Metacarcinus Magister and Three Pairs of Maxillipeds

Total Page:16

File Type:pdf, Size:1020Kb

Metacarcinus Magister and Three Pairs of Maxillipeds Phylum: Arthropoda, Crustacea Cancer magister Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Eucarida, Decapoda, Pleocyemata, Brachyura, Dungeness or market crab Eubrachyura, Heterotremata Family: Cancroidea, Cancridae Taxonomy: Recent morphological studies Antenna: Antennules folded length- have elevated the subgenus Metacarcinus wise and antennal flagella short and, more or to genus level (Schweitzer and Feldmann less, hairy (Rathbun 1930). 2000). However, molecular work does not Mouthparts: The mouth of decapod always support the monophyly of this or crustaceans is comprised of six pairs of ap- other cancrid genera (Harrison and Crespi pendages including one pair of mandibles (on 1999). Although many researchers have either side of the mouth), two pairs of maxillae switched to the name Metacarcinus magister and three pairs of maxillipeds. The maxillae (e.g. Wicksten 2011; Rasmuson and Shanks and maxillipeds attach posterior to the mouth 2014; Dunn and Young 2014), we follow and extend to cover the mandibles (Ruppert current local intertidal guides and reviews of et al. 2004). the species that retain the name Cancer Carapace: Broadly oval, uneven but magister (e.g. Kuris et al. 2007; Rasmuson not highly sculptured and with granular tex- 2013). ture. Carapace width greatest at tenth tooth (Fig. 1). Postero-lateral margin is unbroken, Description entire and without teeth. The antero-lateral Size: Carapace 120.7 mm in length, 177.8 margin meets the postero-lateral margin with mm in width. Up to 1.36 kg in weight, distinct angle (Fig. 1). though average weight of four-year old (i.e. Frontal Area: No rostrum. Narrow and fully mature) males is 0.91 kg (Rasmuson with five unequal teeth, not markedly pro- 2013). duced beyond outer orbital angles. Middle Color: Light reddish brown, darkest anterior- tooth largest and more advanced than outer ly, often light orange below (Rathbun 1930), pair. The outer pair form inner orbital angles sometimes with gray-purple mottling dorsal- (Fig. 2). ly. Inner sides of anterior dactyls and Teeth: Ten antero-lateral teeth, count- propodi crimson, but tips not darkly pigment- ing the orbital tooth. All teeth are pointed and ed (Rathbun 1930; Kuris et al. 2007). with anterior serrations. The tenth tooth is General Morphology: The body of decapod large and projecting. crustaceans can be divided into the cepha- Pereopods: Rough above, broad and lothorax (fused head and thorax) and abdo- flat (especially the propodus and dactylus of men. They have a large plate-like carapace last pair). dorsally, beneath which are five pairs of tho- Chelipeds: Dactyls not pigmented and racic appendages (see chelipeds and pere- dactyl spines on upper surface. The fixed opods) and three pairs of maxillipeds (see finger is much deflexed. The hand (propodus) mouthparts). The abdomen and associat- has six carineae on upper outer surface and ed appendages are reduced and folded ven- the wrist (carpus) has a strong inner spine trally (Decapoda, Kuris et al. 2007). (Fig. 1). Cephalothorax: Abdomen (Pleon): Abdomen narrow in male, Eyes: Eyestalks short, orbits small. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Hiebert, T.C. and L. Rasmuson. 2015. Cancer magister. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biolo- gy, Charleston, OR. broad in female (Fig. 3). productus, is dark red with spots ventrally and Telson & Uropods: One feature that may with black tipped chelae. However, the be taxonomically relevant to the placement carapace width in C. antennarius is widest at of this species within Metacarcinus or Can- the eighth tooth and there are a total of 11 cer (see taxonomy) is the telson morpholo- antero-lateral teeth (Wicksten 2011). Cancer gy. The genus Metacarcinus is character- oregonensis is a small, oval crab with 12–13 ized by males with a rounded tip to the tel- total teeth. The remaining four species have son, while the males of Cancer species have nine antero-lateral teeth (sometimes ten in a more sharply pointed telson tip (Schram older specimens, Wicksten 2011). Cancer and Ng 2012). branneri is a small species (35 mm) that is Sexual Dimorphism: Male and female rare intertidally and recognizable by cheliped brachyuran crabs are easily differentiable. dactyls that are long, straight, black and The most conspicuous feature, the abdo- spiny. Cancer gracilis is also small (27 mm) men, is narrow and triangular in males while has white-tipped cheliped dactyls and C. jor- it is wide and flap-like in females (Fig. 3). dani (25 mm) has a hairy carapace and sharp Additionally, males