Radio Astronomical Aspect of the Solar Convection Zone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure and Energy Transport of the Solar Convection Zone A
Structure and Energy Transport of the Solar Convection Zone A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ASTRONOMY December 2004 By James D. Armstrong Dissertation Committee: Jeffery R. Kuhn, Chairperson Joshua E. Barnes Rolf-Peter Kudritzki Jing Li Haosheng Lin Michelle Teng © Copyright December 2004 by James Armstrong All Rights Reserved iii Acknowledgements The Ph.D. process is not a path that is taken alone. I greatly appreciate the support of my committee. In particular, Jeff Kuhn has been a friend as well as a mentor during this time. The author would also like to thank Frank Moss of the University of Missouri St. Louis. His advice has been quite helpful in making difficult decisions. Mark Rast, Haosheng Lin, and others at the HAO have assisted in obtaining data for this work. Jesper Schou provided the helioseismic rotation data. Jorgen Christiensen-Salsgaard provided the solar model. This work has been supported by NASA and the SOHOjMDI project (grant number NAG5-3077). Finally, the author would like to thank Makani for many interesting discussions. iv Abstract The solar irradiance cycle has been observed for over 30 years. This cycle has been shown to correlate with the solar magnetic cycle. Understanding the solar irradiance cycle can have broad impact on our society. The measured change in solar irradiance over the solar cycle, on order of0.1%is small, but a decrease of this size, ifmaintained over several solar cycles, would be sufficient to cause a global ice age on the earth. -
The Sun and the Solar Corona
SPACE PHYSICS ADVANCED STUDY OPTION HANDOUT The sun and the solar corona Introduction The Sun of our solar system is a typical star of intermediate size and luminosity. Its radius is about 696000 km, and it rotates with a period that increases with latitude from 25 days at the equator to 36 days at poles. For practical reasons, the period is often taken to be 27 days. Its mass is about 2 x 1030 kg, consisting mainly of hydrogen (90%) and helium (10%). The Sun emits radio waves, X-rays, and energetic particles in addition to visible light. The total energy output, solar constant, is about 3.8 x 1033 ergs/sec. For further details (and more accurate figures), see the table below. THE SOLAR INTERIOR VISIBLE SURFACE OF SUN: PHOTOSPHERE CORE: THERMONUCLEAR ENGINE RADIATIVE ZONE CONVECTIVE ZONE SCHEMATIC CONVECTION CELLS Figure 1: Schematic representation of the regions in the interior of the Sun. Physical characteristics Photospheric composition Property Value Element % mass % number Diameter 1,392,530 km Hydrogen 73.46 92.1 Radius 696,265 km Helium 24.85 7.8 Volume 1.41 x 1018 m3 Oxygen 0.77 Mass 1.9891 x 1030 kg Carbon 0.29 Solar radiation (entire Sun) 3.83 x 1023 kW Iron 0.16 Solar radiation per unit area 6.29 x 104 kW m-2 Neon 0.12 0.1 on the photosphere Solar radiation at the top of 1,368 W m-2 Nitrogen 0.09 the Earth's atmosphere Mean distance from Earth 149.60 x 106 km Silicon 0.07 Mean distance from Earth (in 214.86 Magnesium 0.05 units of solar radii) In the interior of the Sun, at the centre, nuclear reactions provide the Sun's energy. -
198Lapj. . .243. .945G the Astrophysical Journal, 243:945-953
.945G .243. The Astrophysical Journal, 243:945-953, 1981 February 1 . © 1981. The American Astronomical Society. All rights reserved. Printed in U.S.A. 198lApJ. CONVECTION AND MAGNETIC FIELDS IN STARS D. J. Galloway High Altitude Observatory, National Center for Atmospheric Research1 AND N. O. Weiss Sacramento Peak Observatory2 Received 1980 March 10; accepted 1980 August 18 ABSTRACT Recent observations have demonstrated the unity of the study of stellar and solar magnetic fields. Results from numerical experiments on magnetoconvection are presented and used to discuss the concentration of magnetic flux into isolated ropes in the turbulent convective zones of the Sun or other late-type stars. Arguments are given for siting the solar dynamo at the base of the convective zone. Magnetic buoyancy leads to the emergence of magnetic flux in active regions, but weaker flux ropes are shredded and dispersed throughout the convective zone. The observed maximum field strengths in late-type stars should be comparable with the field (87rp)1/2 that balances the photospheric pressure. Subject headings: convection — hydrodynamics — stars: magnetic — Sun : magnetic fields I. INTRODUCTION In § II we summarize the results obtained for simplified The Sun is unique in having a magnetic field that can be models of hydromagnetic convection. The structure of mapped in detail, but magnetic activity seems to be a turbulent magnetic fields is then described in § III. standard feature of stars with deep convective envelopes. Theory and observation are brought together in § IV, Fields of 2000 gauss or more have been found in two where we discuss the formation of isolated flux tubes in late-type main sequence stars (Robinson, Worden, and the interior of the Sun. -