Conjunctive Normal Form Algorithm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CS 512, Spring 2017, Handout 10 [1Ex] Propositional Logic: [2Ex
CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms Assaf Kfoury 5 February 2017 Assaf Kfoury, CS 512, Spring 2017, Handout 10 page 1 of 28 CNF L ::= p j :p literal D ::= L j L _ D disjuntion of literals C ::= D j D ^ C conjunction of disjunctions DNF L ::= p j :p literal C ::= L j L ^ C conjunction of literals D ::= C j C _ D disjunction of conjunctions conjunctive normal form & disjunctive normal form Assaf Kfoury, CS 512, Spring 2017, Handout 10 page 2 of 28 DNF L ::= p j :p literal C ::= L j L ^ C conjunction of literals D ::= C j C _ D disjunction of conjunctions conjunctive normal form & disjunctive normal form CNF L ::= p j :p literal D ::= L j L _ D disjuntion of literals C ::= D j D ^ C conjunction of disjunctions Assaf Kfoury, CS 512, Spring 2017, Handout 10 page 3 of 28 conjunctive normal form & disjunctive normal form CNF L ::= p j :p literal D ::= L j L _ D disjuntion of literals C ::= D j D ^ C conjunction of disjunctions DNF L ::= p j :p literal C ::= L j L ^ C conjunction of literals D ::= C j C _ D disjunction of conjunctions Assaf Kfoury, CS 512, Spring 2017, Handout 10 page 4 of 28 I A disjunction of literals L1 _···_ Lm is valid (equivalently, is a tautology) iff there are 1 6 i; j 6 m with i 6= j such that Li is :Lj. -
An Algorithm for the Satisfiability Problem of Formulas in Conjunctive
Journal of Algorithms 54 (2005) 40–44 www.elsevier.com/locate/jalgor An algorithm for the satisfiability problem of formulas in conjunctive normal form Rainer Schuler Abt. Theoretische Informatik, Universität Ulm, D-89069 Ulm, Germany Received 26 February 2003 Available online 9 June 2004 Abstract We consider the satisfiability problem on Boolean formulas in conjunctive normal form. We show that a satisfying assignment of a formula can be found in polynomial time with a success probability − − + of 2 n(1 1/(1 logm)),wheren and m are the number of variables and the number of clauses of the formula, respectively. If the number of clauses of the formulas is bounded by nc for some constant c, − + this gives an expected run time of O(p(n) · 2n(1 1/(1 c logn))) for a polynomial p. 2004 Elsevier Inc. All rights reserved. Keywords: Complexity theory; NP-completeness; CNF-SAT; Probabilistic algorithms 1. Introduction The satisfiability problem of Boolean formulas in conjunctive normal form (CNF-SAT) is one of the best known NP-complete problems. The problem remains NP-complete even if the formulas are restricted to a constant number k>2 of literals in each clause (k-SAT). In recent years several algorithms have been proposed to solve the problem exponentially faster than the 2n time bound, given by an exhaustive search of all possible assignments to the n variables. So far research has focused in particular on k-SAT, whereas improvements for SAT in general have been derived with respect to the number m of clauses in a formula [2,7]. -
Solving SAT and SAT Modulo Theories: from an Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T)
Solving SAT and SAT Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T) ROBERT NIEUWENHUIS AND ALBERT OLIVERAS Technical University of Catalonia, Barcelona, Spain AND CESARE TINELLI The University of Iowa, Iowa City, Iowa Abstract. We first introduce Abstract DPLL, a rule-based formulation of the Davis–Putnam– Logemann–Loveland (DPLL) procedure for propositional satisfiability. This abstract framework al- lows one to cleanly express practical DPLL algorithms and to formally reason about them in a simple way. Its properties, such as soundness, completeness or termination, immediately carry over to the modern DPLL implementations with features such as backjumping or clause learning. We then extend the framework to Satisfiability Modulo background Theories (SMT) and use it to model several variants of the so-called lazy approach for SMT. In particular, we use it to introduce a few variants of a new, efficient and modular approach for SMT based on a general DPLL(X) engine, whose parameter X can be instantiated with a specialized solver SolverT for a given theory T , thus producing a DPLL(T ) system. We describe the high-level design of DPLL(X) and its cooperation with SolverT , discuss the role of theory propagation, and describe different DPLL(T ) strategies for some theories arising in industrial applications. Our extensive experimental evidence, summarized in this article, shows that DPLL(T ) systems can significantly outperform the other state-of-the-art tools, frequently even in orders of magnitude, and have -
Boolean Algebra
