assignment σ is just a bitvector for the set Problem: Vertex Cover Cσ = x σ = px V . Instance: A ugraph G, a bound k. { | | } ⊆ Question: Does G have a vertex cover of size k? We need to construct a formula ΦG,k that enforces this interpretation. Let’s ignore the cardinality part for the moment. Every edge needs to have at least one endpoint in the alleged cover C : For any translation to SAT, it is critical to interpret the Boolean variables σ the right way. Let’s assume G looks like [n],E . It seems natural to introduce n pu pv h i ∨ Boolean variables (u,v) E ^∈ px 1 x n, ≤ ≤ This conjunction has size O(n2), so we are good. one for each vertex x. Counting 12 Problems with Reductions 13 To establish a reduction from A to B we need to avoid three possible We also need to make sure that C = k. | σ| errors: Write CNTr,s(p1, p2, . , pr) for a formula that is true under σ iff exactly Logical correctness: we must have x A f(x) B. s of the r variables are true. ∈ ⇔ ∈ We could simply add CNTn,k(p1, p2, . , pn) to ΦG and be done. Computational simplicity: f must be easy to compute. Size constraint: f(x) must not be too long. Easy, what could possibly go wrong? In the heat of battle, it’s quite possible to screw up one of these issues. Threshold Functions 14 Expressiveness 15 The standard way to get a counting formula is to use threshold functions. Lots of Boolean functions can be defined in terms of threshold functions. Definition thrn is the constant tt. n 0 A threshold function thrm, 0 m n, is an n-ary Boolean function ≤ ≤ n defined by thr1 is n-ary disjunction. n 1 if #(i xi = 1) m, n thrm(x) = ≥ thrn is n-ary conjunction. (0 otherwise. n n thrk (p) thrk+1(p) is the counting function: CNTn,k(p1, p2, . , pn), “exactly∧k ¬out of n.” n So thrm(x) simply means that at least m of the n variables are true. Dire Warning 16 How Big? 17 For example, CNTn,2(p) looks like A casual observer might say this formula has size around k, but that’s (p p ) (p p p ) totally wrong: we need to expand out the disjunctions and conjunctions: i ∧ j ∧ ¬ i ∧ j ∧ k i<j i<j<k strictly speaking, a Boolean formula must only use operators of arity 2 _ _ (plus negation). What would the formula CNT (x , x , . , x ) look like? r,s 1 2 r n But that means that CNTn,k has size something like k+1 . This is not polynomial in n for variable k. xi xi ∧ ¬ I [r]k i I J [r]k+1 i J ⊆_ ^∈ ⊆_ ^∈ To be sure, it would work for fixed k, but that is not what the VC problem asks. Here [r]k denotes all subsets of [r] of cardinality k. Counting in Style 18 Total Damage 19 To keep the cardinality formula small, we introduce new variables q 0 i n, 0 j k + 1 i,j 2 ≤ ≤ ≤ ≤ We get a formula Φg,k of size O(n ) (at least with uniform size function) with the intent that that clearly can be constructed from G and k in polynomial time. A closer look shows that we can actually get away with just logarithmic q thri (p , . , p ) space: all we need is a few loops over variables. i,j ⇔ j 1 i We can determine the qi,j in a dynamic programming style, very much Moreover, like an instance of CVP. σ = Φ C is a vertex cover of size k | G,k ⇐⇒ σ qi,0 = 1 i = 0, . , n and we have our translation to SAT. q0,j = 0 j = 1, . , k + 1 Done. qi+1,j = qi,j (qi,j 1 pi+1) ∨ − ∧ q q n,k ∧ ¬ n,k+1 Example 2: HC to SAT 20 A Big Formula 21 Here is another translation, from Hamiltonian Cycle problem to Satisfiability. The Idea: the Hamiltonian path we are looking for touches node x at time t iff σ(pt,x) = 1 for a satisfying truth assignment σ. Problem: Hamiltonian Cycle So we need to construct a (large) Boolean formula ΦG that enforces the Instance: A ugraph G. following: Question: Does G have a Hamiltonian cycle? σ = Φ σ codes a Hamiltonian cycle in G | G ⇐⇒ Again, it is critical to interpret the Boolean variables the right way. Then ΦG is satisfiable iff G has a Hamiltonian cycle and we are done. As always, assume G looks like [n],E . We introduce n(n + 1) Boolean variables h i Of course, there is the constraint that ΦG needs to be constructible from G in polynomial time. pt,x 0 t n, 1 x n. ≤ ≤ ≤ ≤ Otherwise we could use Φ = or Φ = ;-) G ⊥ G > Think of t as time, and of x as location. Building ΦG 22 How Bad Can It Be? 23 ΦG is a conjunction with 4 parts as follows: 2 CNTr,1(x1, . , xr) is easily seen to be size Θ(r ).
