SOME DISTANCE PROPERTIES of TWO SPACES INDUCED by DUAL CONVEX POLYHEDRA ZEYNEP ÇOLAK and ZEYNEP CAN

Total Page:16

File Type:pdf, Size:1020Kb

SOME DISTANCE PROPERTIES of TWO SPACES INDUCED by DUAL CONVEX POLYHEDRA ZEYNEP ÇOLAK and ZEYNEP CAN INTERNATIONAL JOURNAL OF GEOMETRY Vol. 7 (2018), No. 2, 12 - 24 SOME DISTANCE PROPERTIES OF TWO SPACES INDUCED BY DUAL CONVEX POLYHEDRA ZEYNEP ÇOLAK and ZEYNEP CAN Abstract.Dual convex spaces have an important place in mathematics. In geometry, some polyhedra are associated into pairs called duals, where the vertices of one correspond to the faces of the other. Arranging regular polyhedra into dual pairs needs some simple operations but it is not that easy to do this for semi-regular polyhedra. In further studies it has seen that there are some relations between polyhedra and metrics. For example, it has been shown that cube, octahedron and deltoidal icositetrahedron are maximum, taxicab and Chinese Checker’sunit spheres, respectively. In this paper some distance formulae of two spaces which are induced by two dual convex polyhedra has been researched by a new method di¤erent from [1] and [8], and by this method distance formulae in Minkowski geometries can be generalized. This polyhedra are cuboctahedron which is an Archimedean solid and rhombic dodecahedron a Catalan solid which is the dual of cuboc- tahedron. 1. Introduction Molecules, galaxies, sculpture, viruses, crystals, architecture and more, polyhedra are always in nature and art. It is at the same time hands- on, mind-turned-on introduction to one of the oldest and most fascinating branches of mathematics. Although it is so ancient it is not that easy to describe what a polyhedron is. To describe a polyhedron the terms faces, edges and vertices would be used. Polygonal parts of the polyhedron are called faces, line segments that along faces come together are called edges and points where several edges and faces come together are called vertex. So, simply, a polyhedron can be de…ned as a closed, three-dimensional …gure which faces are polygons. For example, any closed box is a polyhedron, for its faces are rectangles. ————————————– Keywords and phrases: Polyhedra, Dual polyhedra, Convex polyhe- dra, Metric geometry, Rhombic Dodecahedron, Cuboctahedron, Distance Formulae. (2010)Mathematics Subject Classi…cation: 51P99, 60A99 Received: 27.07.2018. In revised form: 30.09.2018. Accepted: 20.08.2018. Some distance properties of two spaces induced by dual convex polyhedra 13 A polyhedron is called convex if a line segment joining any two points in the interior of the …gure lies completely within the …gure. There are some classi…cations of convex polyhedra. The regular polyhedra (for each of these polyhedra, every face, every vertex and every edge is like every other) are also known as the "Platonic Solids" because the Greek philoso- pher Plato (427-347 B.C.E.) immortalized them in his dialogue Timaeus. Platonic solids are only …ve. An other class of polyhedra is Archimedean solids because they were …rst discovered by Archimedes (287-212 B.C.E.). Vertices of the Archimedean polyhedra are all alike, but their faces, which are regular polygons, are of two or more di¤erent kinds. For this reason they are often called semiregular [13]. And irregular polyhedra are de…ned by polygons that are composed of elements that are not all equal and they are called Catalan solids or Archimedean duals. There are thirteen Cata- lan solids just like Archimedean solids. They are named for the Belgian mathematician, Eugéne Catalan, who …rst described them in 1865. Two polyhedrons called dual if either of a pair of polyhedra in which the faces of one are equivalent to the vertices of the other. Starting with any regular polyhedra, the dual can be constructed in the following manner: (1) Place a point in the center of each face of the original polyhedron; (2) Connect each new point with the new points of its neighboring faces; (3) Erase the original polyhedron. This is an operation "of order 2" meaning that taking the dual of the dual of x gives back the original x. For example, take the dual of the octahedron and see that it is a cube and take the dual of the cube and see that is an octahedron. The relative sizes of the two dual polyhedra can be adjusted as shown here, so that their edges are the same distance from their common center, and so cross through each other. In geometry, polyhedra are associated into pairs called duals, where the vertices of one correspond to the faces of the other. The dual of the dual is the original polyhedron. The dual of a polyhedron with equivalent vertices is one with equivalent faces, and of one with equivalent edges is another with equivalent edges. So the regular polyhedra — the Platonic solids and Kepler-Poinsot polyhedra, — are arranged into dual pairs. But the same simple operations are not valid for semi-regular polyhedrons. Because of the centers of surfaces around a corner is not on the same plane. Thereby we have to put the semi-regular polyhedra into sphere and make a plane tangent to each hill. The dual polyhedra of a Platonic solid or Archimedean solid can be also drawn by constructing polyhedra edges tangent to the midsphere which are perpendicular to the original polyhedra edges. 