Boolean Algebra Definition: A Boolean Algebra is a math construct (B,+, . , ‘, 0,1) where B is a non-empty set, + and . are binary operations in B, ‘ is a unary operation in B, 0 and 1 are special elements of B, such that: a) + and . are communative: for all x and y in B, x+y=y+x, and x.y=y.x b) + and . are associative: for all x, y and z in B, x+(y+z)=(x+y)+z, and x.(y.z)=(x.y).z c) + and . are distributive over one another: x.(y+z)=xy+xz, and x+(y.z)=(x+y).(x+z) d) Identity laws: 1.x=x.1=x and 0+x=x+0=x for all x in B e) Complementation laws: x+x’=1 and x.x’=0 for all x in B Examples: • (B=set of all propositions, or, and, not, T, F) • (B=2A, U, ∩, c, Φ,A) Theorem 1: Let (B,+, . , ‘, 0,1) be a Boolean Algebra. Then the following hold: a) x+x=x and x.x=x for all x in B b) x+1=1 and 0.x=0 for all x in B c) x+(xy)=x and x.(x+y)=x for all x and y in B Proof: a) x = x+0 Identity laws = x+xx’ Complementation laws = (x+x).(x+x’) because + is distributive over . = (x+x).1 Complementation laws = x+x Identity laws x = x.1 Identity laws = x.(x+x’) Complementation laws = x.x +x.x’ because + is distributive over . -
MASTER THESIS Strong Proof Systems
Charles University in Prague Faculty of Mathematics and Physics MASTER THESIS Ondrej Mikle-Bar´at Strong Proof Systems Department of Software Engineering Supervisor: Prof. RNDr. Jan Kraj´ıˇcek, DrSc. Study program: Computer Science, Software Systems I would like to thank my advisor for his valuable comments and suggestions. His extensive experience with proof systems and logic helped me a lot. Finally I want to thank my family for their support. Prohlaˇsuji, ˇzejsem svou diplomovou pr´acinapsal samostatnˇea v´yhradnˇe s pouˇzit´ımcitovan´ych pramen˚u.Souhlas´ımse zap˚ujˇcov´an´ımpr´ace. I hereby declare that I have created this master thesis on my own and listed all used references. I agree with lending of this thesis. Prague August 23, 2007 Ondrej Mikle-Bar´at Contents 1 Preliminaries 1 1.1 Propositional logic . 1 1.2 Proof complexity . 2 1.3 Resolution . 4 1.3.1 Pigeonhole principle - PHPn ............... 6 2 OBDD proof system 8 2.1 OBDD . 8 2.2 Inference rules . 10 2.3 Strength of OBDD proofs . 11 3 R-OBDD 12 3.1 Motivation . 12 3.2 Definitions . 12 3.3 Inference rules . 13 3.4 The proof system . 13 4 Automated theorem proving in R-OBDD 16 4.1 R-OBDD solver – DPLL modification for R-OBDD . 17 4.2 Discussion . 22 ii N´azevpr´ace:Siln´ed˚ukazov´esyst´emy Autor: Ondrej Mikle-Bar´at Katedra (´ustav): Katedra softwarov´ehoinˇzen´yrstv´ı Vedouc´ıdiplomov´epr´ace: Prof. RNDr. Jan Kraj´ıˇcek, DrSc. e-mail vedouc´ıho:[email protected] Abstrakt: R-OBDD je nov´yCook-Reckhow˚uv d˚ukazov´ysyst´em pro v´yrokovou logiku zaloˇzenna kombinaci OBDD d˚ukazov´ehosyst´emu a rezoluˇcn´ıho d˚ukazov´eho syst´emu. -
Normal Forms
Propositional Logic Normal Forms 1 Literals Definition A literal is an atom or the negation of an atom. In the former case the literal is positive, in the latter case it is negative. 2 Negation Normal Form (NNF) Definition A formula is in negation formal form (NNF) if negation (:) occurs only directly in front of atoms. Example In NNF: :A ^ :B Not in NNF: :(A _ B) 3 Transformation into NNF Any formula can be transformed into an equivalent formula in NNF by pushing : inwards. Apply the following equivalences from left to right as long as possible: ::F ≡ F :(F ^ G) ≡ (:F _:G) :(F _ G) ≡ (:F ^ :G) Example (:(A ^ :B) ^ C) ≡ ((:A _ ::B) ^ C) ≡ ((:A _ B) ^ C) Warning:\ F ≡ G ≡ H" is merely an abbreviation for \F ≡ G and G ≡ H" Does this process always terminate? Is the result unique? 4 CNF and DNF Definition A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals: n m V Wi F = ( ( Li;j )), i=1 j=1 where Li;j 2 fA1; A2; · · · g [ f:A1; :A2; · · · g Definition A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals: n m W Vi F = ( ( Li;j )), i=1 j=1 where Li;j 2 fA1; A2; · · · g [ f:A1; :A2; · · · g 5 Transformation into CNF and DNF Any formula can be transformed into an equivalent formula in CNF or DNF in two steps: 1. Transform the initial formula into its NNF 2. -
Satisfiability 6 the Decision Problem 7
Satisfiability Difficult Problems Dealing with SAT Implementation Klaus Sutner Carnegie Mellon University 2020/02/04 Finding Hard Problems 2 Entscheidungsproblem to the Rescue 3 The Entscheidungsproblem is solved when one knows a pro- cedure by which one can decide in a finite number of operations So where would be look for hard problems, something that is eminently whether a given logical expression is generally valid or is satis- decidable but appears to be outside of P? And, we’d like the problem to fiable. The solution of the Entscheidungsproblem is of funda- be practical, not some monster from CRT. mental importance for the theory of all fields, the theorems of which are at all capable of logical development from finitely many The Circuit Value Problem is a good indicator for the right direction: axioms. evaluating Boolean expressions is polynomial time, but relatively difficult D. Hilbert within P. So can we push CVP a little bit to force it outside of P, just a little bit? In a sense, [the Entscheidungsproblem] is the most general Say, up into EXP1? problem of mathematics. J. Herbrand Exploiting Difficulty 4 Scaling Back 5 Herbrand is right, of course. As a research project this sounds like a Taking a clue from CVP, how about asking questions about Boolean fiasco. formulae, rather than first-order? But: we can turn adversity into an asset, and use (some version of) the Probably the most natural question that comes to mind here is Entscheidungsproblem as the epitome of a hard problem. Is ϕ(x1, . , xn) a tautology? The original Entscheidungsproblem would presumable have included arbitrary first-order questions about number theory. -
