Foraging Ecologies of Giraffe (Giraffa Camelopardalis Reticulata)

Total Page:16

File Type:pdf, Size:1020Kb

Foraging Ecologies of Giraffe (Giraffa Camelopardalis Reticulata) Foraging ecologies of giraffe (Giraffa camelopardalis reticulata) and camels (Camelus dromedarius) in northern Kenya: effects of habitat structure and possibilities for competition? David A. O’Connor1,2,3*, Bilal Butt2 and Johannes B. Foufopoulos2 1San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA, 92027, U.S.A., 2School of Natural Resources and Environment, University of Michigan, 440 Church St. Ann Arbor, Michigan, 48109-1041, U.S.A. and 3National Geographic Society 1145 17th St., NW, Washington, DC, 20036, U.S.A. Abstract au Kenya, ou ces especes sont recemment devenues The foraging ecologies of reticulated giraffe (Giraffa camel- sympatriques. La popularite croissante des dromadaires opardalis reticulata) and domestic camels (Camelus drome- dans la region a suscite des inquietudes au sujet des darius) were examined in the Laikipia District of Kenya, impacts sur l’environnement et d’une eventuelle competi- where these species have recently become sympatric. tion pour les ressources avec les girafes sauvages. Nous Camels increased popularity in the region has lead to avons recolte des donnees sur l’alimentation des deux concerns about their environmental impacts and possible especes au moyen de scan de groupe de deux minutes, qui competition with wild giraffe for resources. We gathered enregistraient la hauteur a laquelle les animaux mangea- foraging data on both species using 2-min group scans ient et les plantes preferees. Des transects ont permis de that recorded feeding heights and plant food preferences. recolter des echantillons de vegetation dans les zones ou les Transects sampled the vegetation in areas where foraging observations alimentaires ont ete faites. Les girafes femelles ^ observations were recorded. Giraffe females feed at lower se nourrissent plus bas que les males et les dromadaires elevations than males, while female camels feed below femelles se nourrissent plus bas que les girafes des deux both sexes of giraffe. There was very little observed overlap sexes. Nous avons observetres peu de recouvrement des in food preferences between the species. However, habitat preferences alimentaires des deux especes. Le type d’hab- type has an effect on foraging ecologies of both giraffe itat a un effet sur l’ecologie alimentaire des girafes des deux sexes, but habitat did not influence camel foraging. Camel sexes mais il n’influence pas l’alimentation des dromad- herder husbandry techniques also influence camel forag- aires. Les techniques d’elevage des dromadaires influen- ing dynamics. These findings have important implications cent aussi la dynamique alimentaire des dromadaires. Ces in achieving the twin objectives of wildlife conservation resultats ont d’importantes implications pour atteindre le and pastoralist livestock production in northern Kenya. double objectif de la conservation de la faune sauvage et de la production d’un betail pastoral dans le nord du Kenya. Key words: camel, conservation, foraging ecology, giraffe, pastoralist Resume Introduction L’ecologie alimentaire de la girafe reticulee (Giraffa camel- opardalis reticulata) et celle du dromadaire (Camelus Eastern Africa’s semi-arid ecosystems exhibit dynamic dromedarius) ont ete etudiees dans le District de Laikipia, interactions between pastoralist cultures, wildlife, com- plex rainfall patterns and soil types (Kjekshus, 1996). This includes 46 extant free-ranging ungulate species *Correspondence: E-mail: [email protected] (Owen-Smith &Cumming,1993),aswellasthreedominant © 2015 John Wiley & Sons Ltd, Afr. J. Ecol., 53, 183–193 183 184 David A. O’Connor et al. livestock species: cattle (Bos spp.), goats (Capra hircus) and Linnaeus). Domestic camels are more drought tolerant sheep (Ovis aries). African herbivores are categorized into a than cattle, performing well in adverse conditions, and browsing and a grazing guild (du Toit, 1995); within each have lower energy requirements (Farid, 1995; Maloiy, guild, coexisting species tend to have differing body sizes and Rugangazi & Rowe, 2009). feeding strategies (Woolnough & du Toit, 2001). With such Camel foraging is under studied (Dereje & Uden, 2005). complexity, it is vital to better understand how shared food Few studies exist currently on the effects of introduced resources partitioned among coexisting species (Sinclair, camels on ecosystem function and the resident herbivore 1979; Butt & Turner, 2012). communities. Camel browsing may affect forage availabil- Competition between herbivores depends on numerous ity, vegetation composition or structure. One particularly factors, and African ungulate guilds partition existing important relationship could exist between domestic cam- plant resources along temporal and spatial axes els and reticulated giraffe. Both are large ungulate brows- (McNaughton & Georgiadis, 1986; du Toit, 1990). Con- ers, with the ability to feed across a large vertical spectrum. sidering the spatial axis, browser species maximize nutri- This research explores the foraging preferences of domes- tional and energetic intake by focusing their feeding on tic camels and wild reticulated giraffe by investigating: different heights of vegetation (Pellew, 1984; Cameron & 1 Is there overlap between camel and giraffe feeding du Toit, 2007). Although there is a clear stratification in heights and preferred plant food species? feeding preferences, overlap does exist (du Toit, 1990). 