14 ZeynepÇolakandZeynepCan Figure 1 is lightly rotated, showing the edges of rhombic dodecahedron (yellow), octahedron (green) and cube (blue). To measure the distance between two points in a space commonly Euclid- ean distance is used. Despite of it is so popular and ancient, sometimes it is not practical in the real world. For example taxicab distance is useful instead of Euclidean distance in an urban life where streets are planned par- allel or perpendicular to each other, as it is in Manhattan. Especially the maximum distance is a very useful model in the real world and its applica- tions are so much. For example, urban planning at the macro dimensions can be used for nearly calculations. Minkowski geometry is a non-Euclidean geometry in a …nite number of dimentions. Here the linear structure is same as the Euclidean one but distance is not uniform in all directions. That is, the points, lines and planes are the same, and the angles are measured in the same way, but the distance function is di¤erent. Instead of the usual sphere in Euclidean space, the unit ball is a general symmetric convex set [15]. In studies about metric space geometry it had seen that unit spheres of these geometries are associated with convex polyhedra. When a metric is given it is easy to …nd its unit sphere in the related space geometry. In [9 and 4] authors found cuboctahedron and rhombic dodecahedron metrics by a contrary question as if sphere is known how the metric would be found and by these metrics new geometries are induced. 3 For two points P1 = (x1; y1; z1) and P2 = (x2; y2; z2) in R , Cuboctahe- dron and Rhombic Dodecahedron metrics are de…ned as 1 dCO(P ;P ) = max x1 x2 ; y1 y2 ; z1 z2 ; ( x1 x2 + y1 y2 + z1 z2 ) 1 2 j j j j j j 2 j j j j j j and dRD(P1;P2) = max x1 x2 + y1 y2 ; x1 x2 + z1 z2 ; y1 y2 + z1 z2 fj j j j j j j j j j j jg 3 3 3 respectively. RCO , RRD and RE are denote analytic 3-spaces which are furnished by Cuboctahedron metric, Rhombic Dodecahedron metric and 3 3 Euclidean metric, respectively. Linear structure of the RCO , RRD are al- 3 most the same of RE, there is only one di¤erence, this di¤erence is that its distance function. It is so important to work on notions concerned to Some distance properties of two spaces induced by dual convex polyhedra 15 distance in geometric studies, because change of metric can bring out in- teresting results. In this study formulae of distance of a point to a plane, distance of a point to line and distance between two lines in two spaces which are induced by two dual convex polyhedra has been researched by a new method which is di¤erent from further calculations done in [1] and [8], and which enables generalizing distance formulae for Minkowski geometries. This convex polyhedra are cuboctahedron which is an Archimedean solid and rhombic dodecahedron a Catalan solid which is the dual of cuboctahe- dron. 2. DISTANCE FORMULAE OF CUBOCTAHEDRON AND RHOMBIC· DODECAHEDRON Cuboctahedron The cuboctahedron is a uniform polyhedron bounded by 6 squares and 8 triangles. A cuboctahedron has 14 faces, 12 identical vertices, with two triangles and two squares meeting at each, and 24 identical edges, each sep- arating a triangle from a square. As such it is a quasiregular polyhedron, i.e. an Archimedean solid, being vertex-transitive and edge-transitive. Its dual polyhedron is the rhombic dodecahedron. It is edge-uniform, and its two kinds of faces alternate around each vertex, so it is also a quasi-regular polyhedron. It is, also called the heptaparallelohedron or dymaxion. The distance between the center of a cuboctahedron and each vertex is equal to the length of its edges. The regular hexagon and the cuboctahedron are the only uniform polytopes of their respective dimensions with this property. The cuboctahedron has the Oh octahedral group of symmetries. According to Heron, Archimedes ascribed the cuboctahedron to Plato (Heath 1981; Coxeter 1973, p. 30). The Cartesian coordinates of vertex of the cuboctahe- dron, centered on the origin and having edge length 2, are all permutations of coordinates and changes of sign of (0; 1; 1): Figure 2 Cuboctahedron De…nition 1. Let P1 = (x1; y1; z1) and P2 = (x2; y2; z2) be two points in 3 R . The cuboctahedron distance between P1 and P2 is 1 dCO(P1;P2) = max x1 x2 ; y1 y2 ; z1 z2 ; ( x1 x2 + y1 y2 + z1 z2 ) j j j j j j 2 j j j j j j In accordance with dCO-metric, the shortest way between points P1 and 1 P2 is a line segment that is parallel to a coordinate axis or 2 times of sum of three line segments each of them is parallel to a coordinate axis.