Automated and Interactive Theorem Proving 1: Background & Propositional Logic
Automated and Interactive Theorem Proving 1: Background & Propositional Logic John Harrison Intel Corporation Marktoberdorf 2007 Thu 2nd August 2007 (08:30–09:15) 0 What I will talk about Aim is to cover some of the most important approaches to computer-aided proof in classical logic. 1. Background and propositional logic 2. First-order logic, with and without equality 3. Decidable problems in logic and algebra 4. Combination and certification of decision procedures 5. Interactive theorem proving 1 What I won’t talk about • Decision procedures for temporal logic, model checking (well covered in other courses) • Higher-order logic (my own interest but off the main topic; will see some of this in other courses) • Undecidability and incompleteness (I don’t have enough time) • Methods for constructive logic, modal logic, other nonclassical logics (I don’t know much anyway) 2 A practical slant Our approach to logic will be highly constructive! Most of what is described is implemented by explicit code that can be obtained here: http://www.cl.cam.ac.uk/users/jrh/atp/ See also my interactive higher-order logic prover HOL Light: http://www.cl.cam.ac.uk/users/jrh/hol-light/ which incorporates many decision procedures in a certified way. 3 Propositional Logic We probably all know what propositional logic is. English Standard Boolean Other false ⊥ 0 F true ⊤ 1 T not p ¬p p −p, ∼ p p and q p ∧ q pq p&q, p · q p or q p ∨ q p + q p | q, por q p implies q p ⇒ q p ≤ q p → q, p ⊃ q p iff q p ⇔ q p = q p ≡ q, p ∼ q In the context of circuits, it’s often referred to as ‘Boolean algebra’, and many designers use the Boolean notation. -
Extended Conjunctive Normal Form and an Efficient Algorithm For
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) Extended Conjunctive Normal Form and An Efficient Algorithm for Cardinality Constraints Zhendong Lei1;2 , Shaowei Cai1;2∗ and Chuan Luo3 1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China 2School of Computer Science and Technology, University of Chinese Academy of Sciences, China 3Microsoft Research, China fleizd, [email protected] Abstract efficient PMS solvers, including SAT-based solvers [Naro- dytska and Bacchus, 2014; Martins et al., 2014; Berg et Satisfiability (SAT) and Maximum Satisfiability al., 2019; Nadel, 2019; Joshi et al., 2019; Demirovic and (MaxSAT) are two basic and important constraint Stuckey, 2019] and local search solvers [Cai et al., 2016; problems with many important applications. SAT Luo et al., 2017; Cai et al., 2017; Lei and Cai, 2018; and MaxSAT are expressed in CNF, which is dif- Guerreiro et al., 2019]. ficult to deal with cardinality constraints. In this One of the most important drawbacks of these logical lan- paper, we introduce Extended Conjunctive Normal guages is the difficulty to deal with cardinality constraints. Form (ECNF), which expresses cardinality con- Indeed, cardinality constraints arise frequently in the encod- straints straightforward and does not need auxiliary ing of many real world situations such as scheduling, logic variables or clauses. Then, we develop a simple and synthesis or verification, product configuration and data min- efficient local search solver LS-ECNF with a well ing. For the above reasons, many works have been done on designed scoring function under ECNF. We also de- finding an efficient encoding of cardinality constraints in CNF velop a generalized Unit Propagation (UP) based formulas [Sinz, 2005; As´ın et al., 2009; Hattad et al., 2017; algorithm to generate the initial solution for local Boudane et al., 2018; Karpinski and Piotrow,´ 2019]. -
Lecture 1: Propositional Logic