have one large chelae curving teeth. Cancer anthonyi, the yellow and two pleopod pairs specialized for copu- rock crab, is larger than the previous three at lation, however, the third and fourth pleo- 52 mm and has black-tipped cheliped dactyls pods are absent. Females, on the other (Kuris et al. 2007; Wicksten 2011). Popula- hand, have all four pleopod pairs, each with tions of C. productus, C. anthonyi (southern long setae for egg attachment (Brachyura, California) and C. magister support commer- Kuris et al. 2007). cial fisheries (Kuris et al. 2007). Due to the extensive commercial fishery for C. magister Possible Misidentifications (Alaska to California) there are many extensi- According to some authors, the ge- ve reviews on this species (e.g. Wild and Tas- nus Cancer comprises 23 species (Harrison to 1983; Pauley et al. 1989; Rasmuson 2013). and Crespi 1999). This genus is differentiat- ed from other brachyuran genera by the Ecological Information broadly oval carapace, presence of five Range: Type locality is San Francisco Bay frontal teeth and antennules that fold back (Schmitt 1921). Known range includes Alaska over carapace. Characters unique to Can- to Monterey Bay, California (Ricketts and Cal- cer magister include 10 antero-lateral teeth, vin 1971). carapace widest at tenth tooth and the lack Local Distribution: Most local northwest es- of black-tipped cheliped dactyls. tuaries and offshore waters. Also near shore There are eight Cancer species and within bays in summer months (Ricketts known locally (Kuris et al. 2007). Cancer and Calvin 1971). productus, the most morphologically similar Habitat: Individuals are found in many sub- to C. magister, also has 10 antero-lateral strates, from mud to sand, gravel and rock teeth and five subequal (but nearly equal) (Schmitt 1921). Cancer magister appears to frontal teeth (Kuris et al. 2007). However, its prefer sand (Weymouth 1914) and mud with cheliped dactyls are black tipped, its cara- eelgrass in bays (Kozloff 1974). Juveniles pace is widest at the ninth tooth and its body and adults tend to bury themselves into soft color can be uniformly brick red (characters sand (Jaffe et al. 1987; McGaw 2005). In par- not observed in C. magister) (Wicksten ticular, females must be buried 5–10 cm deep 2011). Cancer antennarius, like C. to attach embryos to their pleopods (Fisher A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] and Wickham 1976). ter clasp females and copulation takes place Salinity: In Coos Bay, individuals were co- over several days (Snow and Nielsen 1966; llected at salinities from 11–35 (Dunn and Rasmuson 2013). Fertilization is internal and Young 2013). Juvenile crabs are more tole- occurs after molting and egg deposition rant to low salinity (Hunter and Rudy 1975; occurs months later. Eggs are approximately Robinson and Potts 1979). Dunn and 390–420 µm in diameter and females carry Young (2013) found that the salinity toleran- broods up to 2.5 million from October to ce of adult crabs may provide them refuge December. Eyespots and chromatophores from the nemertean egg predator that is mo- are easily visible in advanced embryos (80 re prevalent in areas of high salinity. days at 10˚C, Jaffe et al. 1987; Kuris et al. Temperature: 2007). The larval duration ranges from 89– Tidal Level: 143 days (average 130), hatching occurs bet- Associates: Both male and female C. mag- ween January and March with settlement bet- ister are usually infested with the nemertean ween April and August in Oregon and Was- egg predator Carcinonemertes errans hington (Table 3.1, Rasmuson 2013). See (Wickham 1979a, b; Dunn and Young 2013). Rasmuson 2013 (Fig. 3.2) for C. magister life These worms occur all over the body of cycle. adults, particularly near the joints or ab- Larva: Larval development proceeds via a dominal flap and are transferred from males series of zoea (five total) and megalopae to females during copulation where they, stages, each marked by a molt. Cancer mag- eventually move toward the egg mass. The ister zoea are planktotrophic and have large life-cycle of this nemertean is dependent on compound eyes and four spines: one each and corresponds to that of C. magister dorsal and rostral and two lateral (see Fig. 31, (Kuris 1993). Puls 2001; Rasmuson 2013; Martin 2014). Abundance: Commercial catch in Oregon is Larval size (measured from tip of rostrum to cyclic in nature and has ranged from a high tip of telson) proceeds from 2.5 mm (Zoea I) of 15,112,000 kg (2006) to a low of 224,000 to 9 mm (Zoea V) (Puls 2001). The zoea of kg (1928) (Fig. 3.3, Rasmuson 2013). cancrid species are difficult to distinguish but Population fluctuations appear to be driven the megalopae of C.