Recommended publications
  • Snub Cell Tetricosa
    E COLE NORMALE SUPERIEURE ________________________ A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS ________________________ Département de Mathématiques et Informatique CNRS URA 1327 A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS January Lab oratoire dInformatique de lEcole Normale Superieure rue dUlm PARIS Cedex Tel Adresse electronique dmiensfr CEMI Russian Academy of Sciences Moscow A zo o of l embeddable p olytopal graphs MDeza CNRS Ecole Normale Superieure Paris VPGrishukhin CEMI Russian Academy of Sciences Moscow Abstract A simple graph G V E is called l graph if for some n 2 IN there 1 exists a vertexaddressing of each vertex v of G by a vertex av of the n cub e H preserving up to the scale the graph distance ie d v v n G d av av for all v 2 V We distinguish l graphs b etween skeletons H 1 n of a variety of well known classes of p olytop es semiregular regularfaced zonotop es Delaunay p olytop es of dimension and several generalizations of prisms and antiprisms Introduction Some notation and prop erties of p olytopal graphs and hypermetrics Vector representations of l metrics and hypermetrics 1 Regularfaced p olytop es Regular p olytop es Semiregular not regular p olytop es Regularfaced not semiregularp olytop es of dimension Prismatic graphs Moscow and Glob e graphs Stellated k gons Cup olas Antiwebs Capp ed antiprisms towers and fullerenes regularfaced not semiregular p olyhedra Zonotop es Delaunay p olytop es Small
    [Show full text]
  • Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
    Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166).
    [Show full text]
  • Steinitz's Theorem Project Report §1 Introduction §2 Basic Definitions
    Steinitz's Theorem Project Report Jon Hillery May 17, 2019 §1 Introduction Looking at the vertices and edges of polyhedra gives a family of graphs that we might expect has nice properties. It turns out that there is actually a very nice characterization of these graphs! We can use this characterization to find useful representations of certain graphs. §2 Basic Definitions We define a space to be convex if the line segment connecting any two points in the space remains entirely inside the space. This works for two-dimensional sets: and three-dimensional sets: Given a polyhedron, we define its 1-skeleton to be the graph formed from the vertices and edges of the polyhedron. For example, the 1-skeleton of a tetrahedron is K4: 1 Jon Hillery (May 17, 2019) Steinitz's Theorem Project Report Here are some further examples of the 1-skeleton of an icosahedron and a dodecahedron: §3 Properties of 1-Skeletons What properties do we know the 1-skeleton of a convex polyhedron must have? First, it must be planar. To see this, imagine moving your eye towards one of the faces until you are close enough that all of the other faces appear \inside" the face you are looking through, as shown here: This is always possible because the polyedron is convex, meaning intuitively it doesn't have any parts that \jut out". The graph formed from viewing in this way will have no intersections because the polyhedron is convex, so the straight-line rays our eyes see are not allowed to leave via an edge on the boundary of the polyhedron and then go back inside.
