Single and Binary Evolution of Population III Stars and Their Supernova Explosions T
Mon. Not. R. Astron. Soc. 384, 1533–1543 (2008) doi:10.1111/j.1365-2966.2007.12810.x Single and binary evolution of Population III stars and their supernova explosions T. M. Lawlor,1 T. R. Young,2 T. A. Johnson3 and J. MacDonald4 1Department of Physics, Penn State University, Brandywine, Media, PA 19063, USA 2Department of Physics, University of North Dakota, Grand Forks, ND 58202, USA 3Department of Math, Science & Technology, University of Minnesota, Crookston, Crookston, MN 56716 4Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA Accepted 2007 November 30. Received 2007 November 30; in original form 2007 October 12 ABSTRACT We present stellar evolution calculations for Population III stars for both single- and binary- star evolutions. Our models include 10- and 16.5-M single stars and a 10-M model star that undergoes an episode of accretion resulting in a final mass of 16.1 M. For comparison, we present the evolution of a solar heavy element abundance model. We use the structure from late-stage evolution models to calculate simulated supernova light curves. Light curve comparisons are made between accretion and non-accretion progenitor models, and models for single-star evolution of comparable masses. Where possible, we make comparisons to previous works. Similar investigations have been carried out, but primarily for solar or near-solar heavy metal abundance stars and not including both the evolution and the supernova explosions in one work. Key words: binaries: general – stars: evolution – supernovae: general. low-mass, very low Z object He 0107–5240 ([Fe/H] =−5.3) as an 1 INTRODUCTION example of a possible Pop III star that makes it difficult to rule out It is commonly believed that the first stars, Population III (Pop III) low-mass fragments.