Recommended publications
  • “The Church-Turing “Thesis” As a Special Corollary of Gödel's
    “The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known.
    [Show full text]
  • Laced Boolean Functions and Subset Sum Problems in Finite Fields
    Laced Boolean functions and subset sum problems in finite fields David Canright1, Sugata Gangopadhyay2 Subhamoy Maitra3, Pantelimon Stanic˘ a˘1 1 Department of Applied Mathematics, Naval Postgraduate School Monterey, CA 93943{5216, USA; fdcanright,[email protected] 2 Department of Mathematics, Indian Institute of Technology Roorkee 247667 INDIA; [email protected] 3 Applied Statistics Unit, Indian Statistical Institute 203 B. T. Road, Calcutta 700 108, INDIA; [email protected] March 13, 2011 Abstract In this paper, we investigate some algebraic and combinatorial properties of a special Boolean function on n variables, defined us- ing weighted sums in the residue ring modulo the least prime p ≥ n. We also give further evidence to a question raised by Shparlinski re- garding this function, by computing accurately the Boolean sensitivity, thus settling the question for prime number values p = n. Finally, we propose a generalization of these functions, which we call laced func- tions, and compute the weight of one such, for every value of n. Mathematics Subject Classification: 06E30,11B65,11D45,11D72 Key Words: Boolean functions; Hamming weight; Subset sum problems; residues modulo primes. 1 1 Introduction Being interested in read-once branching programs, Savicky and Zak [7] were led to the definition and investigation, from a complexity point of view, of a special Boolean function based on weighted sums in the residue ring modulo a prime p. Later on, a modification of the same function was used by Sauerhoff [6] to show that quantum read-once branching programs are exponentially more powerful than classical read-once branching programs. Shparlinski [8] used exponential sums methods to find bounds on the Fourier coefficients, and he posed several open questions, which are the motivation of this work.
    [Show full text]
  • Analysis of Boolean Functions and Its Applications to Topics Such As Property Testing, Voting, Pseudorandomness, Gaussian Geometry and the Hardness of Approximation
    Analysis of Boolean Functions Notes from a series of lectures by Ryan O’Donnell Guest lecture by Per Austrin Barbados Workshop on Computational Complexity February 26th – March 4th, 2012 Organized by Denis Th´erien Scribe notes by Li-Yang Tan arXiv:1205.0314v1 [cs.CC] 2 May 2012 Contents 1 Linearity testing and Arrow’s theorem 3 1.1 TheFourierexpansion ............................. 3 1.2 Blum-Luby-Rubinfeld. .. .. .. .. .. .. .. .. 7 1.3 Votingandinfluence .............................. 9 1.4 Noise stability and Arrow’s theorem . ..... 12 2 Noise stability and small set expansion 15 2.1 Sheppard’s formula and Stabρ(MAJ)...................... 15 2.2 Thenoisyhypercubegraph. 16 2.3 Bonami’slemma................................. 18 3 KKL and quasirandomness 20 3.1 Smallsetexpansion ............................... 20 3.2 Kahn-Kalai-Linial ............................... 21 3.3 Dictator versus Quasirandom tests . ..... 22 4 CSPs and hardness of approximation 26 4.1 Constraint satisfaction problems . ...... 26 4.2 Berry-Ess´een................................... 27 5 Majority Is Stablest 30 5.1 Borell’s isoperimetric inequality . ....... 30 5.2 ProofoutlineofMIST ............................. 32 5.3 Theinvarianceprinciple . 33 6 Testing dictators and UGC-hardness 37 1 Linearity testing and Arrow’s theorem Monday, 27th February 2012 Rn Open Problem [Guy86, HK92]: Let a with a 2 = 1. Prove Prx 1,1 n [ a, x • ∈ k k ∈{− } |h i| ≤ 1] 1 . ≥ 2 Open Problem (S. Srinivasan): Suppose g : 1, 1 n 2 , 1 where g(x) 2 , 1 if • {− } →± 3 ∈ 3 n x n and g(x) 1, 2 if n x n . Prove deg( f)=Ω(n). i=1 i ≥ 2 ∈ − − 3 i=1 i ≤− 2 P P In this workshop we will study the analysis of boolean functions and its applications to topics such as property testing, voting, pseudorandomness, Gaussian geometry and the hardness of approximation.