    [Show full text]
  • Chiral Polyhedra Derived from Coxeter Diagrams and Quaternions
    SQU Journal for Science, 16 (2011) 82-101 © 2011 Sultan Qaboos University Chiral Polyhedra Derived from Coxeter Diagrams and Quaternions Mehmet Koca, Nazife Ozdes Koca* and Muna Al-Shueili Department of Physics, College of Science, Sultan Qaboos University, P.O.Box 36, Al- Khoud, 123 Muscat, Sultanate of Oman, *Email: [email protected]. متعددات السطوح اليدوية المستمدة من أشكال كوكزتر والرباعيات مهمت كوجا، نزيفة كوجا و منى الشعيلي ملخص: هناك متعددات أسطح ٌدوٌان أرخمٌدٌان: المكعب المسطوح والثنعشري اﻷسطح المسطوح مع أشكالها الكتﻻنٌة المزدوجة: رباعٌات السطوح العشرونٌة الخماسٌة مع رباعٌات السطوح السداسٌة الخماسٌة. فً هذا البحث نقوم برسم متعددات السطوح الٌدوٌة مع مزدوجاتها بطرٌقة منظمة. نقوم باستخدام المجموعة الجزئٌة الدورانٌة الحقٌقٌة لمجموعات كوكستر ( WAAAWAWB(1 1 1 ), ( 3 ), ( 3 و WH()3 ﻻشتقاق المدارات الممثلة لﻷشكال. هذه الطرٌقة تقودنا إلى رسم المتعددات اﻷسطح التالٌة: رباعً الوجوه وعشرونً الوجوه و المكعب المسطوح و الثنعشري السطوح المسطوح على التوالً. لقد أثبتنا أنه بإمكان رباعً الوجوه وعشرونً الوجوه التحول إلى صورتها المرآتٌة بالمجموعة الثمانٌة الدورانٌة الحقٌقٌة WBC()/32. لذلك ﻻ ٌمكن تصنٌفها كمتعددات أسطح ٌدوٌة. من المﻻحظ أٌضا أن رؤوس المكعب المسطوح ورؤوس الثنعشري السطوح المسطوح ٌمكن اشتقاقها من المتجهات المجموعة خطٌا من الجذور البسٌطة وذلك باستخدام مجموعة الدوران الحقٌقٌة WBC()/32 و WHC()/32 على التوالً. من الممكن رسم مزدوجاتها بجمع ثﻻثة مدارات من المجموعة قٌد اﻻهتمام. أٌضا نقوم بإنشاء متعددات اﻷسطح الشبه منتظمة بشكل عام بربط متعددات اﻷسطح الٌدوٌة مع صورها المرآتٌة. كنتٌجة لذلك نحصل على مجموعة البٌروهٌدرال كمجموعة جزئٌة من مجموعة الكوكزتر WH()3 ونناقشها فً البحث. الطرٌقة التً نستخدمها تعتمد على الرباعٌات. ABSTRACT: There are two chiral Archimedean polyhedra, the snub cube and snub dodecahedron together with their dual Catalan solids, pentagonal icositetrahedron and pentagonal hexacontahedron.
    [Show full text]
  • Four-Dimensional Regular Polytopes
    faculty of science mathematics and applied and engineering mathematics Four-dimensional regular polytopes Bachelor’s Project Mathematics November 2020 Student: S.H.E. Kamps First supervisor: Prof.dr. J. Top Second assessor: P. Kiliçer, PhD Abstract Since Ancient times, Mathematicians have been interested in the study of convex, regular poly- hedra and their beautiful symmetries. These five polyhedra are also known as the Platonic Solids. In the 19th century, the four-dimensional analogues of the Platonic solids were described mathe- matically, adding one regular polytope to the collection with no analogue regular polyhedron. This thesis describes the six convex, regular polytopes in four-dimensional Euclidean space. The focus lies on deriving information about their cells, faces, edges and vertices. Besides that, the symmetry groups of the polytopes are touched upon. To better understand the notions of regularity and sym- metry in four dimensions, our journey begins in three-dimensional space. In this light, the thesis also works out the details of a proof of prof. dr. J. Top, showing there exist exactly five convex, regular polyhedra in three-dimensional space. Keywords: Regular convex 4-polytopes, Platonic solids, symmetry groups Acknowledgements I would like to thank prof. dr. J. Top for supervising this thesis online and adapting to the cir- cumstances of Covid-19. I also want to thank him for his patience, and all his useful comments in and outside my LATEX-file. Also many thanks to my second supervisor, dr. P. Kılıçer. Furthermore, I would like to thank Jeanne for all her hospitality and kindness to welcome me in her home during the process of writing this thesis.
    [Show full text]
  • ADDENDUM the Following Remarks Were Added in Proof (November 1966). Page 67. an Easy Modification of Exercise 4.8.25 Establishes
    ADDENDUM The following remarks were added in proof (November 1966). Page 67. An easy modification of exercise 4.8.25 establishes the follow­ ing result of Wagner [I]: Every simplicial k-"complex" with at most 2 k ~ vertices has a representation in R + 1 such that all the "simplices" are geometric (rectilinear) simplices. Page 93. J. H. Conway (private communication) has established the validity of the conjecture mentioned in the second footnote. Page 126. For d = 2, the theorem of Derry [2] given in exercise 7.3.4 was found earlier by Bilinski [I]. Page 183. M. A. Perles (private communication) recently obtained an affirmative solution to Klee's problem mentioned at the end of section 10.1. Page 204. Regarding the question whether a(~) = 3 implies b(~) ~ 4, it should be noted that if one starts from a topological cell complex ~ with a(~) = 3 it is possible that ~ is not a complex (in our sense) at all (see exercise 11.1.7). On the other hand, G. Wegner pointed out (in a private communication to the author) that the 2-complex ~ discussed in the proof of theorem 11.1 .7 indeed satisfies b(~) = 4. Page 216. Halin's [1] result (theorem 11.3.3) has recently been genera­ lized by H. A. lung to all complete d-partite graphs. (Halin's result deals with the graph of the d-octahedron, i.e. the d-partite graph in which each class of nodes contains precisely two nodes.) The existence of the numbers n(k) follows from a recent result of Mader [1] ; Mader's result shows that n(k) ~ k.2(~) .