Recommended publications
  • Abstracts of Technical Papers, Presented at the 104Th Annual Meeting, National Shellfisheries Association, Seattle, Ashingtw On, March 24–29, 2012
    W&M ScholarWorks VIMS Articles 4-2012 Abstracts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012 National Shellfisheries Association Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation National Shellfisheries Association, Abstr" acts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012" (2012). VIMS Articles. 524. https://scholarworks.wm.edu/vimsarticles/524 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 31, No. 1, 231, 2012. ABSTRACTS OF TECHNICAL PAPERS Presented at the 104th Annual Meeting NATIONAL SHELLFISHERIES ASSOCIATION Seattle, Washington March 24–29, 2012 231 National Shellfisheries Association, Seattle, Washington Abstracts 104th Annual Meeting, March 24–29, 2012 233 CONTENTS Alisha Aagesen, Chris Langdon, Claudia Hase AN ANALYSIS OF TYPE IV PILI IN VIBRIO PARAHAEMOLYTICUS AND THEIR INVOLVEMENT IN PACIFICOYSTERCOLONIZATION........................................................... 257 Cathryn L. Abbott, Nicolas Corradi, Gary Meyer, Fabien Burki, Stewart C. Johnson, Patrick Keeling MULTIPLE GENE SEGMENTS ISOLATED BY NEXT-GENERATION SEQUENCING
    [Show full text]
  • Learning in Stomatopod Crustaceans
    International Journal of Comparative Psychology, 2006, 19 , 297-317. Copyright 2006 by the International Society for Comparative Psychology Learning in Stomatopod Crustaceans Thomas W. Cronin University of Maryland Baltimore County, U.S.A. Roy L. Caldwell University of California, Berkeley, U.S.A. Justin Marshall University of Queensland, Australia The stomatopod crustaceans, or mantis shrimps, are marine predators that stalk or ambush prey and that have complex intraspecific communication behavior. Their active lifestyles, means of predation, and intricate displays all require unusual flexibility in interacting with the world around them, imply- ing a well-developed ability to learn. Stomatopods have highly evolved sensory systems, including some of the most specialized visual systems known for any animal group. Some species have been demonstrated to learn how to recognize and use novel, artificial burrows, while others are known to learn how to identify novel prey species and handle them for effective predation. Stomatopods learn the identities of individual competitors and mates, using both chemical and visual cues. Furthermore, stomatopods can be trained for psychophysical examination of their sensory abilities, including dem- onstration of color and polarization vision. These flexible and intelligent invertebrates continue to be attractive subjects for basic research on learning in animals with relatively simple nervous systems. Among the most captivating of all arthropods are the stomatopod crusta- ceans, or mantis shrimps. These marine creatures, unfamiliar to most biologists, are abundant members of shallow marine ecosystems, where they are often the dominant invertebrate predators. Their common name refers to their method of capturing prey using a folded, anterior raptorial appendage that looks superficially like the foreleg of a praying mantis.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • DINÂMICA POPULACIONAL DO SIRI-AZUL Callinectes Sapidus (RATHBUN, 1896) (CRUSTACEA: DECAPODA: PORTUNIDAE) NO BAIXO ESTUÁRIO DA LAGOA DOS PATOS, RS, BRASIL
