<<

198lApJ. . .243. .945G The AstrophysicalJournal,243:945-953,1981February1 © 1981.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. mapped indetail,butmagneticactivityseemstobea Fields of2000gaussormorehavebeenfoundintwo standard featureofstarswithdeepconvectiveenvelopes. , Inc.,undercontractwith theNationalScienceFoundation. National ScienceFoundation. which showcyclicvariationsofactivity.Some,perhaps late-type mainsequencestars(Robinson,Worden,and Ca iiemissionsfrommanyG,K,andMstars,someof Harvey 1980).Wilson(1978)hasdetectedchromospheric field iscomparativelyfeeble,allattemptstoexplain all, dMestarsflare,andtheunexpectedlyhighX-ray magnetic activityinstarsarebasedonsolarobservations. ofKandMstars(e.g.,Vaiana1979)suggest that theyhavestrongmagneticfields.AlthoughtheSun’s netic featuresandcellularconvectioninthephotosphere. have revealedtheinteractionbetweensmall-scalemag- magnetic fieldshasbeenclarifiedbymeasurementsfrom Over thelastdecadestructureoflarge-scalesolar space, whilehighresolutionground-basedobservations Weiss 1977).Nonlinearmagnetoconvectionhasrecently between magneticfieldsandconvection(forareview,see lent ,itisimportanttostudytheinteraction been investigatedinseveralseriesofnumericalexperi- ments (PeckoverandWeiss1978;GallowayMoore magnetic fieldsatthesurfaceandininteriorofSun and otherlate-typestars. these idealizedmodelcalculationstothestructureof 1979a). Sincemagneticactivityisassociatedwithturbu- 1979; Weiss1981a,b).Theaimofthispaperistorelate 2 1 The Sunisuniqueinhavingamagneticfieldthatcanbe OperatedbytheAssociationof Universities forResearchin TheNationalCenterforAtmospheric Researchissponsoredbythe Theory alsohasmadeconsiderableprogress(Parker © American Astronomical Society • Provided by theNASA Astrophysics Data System 1/2 concentration ofmagneticfluxintoisolatedropesintheturbulentconvectivezonesSunorother Results fromnumericalexperimentsonmagnetoconvectionarepresentedandusedtodiscussthe shredded anddispersedthroughouttheconvectivezone.Theobservedmaximumfieldstrengthsin Magnetic buoyancyleadstotheemergenceofmagneticfluxinactiveregions,butweakerropesare late-type .Argumentsaregivenforsitingthesolardynamoatbaseofconvectivezone. late-type starsshouldbecomparablewiththefield(87rp)thatbalancesphotosphericpressure. Subject headings:convection—hydrodynamicsstars:magnetic Recent observationshavedemonstratedtheunityofstudystellarandsolarmagneticfields. I. INTRODUCTION :magneticfields CONVECTION ANDMAGNETICFIELDSINSTARS 1 High AltitudeObservatory,NationalCenterforAtmosphericResearch Received 1980March10;acceptedAugust18 2 Sacramento PeakObservatory D. J.Galloway N. O.Weiss ABSTRACT AND 945 Theory andobservationarebroughttogetherin§IV, models ofhydromagneticconvection.Thestructure where wediscusstheformationofisolatedfluxtubesin turbulent magneticfieldsisthendescribedin§III. where r¡isthemagneticdiffusivity.Ifvelocityu netic fieldBisgovernedbytheinductionequation convection andanexternallyimposedmagneticfield.The idealized geometries.Inaconductingmediumthemag- calculations arerestrictedtoBoussinesqfluidswith field dependsonthemagneticReynoldsnumber, prescribed (thekinematicproblem)thebehaviorof in theSunandotherstarswithvigorousconvectivezones. § V.Finally,weconsidertheoriginofmagneticfields R =UL/r¡,whereU,Lareacharacteristicspeedand programs, coveringstarsofdifferingmass,thatcan the interiorofSun.Photosphericfieldsarecoveredin B bythetwo-dimensionalvelocity better estimatesofthefieldstrengthsinstarspotsand Our conclusionsemphasizetheneedforobservational Figure 1showsthedistortion ofaninitiallyuniformfield length scaleforthemotion(Moffatt1978;Parker1979a). establish thecorrelationbetweenmagneticactivityand areas theyoccupy. rotation orconvectivevelocity;inaddition,weneed m 0 In §IIwesummarizetheresultsobtainedforsimplified In thissectionwetreattheinteractionbetweenlaminar II. CONCENTRATIONOFMAGNETICFLUX u= C/(—sin(nx/L)cos(nz/L), 0, 2 — =curl(«xZ?)