    [Show full text]
  • Geometry and Arithmetic of Crystallographic Sphere Packings
    Geometry and arithmetic of crystallographic sphere packings Alex Kontorovicha,b,1 and Kei Nakamuraa aDepartment of Mathematics, Rutgers University, New Brunswick, NJ 08854; and bSchool of Mathematics, Institute for Advanced Study, Princeton, NJ 08540 Edited by Kenneth A. Ribet, University of California, Berkeley, CA, and approved November 21, 2018 (received for review December 12, 2017) We introduce the notion of a “crystallographic sphere packing,” argument leading to Theorem 3 comes from constructing circle defined to be one whose limit set is that of a geometrically packings “modeled on” combinatorial types of convex polyhedra, finite hyperbolic reflection group in one higher dimension. We as follows. exhibit an infinite family of conformally inequivalent crystallo- graphic packings with all radii being reciprocals of integers. We (~): Polyhedral Packings then prove a result in the opposite direction: the “superintegral” Let Π be the combinatorial type of a convex polyhedron. Equiv- ones exist only in finitely many “commensurability classes,” all in, alently, Π is a 3-connectedz planar graph. A version of the at most, 20 dimensions. Koebe–Andreev–Thurston Theorem§ says that there exists a 3 geometrization of Π (that is, a realization of its vertices in R with sphere packings j crystallographic j arithmetic j polyhedra j straight lines as edges and faces contained in Euclidean planes) Coxeter diagrams having a midsphere (meaning, a sphere tangent to all edges). This midsphere is then also simultaneously a midsphere for the he goal of this program is to understand the basic “nature” of dual polyhedron Πb. Fig. 2A shows the case of a cuboctahedron Tthe classical Apollonian gasket.
    [Show full text]
  • DIMACS REU 2018 Project: Sphere Packings and Number Theory
    DIMACS REU 2018 Project: Sphere Packings and Number Theory Alisa Cui, Devora Chait, Zachary Stier Mentor: Prof. Alex Kontorovich July 13, 2018 Apollonian Circle Packing This is an Apollonian circle packing: I Draw two more circles, each of which is tangent to the original three Apollonian Circle Packing Here's how we construct it: I Start with three mutually tangent circles I Draw two more circles, each of which is tangent to the original three Apollonian Circle Packing Here's how we construct it: I Start with three mutually tangent circles Apollonian Circle Packing Here's how we construct it: I Start with three mutually tangent circles I Draw two more circles, each of which is tangent to the original three Apollonian Circle Packing I Start with three mutually tangent circles I Draw two more circles, each of which is tangent to the original three Apollonian Circle Packing I Start with three mutually tangent circles I Draw two more circles, each of which is tangent to the original three I Continue drawing tangent circles, densely filling space These two images actually represent the same circle packing! We can go from one realization to the other using circle inversions. Apollonian Circle Packing Apollonian Circle Packing These two images actually represent the same circle packing! We can go from one realization to the other using circle inversions. Circle Inversions Circle inversion sends points at a distance of rd from the center of the mirror circle to a distance of r=d from the center of the mirror circle. Circle Inversions Circle inversion sends points at a distance of rd from the center of the mirror circle to a distance of r=d from the center of the mirror circle.
    [Show full text]
  • Mathematical Constants and Sequences
    Mathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) ..