    UNIVERSIDADE FEDERAL DO RIO GRANDE PÓS-GRADUAÇÃO EM OCEANOGRAFIA BIOLÓGICA DINÂMICA POPULACIONAL DO SIRI-AZUL Callinectes sapidus (RATHBUN, 1896) (CRUSTACEA: DECAPODA: PORTUNIDAE) NO BAIXO ESTUÁRIO DA LAGOA DOS PATOS, RS, BRASIL LEONARDO SIMÕES FERREIRA Tese apresentada ao Programa de Pós- graduação em Oceanografia Biológica da Universidade Federal do Rio Grande, como requisito parcial à obtenção do título de DOUTOR. Orientador: Fernando D´Incao RIO GRANDE Janeiro/2012 AGRADECIMENTOS Em primeiro lugar ao meu amigo, professor e orientador Dr. Fernando D´Incao, por seus ensinamentos durante todos esses anos. Ao meu coorientador e amigo Dr. Duane Fonseca, por toda ajuda no decorrer da Tese, e principalmente por me passar todo o seu conhecimento sobre o assunto “lipofuscina”. Aos Doutores, Paulo Juarez Rieger, Enir Girondi Reis (Neca), Wilson Wasieleski (Mano), e Rogério Caetano (Cebola) da Unespe, por aceitarem fazer parte da minha banca examinadora, e por suas valiosas correções e sugestões. Toda a galera do Laboratório de Crustáceos Decapodes, os quais são muitos! A minha amiga especial Laboratorista/Dra. Roberta Barutot que me ajudou em grande parte da Tese, assim como o Doutor Luiz Felipe Dumont. Aos meus estagiários, Andréia Barros, Renan (bonitão.com) e Diego Martins (guasco). Meus amigos pescadores: Pingo, Sarinha, Leandro, Giovani e Didico. A minha família, meus pais, minha esposa Juliana e a minha princesinha Luana! Ao Programa de Pós-graduação em Oceanografia Biológica, a Capes pela concessão da bolsa de estudos, ao Instituto de
    [Show full text]
  • From the Bohol Sea, the Philippines
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 RAFFLES BULLETIN OF ZOOLOGY 2008 56(2): 385–404 Date of Publication: 31 Aug.2008 © National University of Singapore NEW GENERA AND SPECIES OF EUXANTHINE CRABS (CRUSTACEA: DECAPODA: BRACHYURA: XANTHIDAE) FROM THE BOHOL SEA, THE PHILIPPINES Jose Christopher E. Mendoza Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543; Institute of Biology, University of the Philippines, Diliman, Quezon City, 1101, Philippines Email: [email protected] Peter K. L. Ng Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore Email: [email protected] ABSTRACT. – Two new genera and four new xanthid crab species belonging to the subfamily Euxanthinae Alcock (Crustacea: Decapoda: Brachyura) are described from the Bohol Sea, central Philippines. Rizalthus, new genus, with just one species, R. anconis, new species, can be distinguished from allied genera by characters of the carapace, epistome, chelipeds, male abdomen and male fi rst gonopod. Visayax, new genus, contains two new species, V. osteodictyon and V. estampadori, and can be distinguished from similar genera using a combination of features of the carapace, epistome, thoracic sternum, male abdomen, pereiopods and male fi rst gonopod. A new species of Hepatoporus Serène, H. pumex, is also described. It is distinguished from congeners by the unique morphology of its front, carapace sculpturing, form of the subhepatic cavity and structure of the male fi rst gonopod. KEY WORDS. – Crustacea, Xanthidae, Euxanthinae, Rizalthus, Visayax, Hepatoporus, Panglao 2004, the Philippines. INTRODUCTION & Jeng, 2006; Anker et al., 2006; Dworschak, 2006; Marin & Chan, 2006; Ahyong & Ng, 2007; Anker & Dworschak, There are currently 24 genera and 83 species in the xanthid 2007; Manuel-Santos & Ng, 2007; Mendoza & Ng, 2007; crab subfamily Euxanthinae worldwide, with most occurring Ng & Castro, 2007; Ng & Manuel-Santos, 2007; Ng & in the Indo-Pacifi c (Ng & McLay, 2007; Ng et al., 2008).