Lecture 1: Propositional Logic Syntax Semantics Truth tables Implications and Equivalences Valid and Invalid arguments Normal forms Davis-Putnam Algorithm 1 Atomic propositions and logical connectives An atomic proposition is a statement or assertion that must be true or false. Examples of atomic propositions are: “5 is a prime” and “program terminates”. Propositional formulas are constructed from atomic propositions by using logical connectives. Connectives false true not and or conditional (implies) biconditional (equivalent) A typical propositional formula is The truth value of a propositional formula can be calculated from the truth values of the atomic propositions it contains. 2 Well-formed propositional formulas The well-formed formulas of propositional logic are obtained by using the construction rules below: An atomic proposition is a well-formed formula. If is a well-formed formula, then so is . If and are well-formed formulas, then so are , , , and . If is a well-formed formula, then so is . Alternatively, can use Backus-Naur Form (BNF) : formula ::= Atomic Proposition formula formula formula formula formula formula formula formula formula formula 3 Truth functions The truth of a propositional formula is a function of the truth values of the atomic propositions it contains. A truth assignment is a mapping that associates a truth value with each of the atomic propositions . Let be a truth assignment for . If we identify with false and with true, we can easily determine the truth value of under . The other logical connectives can be handled in a similar manner. Truth functions are sometimes called Boolean functions. 4 Truth tables for basic logical connectives A truth table shows whether a propositional formula is true or false for each possible truth assignment. -
Foundations of Artificial Intelligence
Foundations of Artificial Intelligence 31. Propositional Logic: DPLL Algorithm Martin Wehrle Universit¨atBasel April 25, 2016 Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Propositional Logic: Overview Chapter overview: propositional logic 29. Basics 30. Reasoning and Resolution 31. DPLL Algorithm 32. Local Search and Outlook Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Motivation Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Propositional Logic: Motivation Propositional logic allows for the representation of knowledge and for deriving conclusions based on this knowledge. many practical applications can be directly encoded, e.g. constraint satisfaction problems of all kinds circuit design and verification many problems contain logic as ingredient, e.g. automated planning general game playing description logic queries (semantic web) Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Propositional Logic: Algorithmic Problems main problems: reasoning (Θ j= '?): Does the formula ' logically follow from the formulas Θ? equivalence (' ≡ ): Are the formulas ' and logically equivalent? satisfiability (SAT): Is formula ' satisfiable? If yes, find a model. German: Schlussfolgern, Aquivalenz,¨ Erf¨ullbarkeit Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary The Satisfiability Problem The Satisfiability Problem (SAT) given: propositional formula in conjunctive normal form (CNF) usually represented as pair hV ; ∆i: V set of propositional variables (propositions) ∆ set of clauses over V (clause = set of literals v or :v with v 2 V ) find: satisfying interpretation (model) or proof that no model exists SAT is a famous NP-complete problem (Cook 1971; Levin 1973). Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary Relevance of SAT The name \SAT" is often used for the satisfiability problem for general propositional formulas (instead of restriction to CNF). -
Logic and Proof
Logic and Proof Computer Science Tripos Part IB Michaelmas Term Lawrence C Paulson Computer Laboratory University of Cambridge [email protected] Copyright c 2007 by Lawrence C. Paulson Contents 1 Introduction and Learning Guide 1 2 Propositional Logic 3 3 Proof Systems for Propositional Logic 13 4 First-order Logic 20 5 Formal Reasoning in First-Order Logic 27 6 Clause Methods for Propositional Logic 33 7 Skolem Functions and Herbrand’s Theorem 41 8 Unification 50 9 Applications of Unification 58 10 BDDs, or Binary Decision Diagrams 65 11 Modal Logics 68 12 Tableaux-Based Methods 74 i ii 1 1 Introduction and Learning Guide This course gives a brief introduction to logic, with including the resolution method of theorem-proving and its relation to the programming language Prolog. Formal logic is used for specifying and verifying computer systems and (some- times) for representing knowledge in Artificial Intelligence programs. The course should help you with Prolog for AI and its treatment of logic should be helpful for understanding other theoretical courses. Try to avoid getting bogged down in the details of how the various proof methods work, since you must also acquire an intuitive feel for logical reasoning. The most suitable course text is this book: Michael Huth and Mark Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, 2nd edition (CUP, 2004) It costs £35. It covers most aspects of this course with the exception of resolution theorem proving. It includes material (symbolic model checking) that should be useful for Specification and Verification II next year.