    [Show full text]
  • Solving SAT and SAT Modulo Theories: from an Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T)
    Solving SAT and SAT Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T) ROBERT NIEUWENHUIS AND ALBERT OLIVERAS Technical University of Catalonia, Barcelona, Spain AND CESARE TINELLI The University of Iowa, Iowa City, Iowa Abstract. We first introduce Abstract DPLL, a rule-based formulation of the Davis–Putnam– Logemann–Loveland (DPLL) procedure for propositional satisfiability. This abstract framework al- lows one to cleanly express practical DPLL algorithms and to formally reason about them in a simple way. Its properties, such as soundness, completeness or termination, immediately carry over to the modern DPLL implementations with features such as backjumping or clause learning. We then extend the framework to Satisfiability Modulo background Theories (SMT) and use it to model several variants of the so-called lazy approach for SMT. In particular, we use it to introduce a few variants of a new, efficient and modular approach for SMT based on a general DPLL(X) engine, whose parameter X can be instantiated with a specialized solver SolverT for a given theory T , thus producing a DPLL(T ) system. We describe the high-level design of DPLL(X) and its cooperation with SolverT , discuss the role of theory propagation, and describe different DPLL(T ) strategies for some theories arising in industrial applications. Our extensive experimental evidence, summarized in this article, shows that DPLL(T ) systems can significantly outperform the other state-of-the-art tools, frequently even in orders of magnitude, and have
    [Show full text]
  • Probabilistic Boolean Logic, Arithmetic and Architectures
    PROBABILISTIC BOOLEAN LOGIC, ARITHMETIC AND ARCHITECTURES A Thesis Presented to The Academic Faculty by Lakshmi Narasimhan Barath Chakrapani In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Computer Science, College of Computing Georgia Institute of Technology December 2008 PROBABILISTIC BOOLEAN LOGIC, ARITHMETIC AND ARCHITECTURES Approved by: Professor Krishna V. Palem, Advisor Professor Trevor Mudge School of Computer Science, College Department of Electrical Engineering of Computing and Computer Science Georgia Institute of Technology University of Michigan, Ann Arbor Professor Sung Kyu Lim Professor Sudhakar Yalamanchili School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Gabriel H. Loh Date Approved: 24 March 2008 College of Computing Georgia Institute of Technology To my parents The source of my existence, inspiration and strength. iii ACKNOWLEDGEMENTS आचायातर् ्पादमादे पादं िशंयः ःवमेधया। पादं सॄचारयः पादं कालबमेणच॥ “One fourth (of knowledge) from the teacher, one fourth from self study, one fourth from fellow students and one fourth in due time” 1 Many people have played a profound role in the successful completion of this disser- tation and I first apologize to those whose help I might have failed to acknowledge. I express my sincere gratitude for everything you have done for me. I express my gratitude to Professor Krisha V. Palem, for his energy, support and guidance throughout the course of my graduate studies. Several key results per- taining to the semantic model and the properties of probabilistic Boolean logic were due to his brilliant insights.