    [Show full text]
  • Crustacea, Copepoda, Harpacticoida): Proposed Emendation of Spelling to ZOSIMEIDAE to Remove Homonymy with ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda, XANTHIDAE)
    24 Bulletin of Zoological Nomenclature 66(1) March 2009 Case 3467 ZOSIMIDAE Seifried, 2003 (Crustacea, Copepoda, Harpacticoida): proposed emendation of spelling to ZOSIMEIDAE to remove homonymy with ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda, XANTHIDAE) Rony Huys and Paul F. Clark Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. (e-mail: [email protected] and [email protected]) Abstract. The purpose of this application, under Articles 29 and 55.3.1 of the Code, is to remove homonymy between the family-group names ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda) and ZOSIMIDAE Seifried, 2003 (Crustacea, Copepoda) by changing the spelling of the junior homonym. It is proposed that the entire name Zosime Boeck, 1873 (Copepoda) be used to form ZOSIMEIDAE, leaving the stem of the senior homonym (based on the name Zosimus A.-G. Desmarest, 1823; Decapoda) unchanged. Zosimus A.-G. Desmarest, 1823 and Zosime Boeck, 1873 are respectively the type genera of ZOSIMINAE Alcock, 1898 (Decapoda) and ZOSIMIDAE Seifried, 2003 (Copepoda). Keywords. Nomenclature; taxonomy; Crustacea; Decapoda; Copepoda; Harpacti- coida; XANTHIDAE; ZOSIMEIDAE; ZOSIMIDAE; ZOSIMINAE; Zosime; Zosimus; Zosime typica; cosmopolitan. 1. Leach (1818) introduced the French vernacular names ‘Carpile’, ‘Clodorée’ (sic) and ‘Zosime’ for three genera of decapod crustaceans but did not include a descrip- tion, definition or indication of the taxa they denoted (Leach, 1818, pp. 74–75). Under Article 12 Leach’s names are nomina nuda and must be considered unavailable. 2. A.-G. Desmarest (1823, p. 228) latinised Leach’s (1818) vernacular names in a footnote to his text dealing with the genus Cancer, naming them Carpilius, Clorodius and Zosimus, respectively.
    [Show full text]
  • Native Decapoda
    NATIVE DECAPODA Dungeness crab - Metacarcinus magister DESCRIPTION This crab has white-tipped pinchers on the claws, and the top edges and upper pincers are sawtoothed with dozens of teeth along each edge. The last three joints of the last pair of walking legs have a comb-like fringe of hair on the lower edge. Also the tip of the last segment of the tail flap is rounded as compared to the pointed last segment of many other crabs. RANGE Alaska's Aleutian Islands south to Pt Conception in California SIZE Carapace width to 25 cm (9 inches), but typically less than 20 cm STATUS Native; see the full record at http://www.dfg.ca.gov/marine/dungeness_crab.asp COLOR Light reddish brown on the back, with a purplish wash anteriorly in some specimens. Underside whitish to light orange. HABITAT Rock, sand and eelgrass TIDAL HEIGHT Subtidal to offshore SALINITY Normal range 10–32ppt; 15ppt optimum for hatching TEMPERATURE Normally found from 3–19°C SIMILAR SPECIES Unlike the green crab, it has 10 spines on either side of the eye sockets and grows much larger. It can be distinguished from Metacarcinus gracilis which also has white claws, by the carapace being widest at the 10th tooth vs the 9th in M. gracilis . Unlike the red rock crab it has a tooth on the dorsal margin of its white tipped claw (this and other similar Cancer crabs have black tipped claws). ©Aaron Baldwin © bioweb.uwlax.edu red rock crab - note black tipped claws Plate Watch Monitoring Program .