+r}VB,(1) c)B cos (nx/L)sin(nz/L)), (2) 198lApJ. . .243. .945G T/t! =0,1,2,3,4,5,6,7,8,9,10,and20,wheret,5t/8. 0 Fig. 1.—Expulsionofmagneticflux:theevolutionfieldin akinematiccalculationwithR=250.Linesoffereeareshownattimes m © American Astronomical Society • Provided by theNASA Astrophysics Data System 198lApJ. . .243. .945G 1/2 1/3 (0)2 (e)2 (e) when R=250,withboundaryconditionssuchthat at theupperandlowerboundaries.(Forasimilarcalcula- B =0onx,z0,L,sothatlinesofforcecanmovefreely tion withdifferentchoicesofvelocityandboundary magnetic fluxisquicklyconcentratedintosheetsatthe conditions, seeWeiss1966).Astheeddyturnsover, field attheedgesofcellisamplifiedbyafactororder expelled fromtheconvectiveeddy.Infinalstate lateral boundaries,whilethecentralfieldgrowsprogres- sively moredistorteduntilreconnectionoccursandfluxis R (e.g.,ProctorandWeiss1978).Thisamplification field canbeincreasedbyafactorofupto200(Weiss proceeds rapidly:Afteroneturnovertimet=L/U,the R =250,butthistimeincreasesas(Weiss1966). longer: Theprocessiscompletedbyt^5.5twhen m order R(Galloway,Proctor,andWeiss1978;Galloway an isolatedtubeandthefieldisamplifiedbyafactorof In athree-dimensionalflow,thefluxisconcentratedinto pattern ofconvection,soitisnecessarytoconsiderthe and Moore1979). x dynamical problemandsolvetheequationsofmotion. drasekhar 1961;Danielson1961).Intheastrophysically 1966). Ontheotherhand,fluxexpulsiontakesmuch of thediffusivities.Herevisviscousdiffusivity,d Linear theoryhasbeenextensivelydiscussed(Chan- ratios B issufficientlylarge,convectionsetsinasoverstable interesting case,whenthethermaldiffusivitykrjand oscillations. Heattransportbyoscillatoryconvectionis m 0 overstability setsinwhenR=~7i1, layer depth,ßthesuperadiabatictemperaturegradient, described bydimensionlessparameters (the RayleighandChandrasekharnumbers),bythe relatively inefficientsoitisimportanttoascertainwhen steady convectioncanoccur.Theconfigurationis m 0 solution atR=~7r<2. steady solutionsbifurcatefromthestaticconducting m is increased,steadyconvectionfirstappearswithfinite tical steadyconvectionintherangeR<.As periodic boundaryconditions(cf.Weiss1981a).Once amplitude atR=.Figure2showsstreamlinesand lines offorceforsteadytwo-dimensionalconvectionwith within thesesheets,thefieldisstrongenoughtoexclude again, thefluxisconfinedtonarrowsheets,allowing convection totakeplaceinthefield-freecentralregion; 0 the motion.Similarresultshavebeenobtainedforan first appearinnarrowcells,elongated inthedirectionof uniform (GallowayandMoore 1979). a stagnantaxialtubewithin whichthefieldisnearly axisymmetric configuration,where thefluxisconfinedto min min These strongfieldsexertforceswhichmodifythe Nonlinear calculationsconfirmtheexistenceofsubcri- Although lineartheorypredicts thatconvectionshould © American Astronomical Society • Provided by theNASA Astrophysics Data System g =v/kandÇvj/k(4) 4 gocßd KV and Q = CONVECTION ANDMAGNETICFIELDS 2 4nprjv Bod (3) 2(e) convection occursmorereadilyinwidercells,which the fieldR,nonlinearresultsindicatethatsteady that R~7rCQ,asconjecturedbyDanielson concentrated fields.Thenumericalexperimentssuggest allow morespaceforconvectivemotionbetweenthe steady statewithmotionexcludedfromthestagnantfluxsheets. motion ispossiblewhenthefieldexceedsacriticalvalue occurs forQ