    [Show full text]
  • MASTER THESIS Strong Proof Systems
    Charles University in Prague Faculty of Mathematics and Physics MASTER THESIS Ondrej Mikle-Bar´at Strong Proof Systems Department of Software Engineering Supervisor: Prof. RNDr. Jan Kraj´ıˇcek, DrSc. Study program: Computer Science, Software Systems I would like to thank my advisor for his valuable comments and suggestions. His extensive experience with proof systems and logic helped me a lot. Finally I want to thank my family for their support. Prohlaˇsuji, ˇzejsem svou diplomovou pr´acinapsal samostatnˇea v´yhradnˇe s pouˇzit´ımcitovan´ych pramen˚u.Souhlas´ımse zap˚ujˇcov´an´ımpr´ace. I hereby declare that I have created this master thesis on my own and listed all used references. I agree with lending of this thesis. Prague August 23, 2007 Ondrej Mikle-Bar´at Contents 1 Preliminaries 1 1.1 Propositional logic . 1 1.2 Proof complexity . 2 1.3 Resolution . 4 1.3.1 Pigeonhole principle - PHPn ............... 6 2 OBDD proof system 8 2.1 OBDD . 8 2.2 Inference rules . 10 2.3 Strength of OBDD proofs . 11 3 R-OBDD 12 3.1 Motivation . 12 3.2 Definitions . 12 3.3 Inference rules . 13 3.4 The proof system . 13 4 Automated theorem proving in R-OBDD 16 4.1 R-OBDD solver – DPLL modification for R-OBDD . 17 4.2 Discussion . 22 ii N´azevpr´ace:Siln´ed˚ukazov´esyst´emy Autor: Ondrej Mikle-Bar´at Katedra (´ustav): Katedra softwarov´ehoinˇzen´yrstv´ı Vedouc´ıdiplomov´epr´ace: Prof. RNDr. Jan Kraj´ıˇcek, DrSc. e-mail vedouc´ıho:[email protected] Abstrakt: R-OBDD je nov´yCook-Reckhow˚uv d˚ukazov´ysyst´em pro v´yrokovou logiku zaloˇzenna kombinaci OBDD d˚ukazov´ehosyst´emu a rezoluˇcn´ıho d˚ukazov´eho syst´emu.
    [Show full text]
  • Logic and Proof
    Logic and Proof Computer Science Tripos Part IB Lent Term Lawrence C Paulson Computer Laboratory University of Cambridge [email protected] Copyright c 2018 by Lawrence C. Paulson I Logic and Proof 101 Introduction to Logic Logic concerns statements in some language. The language can be natural (English, Latin, . ) or formal. Some statements are true, others false or meaningless. Logic concerns relationships between statements: consistency, entailment, . Logical proofs model human reasoning (supposedly). Lawrence C. Paulson University of Cambridge I Logic and Proof 102 Statements Statements are declarative assertions: Black is the colour of my true love’s hair. They are not greetings, questions or commands: What is the colour of my true love’s hair? I wish my true love had hair. Get a haircut! Lawrence C. Paulson University of Cambridge I Logic and Proof 103 Schematic Statements Now let the variables X, Y, Z, . range over ‘real’ objects Black is the colour of X’s hair. Black is the colour of Y. Z is the colour of Y. Schematic statements can even express questions: What things are black? Lawrence C. Paulson University of Cambridge I Logic and Proof 104 Interpretations and Validity An interpretation maps variables to real objects: The interpretation Y 7 coal satisfies the statement Black is the colour→ of Y. but the interpretation Y 7 strawberries does not! A statement A is valid if→ all interpretations satisfy A. Lawrence C. Paulson University of Cambridge I Logic and Proof 105 Consistency, or Satisfiability A set S of statements is consistent if some interpretation satisfies all elements of S at the same time.