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Fig. 9. Leucosiidae. 1–4, Leucosia Spp., Right Chela, MFM142559; 2, Right
    65 Fig. 9. Leucosiidae. 1–4, Leucosia spp.,rightchela,MFM142559;2,rightchela,MFM142560;3,merusofchela,MFM14239 9; 4, female abdomen, MFM142561. 5, 6, Seulocia rhomboidalis (De Haan, 1841),carapace,5,MFM142562;6,MFM142563. 7, Leucosia anatum (Herbst, 1783),carapace,MFM142558.8–15, Urnalana haematosticta (Adams and White, 1849), 8, carapace, MFM142511; 9, ventral carapace, sternum, and abdomen, MFM142511; 10, carapace, MFM142511; 11, gonopod, MFM142511; 12, carapace, MFM142488; 13, carapace, MFM142556; 14, carapace, MFM142557; carapace and pereiopods, MFM 142489. Scale bar=5 mm. Fig. 9. 1–4, , ,MFM142559;2,,MFM142560;3,,MFM142399;4,, MFM142561. 5, 6, , , 5, MFM142562; 6, MFM142563). 7, , , MFM142558). 8–15, ,8,,MFM142511;9,,MFM142511;10,,MFM142511;11,,MFM142511;12,,MFM142488;13,, MFM142556; 14, ,MFM142557;, , ,MFM142489. 5mm. 66 ,1992 Superfamily Majoidea Samouelle, 1819 Family Epialtidae MacLeay, 1838 Subfamily Leucosiinae Samouelle, 1819 Subfamily Epialtinae MacLeay, 1838 Genus Leucosia Weber, 1875 Genus Pugettia Dana, 1851 Leucosia anatum Herbst, 1783 Pugettia sp. Fig. 9.7 Fig. 10.3 :5MFM142558 :2MFM142562 . Kato and Karasawa, 1998; 2001 Subfamily Pisinae Dana, 1851 Genus Hyastenus White, 1847 Leucosia spp. Fig. 9.1–9.4 Hyastenus sp. cfr. H . diacanthusDe Haan, 1835 :23MFM142399, 142559–142561 Fig. 10.4–10.7 :40MFM142563–142566 1994 Genus Seulocia Galil, 2005 Seulocia rhomboidalis De Haan, 1841 Family Inachidae MacLeay, 1838 Genus Achaeus Leach, 1817 Fig. 9.5, 9.6 :2MFM142562, 142563 Achaeus sp. cfr. A . japonicus De Haan, 1839 2 Galil2005Seulocia Fig. 10.8 :1MFM142567 Genus Urnalana Galil, 2005 1 Urnalana haematostictaAdams and White, 1849 Family Mithracidae MacLeay, 1838 Fig. 9.8–9.15 Genus Micippa Leach, 1817 :92MFM142488, 142489, 142511, 142516, 142556, 142557 Micippa thalia Herbst, 1803 Karasawa and Goda1996 Leucosia haematostica Fig.
    [Show full text]
  • Cherax Murido (A Crayfish, No Common Name) Ecological Risk Screening Summary
    Cherax murido (a crayfish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, September 2011 Revised, September 2012, December 2017 Web Version, 5/17/2017 1 Native Range and Status in the United States Native Range From Crandall and De Grave (2017): “ ‘Paniai Lake’ [Papua Province, Indonesia]” Status in the United States This species has not been reported as introduced or established in the United States. No evidence was found of trade of C. murido in the United States. The Florida Fish and Wildlife Conservation Commission has listed the crayfish Cherax murido as a prohibited species. Prohibited nonnative species “are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities” (FFWCC 2017). From Washington Department of Fish & Wildlife (2017): “(1) Prohibited aquatic animal species. RCW 77.12.020 1 These species are considered by the commission to have a high risk of becoming an invasive species and may not be possessed, imported, purchased, sold, propagated, transported, or released into state waters except as provided in RCW 77.15.253. […] The following species are classified as prohibited animal species: […] Family Parastacidae: Crayfish: All genera except Engaeus, and except the species Cherax quadricarninatus [sic], Cherax papuanus, and Cherax tenuimanus.” Means of Introduction into the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Crandall (2016): “Classification: Animalia (Kingdom) > Arthropoda (Phylum) > Crustacea (Subphylum) > Multicrustacea (Superclass) > Malacostraca (Class) > Eumalacostraca (Subclass) > Eucarida (Superorder) > Decapoda (Order) > Pleocyemata (Suborder) > Astacidea (Infraorder) > Parastacoidea (Superfamily) > Parastacidae (Family) > Cherax (Genus) > Cherax murido (Species)” “Status: accepted” Size, Weight, and Age Range No information available.