    [Show full text]
  • Stacked 4-Polytopes with Ball Packable Graphs
    STACKED 4-POLYTOPES WITH BALL PACKABLE GRAPHS HAO CHEN Abstract. After investigating the ball-packability of some small graphs, we give a full characterisation, in terms of forbidden induced subgraphs, for the stacked 4-polytopes whose 1-skeletons can be realised by the tangency relations of a ball packing. 1. Introduction A ball packing is a collection of balls with disjoint interiors. A graph is said to be ball packable if it can be realized by the tangency relations of a ball packing. Formal definitions will be given later. The combinatorics of disk packings (2-dimensional ball packings) is well un- derstood thanks to the Koebe{Andreev{Thurston's disk packing theorem, which says that every planar graph is disk packable. However, we know little about the combinatorics of ball packings in higher dimensions. In this paper we study the relation between Apollonian ball packings and stacked polytopes: An Apollonian ball packing is formed by repeatedly filling new balls into holes in a ball packing. A stacked polytope is formed, starting from a simplex, by repeatedly gluing new simplices onto facets. Detailed and formal introductions can be found respectively in Section 2.3 and in Section 2.4. There is a 1-to-1 correspondence between 2-dimensional Apollonian ball packings and 3-dimensional stacked polytopes: a graph can be realised by the tangency relations of an Apollonian disk packing if and only if it is the 1-skeleton of a stacked 3-polytope. As we will see, this relation does not hold in higher dimensions: On one hand, the 1-skeleton of a stacked polytope may not be realizable by the tangency relations of any Apollonian ball packing.
    [Show full text]
  • The Geometry of Colour
    The Geometry of Colour Paul Centore The Geometry of Colour Paul Centore Suggested Cataloging Data Centore, Paul The Geometry of Colour/P. Centore 221 p., 21.6 by 14.0 cm ISBN 978-0-9990291-0-7 1. Color 2. Color—Mathematics 3. Colorimetry 4. Convex Geometry I. Centore, Paul, 1968- II. Title QC495.C397 2017 535.6 Coopyright c 2017 by Paul Centore • All rights reserved Printed in the United States of America ISBN 978-0-9990291-0-7 ISBN 9780999029107 9 780999 029107 Introduction Colour is a universal experience, which has been investigated since an- tiquity. Today, colour science rests firmly on both empirical findings and theoretical development. Unlike many technical fields, colour sci- ence considers not only physical factors, but also human perception, and the relationships between the two. A basic part of colour science is colour matching, which identifies when two side-by-side lights, viewed in isolation through an aperture, produce the same colour. The Geometry of Colour formulates colour matching mathematically, emphasizing geometric constructions and understanding. The motiva- tion for writing it was the unifying insight that many apparently dis- parate objects in colour science share a common zonohedral structure. The book aims at both rigor and intuition. Fortunately, many colour science objects can be explicitly constructed in a three-dimensional vector space, and, while linear algebra insures rigorous definitions, a premium is placed on a concrete visual and spatial presentation— ideally, a motivated reader could build literal models, for example with foam board and glue. This book is intended for mathematicians, colour scientists, and, as much as possible, curious non-specialists.
    [Show full text]
  • Local Symmetry Preserving Operations on Polyhedra
    Local Symmetry Preserving Operations on Polyhedra Pieter Goetschalckx Submitted to the Faculty of Sciences of Ghent University in fulfilment of the requirements for the degree of Doctor of Science: Mathematics. Supervisors prof. dr. dr. Kris Coolsaet dr. Nico Van Cleemput Chair prof. dr. Marnix Van Daele Examination Board prof. dr. Tomaž Pisanski prof. dr. Jan De Beule prof. dr. Tom De Medts dr. Carol T. Zamfirescu dr. Jan Goedgebeur © 2020 Pieter Goetschalckx Department of Applied Mathematics, Computer Science and Statistics Faculty of Sciences, Ghent University This work is licensed under a “CC BY 4.0” licence. https://creativecommons.org/licenses/by/4.0/deed.en In memory of John Horton Conway (1937–2020) Contents Acknowledgements 9 Dutch summary 13 Summary 17 List of publications 21 1 A brief history of operations on polyhedra 23 1 Platonic, Archimedean and Catalan solids . 23 2 Conway polyhedron notation . 31 3 The Goldberg-Coxeter construction . 32 3.1 Goldberg ....................... 32 3.2 Buckminster Fuller . 37 3.3 Caspar and Klug ................... 40 3.4 Coxeter ........................ 44 4 Other approaches ....................... 45 References ............................... 46 2 Embedded graphs, tilings and polyhedra 49 1 Combinatorial graphs .................... 49 2 Embedded graphs ....................... 51 3 Symmetry and isomorphisms . 55 4 Tilings .............................. 57 5 Polyhedra ............................ 59 6 Chamber systems ....................... 60 7 Connectivity .......................... 62 References
    [Show full text]