    [Show full text]
  • Predicate Logic
    Predicate Logic Laura Kovács Recap: Boolean Algebra and Propositional Logic 0, 1 True, False (other notation: t, f) boolean variables a ∈{0,1} atomic formulas (atoms) p∈{True,False} boolean operators ¬, ∧, ∨, fl, ñ logical connectives ¬, ∧, ∨, fl, ñ boolean functions: propositional formulas: • 0 and 1 are boolean functions; • True and False are propositional formulas; • boolean variables are boolean functions; • atomic formulas are propositional formulas; • if a is a boolean function, • if a is a propositional formula, then ¬a is a boolean function; then ¬a is a propositional formula; • if a and b are boolean functions, • if a and b are propositional formulas, then a∧b, a∨b, aflb, añb are boolean functions. then a∧b, a∨b, aflb, añb are propositional formulas. truth value of a boolean function truth value of a propositional formula (truth tables) (truth tables) Recap: Boolean Algebra and Propositional Logic 0, 1 True, False (other notation: t, f) boolean variables a ∈{0,1} atomic formulas (atoms) p∈{True,False} boolean operators ¬, ∧, ∨, fl, ñ logical connectives ¬, ∧, ∨, fl, ñ boolean functions: propositional formulas (propositions, Aussagen ): • 0 and 1 are boolean functions; • True and False are propositional formulas; • boolean variables are boolean functions; • atomic formulas are propositional formulas; • if a is a boolean function, • if a is a propositional formula, then ¬a is a boolean function; then ¬a is a propositional formula; • if a and b are boolean functions, • if a and b are propositional formulas, then a∧b, a∨b, aflb, añb are
    [Show full text]
  • Solving the Boolean Satisfiability Problem Using the Parallel Paradigm Jury Composition
    Philosophæ doctor thesis Hoessen Benoît Solving the Boolean Satisfiability problem using the parallel paradigm Jury composition: PhD director Audemard Gilles Professor at Universit´ed'Artois PhD co-director Jabbour Sa¨ıd Assistant Professor at Universit´ed'Artois PhD co-director Piette C´edric Assistant Professor at Universit´ed'Artois Examiner Simon Laurent Professor at University of Bordeaux Examiner Dequen Gilles Professor at University of Picardie Jules Vernes Katsirelos George Charg´ede recherche at Institut national de la recherche agronomique, Toulouse Abstract This thesis presents different technique to solve the Boolean satisfiability problem using parallel and distributed architec- tures. In order to provide a complete explanation, a careful presentation of the CDCL algorithm is made, followed by the state of the art in this domain. Once presented, two proposi- tions are made. The first one is an improvement on a portfo- lio algorithm, allowing to exchange more data without loosing efficiency. The second is a complete library with its API al- lowing to easily create distributed SAT solver. Keywords: SAT, parallelism, distributed, solver, logic R´esum´e Cette th`ese pr´esente diff´erentes techniques permettant de r´esoudre le probl`eme de satisfaction de formule bool´eenes utilisant le parall´elismeet du calcul distribu´e. Dans le but de fournir une explication la plus compl`ete possible, une pr´esentation d´etaill´ee de l'algorithme CDCL est effectu´ee, suivi d'un ´etatde l'art. De ce point de d´epart,deux pistes sont explor´ees. La premi`ereest une am´eliorationd'un algorithme de type portfolio, permettant d'´echanger plus d'informations sans perte d’efficacit´e.
    [Show full text]
  • Problems and Comments on Boolean Algebras Rosen, Fifth Edition: Chapter 10; Sixth Edition: Chapter 11 Boolean Functions
    Problems and Comments on Boolean Algebras Rosen, Fifth Edition: Chapter 10; Sixth Edition: Chapter 11 Boolean Functions Section 10. 1, Problems: 1, 2, 3, 4, 10, 11, 29, 36, 37 (fifth edition); Section 11.1, Problems: 1, 2, 5, 6, 12, 13, 31, 40, 41 (sixth edition) The notation ""forOR is bad and misleading. Just think that in the context of boolean functions, the author uses instead of ∨.The integers modulo 2, that is ℤ2 0,1, have an addition where 1 1 0 while 1 ∨ 1 1. AsetA is partially ordered by a binary relation ≤, if this relation is reflexive, that is a ≤ a holds for every element a ∈ S,it is transitive, that is if a ≤ b and b ≤ c hold for elements a,b,c ∈ S, then one also has that a ≤ c, and ≤ is anti-symmetric, that is a ≤ b and b ≤ a can hold for elements a,b ∈ S only if a b. The subsets of any set S are partially ordered by set inclusion. that is the power set PS,⊆ is a partially ordered set. A partial ordering on S is a total ordering if for any two elements a,b of S one has that a ≤ b or b ≤ a. The natural numbers ℕ,≤ with their ordinary ordering are totally ordered. A bounded lattice L is a partially ordered set where every finite subset has a least upper bound and a greatest lower bound.The least upper bound of the empty subset is defined as 0, it is the smallest element of L.