    [Show full text]
  • Open Ocean Intake Effects Study
    City of Santa Cruz Water Department & Soquel Creek Water District scwd2 Desalination Program Open Ocean Intake Effects Study December 2010 Submitted to: Ms. Heidi Luckenbach City of Santa Cruz 212 Locust Street Santa Cruz, CA 95060 Prepared by: Environmental ESLO2010-017.1 [Blank Page] ACKNOWLEDGEMENTS Tenera Environmental wishes to acknowledge the valuable contributions of the Santa Cruz Water Department, Soquel Creek Water District, and scwd² Task Force in conducting the Open Ocean Intake Effects Study. Specifically, Tenera would like to acknowledge the efforts of: City of Santa Cruz Water Department Soquel Creek Water District Bill Kocher, Director Laura Brown, General Manager Linette Almond, Engineering Manager Melanie Mow Schumacher, Public Information Heidi R. Luckenbach, Program Coordinator Coordinator Leah Van Der Maaten, Associate Engineer Catherine Borrowman, Professional and Technical scwd² Task Force Assistant Ryan Coonerty Todd Reynolds, Kennedy/Jenks and scwd² Bruce Daniels Technical Advisor Bruce Jaffe Dan Kriege Thomas LaHue Don Lane Cynthia Mathews Mike Rotkin Ed Porter Tenera’s project team included the following members: David L. Mayer, Ph.D., Tenera Environmental President and Principal Scientist John Steinbeck, Tenera Environmental Vice President and Principal Scientist Carol Raifsnider, Tenera Environmental Director of Operations and Principal Scientist Technical review and advice was provided by: Pete Raimondi, Ph.D., UCSC, Professor of Ecology and Evolutionary Biology in the Earth and Marine Sciences Dept. Gregor
    [Show full text]
  • BRACHYURA. Tribe II
    / INVERTECKA" \ZOOLOGY Ajprustacea UNITED STATES EXPLORING EXPEDITION. BY AUTHORITY OF CONGRESS. V So A . ^ C I B R ft R Y if crjsira UNITED STATES i~k, ( IDVIM EXPEDITION. DURING THE YEARS 1888,.R , 1889, 1840, 1841, 1842ft . UNDER THE COMMAND OF CHARLES WILKES, U.S.N. VOL. XIII. CRUSTACEA. BY JAMES D. DANA, A.M., MEMBER OF THE SOC. C^ES. NAT. CUB. OP MOSCOW; THE SOC. PHILOMATH1QUE OF PARIS J THE GEOLOGICAL SOCIETY" OF LONDON; THE AMERICAN ACADEMY OF ARTS AND SCIENCES AT BOSTON; THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA, ETC. WITH A FOLIO ATLAS OF NINETY-SIX PLATES. PART I. PHILADELPHIA: PRINTED BY C. SHERMAN. 1 8 5 2, Collins, Frank S. The Botanical and Other Papers of the ITilkes Exploring Expedition, Rhodora, Jour, of the Hew England Botanical Club, Vol. 14, No. 160, p. 61 [gives dates for the various volumes]. O Vol. XIII. Crustacea, Part 1, James D. Dana, 1852, o * - Vol. XIV, Crustacea, Part 2, Jaraes D. Dana, 1853, vrith Atlas, 1855. i'fiRAFtf jbCft, 2. Us? v. it? w CRUSTACEA. PART I. CONTENTS. INTRODUCTORY REMARKS, CLASSIFICATION OF CRUSTACEA 3 HOMOLOGIES OF CRUSTACEA CRUSTACEA PODOPHTHALMIA, 45 ORDER I. EUBRANCHIATA, 45 TRIBE I. BRACHYURA, 58 I. MAIOIDEA, 75 I. MAIINEA, 77 II. PARTHENOPINEA, 136 II. CANCROIDEA, 142 I. CANCRINEA, 147 II. TELPHUSINEA, . 292 III. CYCLINEA. 294 III. CORYSTOIDEA, 290 IV. GRRAPSOIDEA, 306 V. LEUCOSOIDEA, 389 TRIBE II. ANOMOURA, . 398 I. DROMIDEA, ....... 402 II. BELLIDEA, 403 III. RANINIDEA, ....... 403 IV. HIPPIDEA, . 404 V. PORCELLANIDEA, . 410 VI. LITHODEA, ........ 426 CONTENTS. viii VII. IEGLEIDEA, IX. GALATHEIDEA, - APPENDIX, MEGALOPIDEA, TRIBE HI.
    [Show full text]