    [Show full text]
  • Automated and Interactive Theorem Proving 1: Background & Propositional Logic
    Automated and Interactive Theorem Proving 1: Background & Propositional Logic John Harrison Intel Corporation Marktoberdorf 2007 Thu 2nd August 2007 (08:30–09:15) 0 What I will talk about Aim is to cover some of the most important approaches to computer-aided proof in classical logic. 1. Background and propositional logic 2. First-order logic, with and without equality 3. Decidable problems in logic and algebra 4. Combination and certification of decision procedures 5. Interactive theorem proving 1 What I won’t talk about • Decision procedures for temporal logic, model checking (well covered in other courses) • Higher-order logic (my own interest but off the main topic; will see some of this in other courses) • Undecidability and incompleteness (I don’t have enough time) • Methods for constructive logic, modal logic, other nonclassical logics (I don’t know much anyway) 2 A practical slant Our approach to logic will be highly constructive! Most of what is described is implemented by explicit code that can be obtained here: http://www.cl.cam.ac.uk/users/jrh/atp/ See also my interactive higher-order logic prover HOL Light: http://www.cl.cam.ac.uk/users/jrh/hol-light/ which incorporates many decision procedures in a certified way. 3 Propositional Logic We probably all know what propositional logic is. English Standard Boolean Other false ⊥ 0 F true ⊤ 1 T not p ¬p p −p, ∼ p p and q p ∧ q pq p&q, p · q p or q p ∨ q p + q p | q, por q p implies q p ⇒ q p ≤ q p → q, p ⊃ q p iff q p ⇔ q p = q p ≡ q, p ∼ q In the context of circuits, it’s often referred to as ‘Boolean algebra’, and many designers use the Boolean notation.
    [Show full text]
  • Foundations of Artificial Intelligence
    Foundations of Artificial Intelligence 31. Propositional Logic: DPLL Algorithm Martin Wehrle Universit¨atBasel April 25, 2016 Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Propositional Logic: Overview Chapter overview: propositional logic 29. Basics 30. Reasoning and Resolution 31. DPLL Algorithm 32. Local Search and Outlook Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Motivation Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Propositional Logic: Motivation Propositional logic allows for the representation of knowledge and for deriving conclusions based on this knowledge. many practical applications can be directly encoded, e.g. constraint satisfaction problems of all kinds circuit design and verification many problems contain logic as ingredient, e.g. automated planning general game playing description logic queries (semantic web) Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Propositional Logic: Algorithmic Problems main problems: reasoning (Θ j= '?): Does the formula ' logically follow from the formulas Θ? equivalence (' ≡ ): Are the formulas ' and logically equivalent? satisfiability (SAT): Is formula ' satisfiable? If yes, find a model. German: Schlussfolgern, Aquivalenz,¨ Erf¨ullbarkeit Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary The Satisfiability Problem The Satisfiability Problem (SAT) given: propositional formula in conjunctive normal form (CNF) usually represented as pair hV ; ∆i: V set of propositional variables (propositions) ∆ set of clauses over V (clause = set of literals v or :v with v 2 V ) find: satisfying interpretation (model) or proof that no model exists SAT is a famous NP-complete problem (Cook 1971; Levin 1973). Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Relevance of SAT The name \SAT" is often used for the satisfiability problem for general propositional formulas (instead of restriction to CNF).
    [Show full text]