2 Are there differences between adult female and adult Such overlap in resource usage sets the stage for possible male giraffe foraging ecologies across habitat types? competition for browse resources (see Prins & Fritz (2008)). Pastoralist livestock systems occur across much of the Methods East African savannah, with livestock herds often over- lapping spatially with wild herbivores, and utilizing the Study area same resources. In areas where such livestock grazing occurs, it represents an added layer of pressure on the Field data were gathered between May and August 2011 vegetation available for wild herbivores. Livestock feeding on the 19,873 ha Mpala Research Centre (MRC) in and husbandry could have significant knock-on effects on Laikipia Province (north central Kenya). Camels are kept the functioning and structure of the savannah system, as as livestock at MRC, providing the opportunity to compare well as on the availability of browse (Butt & Turner, 2012). the foraging ecologies of domestic camel and the coexisting However, a species that exists alongside people, livestock wild reticulated giraffe. and wild ungulates – the giraffe (Giraffa camelopardalis Camels are managed at MRC in a quasi-pastoralist reticulata de Winston) – has been thought to escape such fashion; herded during the day, and returning each resource overlap with either wildlife or livestock (Ciofolo & evening to a boma (temporary animal enclosures built Le Pendu, 2002). This is primarily due to giraffe’s capacity either of cut acacia branches or of mobile metal fencing). to feed on vegetation out of reach of other ruminants, and Western Mpala is composed of topographically flat, its ability to travel long distances in search of forage (du ‘black cotton’ vertisol (clay) soils characterized by extreme Toit, 1990; Young & Isbell, 1991; Bond & Loffell, 2001; shrink-swell movements, that destroy the roots of most Woolnough & du Toit, 2001; Parker & Bernard, 2005; plant species (Pringle et al., 2010). This produces a low Fennessy, 2009). diversity savannah with 97% over story cover of Acacia Pastoralist herders aim to manage their livestock for drepanolobium Harms ex Y. Sjostedt,€ and ground cover maximum productivity with respect to environmental composed of five grass species and two forbs (Young, conditions (Galvin, 1992; Ellis & Galvin, 1994; Galvin, Stubblefield & Isbell, 1997; Young et al., 1998). Coppock & Leslie, 1994). Changes in climate and more Eastern and northern Mpala is composed of infertile red frequent droughts represent a serious challenge to African sandy loams (alfisols; locally termed ‘red soil’). This soil pastoralists (Davies & Bennett, 2007; Homewood, 2008; type supports a diverse, structurally variable bushland Butt, 2010; Kiage, 2013). One way pastoralists have dealt habitat with a patchy understory of perennial grasses, with aridity in some environments is to change herd and a canopy cover dominated by A. brevispica Harms, composition from cattle-dominated groups to including A. mellifera Benth and A. etbaica Schweinf (Augustine & sheep and goats or even camels (Camelus dromedarius McNaughton, 2004; Kinnaird & O’Brien, 2012). © 2015 John Wiley & Sons Ltd, Afr. J. Ecol., 53, 183–193 Foraging ecologies of giraffe and camels 185 Between these areas is a transition zone, which supports plant species (See Fig. S1, Tables S1 and S2). Only data a savannah dominated by perennial grasses with widely from adult giraffe and adult female camels are included spaced shrubs, including species from both the black here. Male camels were not observed due to low stocking cotton and red soil habitats (see Fig. 1). These three soil numbers and field time limitations. types produce vegetation types that are very different in species richness, and result in distinct habitat structures Reticulated giraffe surveys and observations (Augustine & McNaughton, 2004; Kinnaird & O’Brien, 2012), allowing for comparison with herbivore foraging Giraffe were surveyed between 6:30 am and 11:00 am ecology across these three soil types. and again from 3:00 pm to sunset, to avoid
Recommended publications
  • Characterization of Caseins from Mongolian Yak, Khainak, and Bactrian Camel B Ochirkhuyag, Jm Chobert, M Dalgalarrondo, Y Choiset, T Haertlé
    Characterization of caseins from Mongolian yak, khainak, and bactrian camel B Ochirkhuyag, Jm Chobert, M Dalgalarrondo, Y Choiset, T Haertlé To cite this version: B Ochirkhuyag, Jm Chobert, M Dalgalarrondo, Y Choiset, T Haertlé. Characterization of caseins from Mongolian yak, khainak, and bactrian camel. Le Lait, INRA Editions, 1997, 77 (5), pp.601-613. hal-00929550 HAL Id: hal-00929550 https://hal.archives-ouvertes.fr/hal-00929550 Submitted on 1 Jan 1997 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lait (1997) 77, 601-613 601 © Eisevier/Inra Original article Characterization of caseins from Mongolian yak, khainak, and bactrian cam el B Ochirkhuyag 2, lM Chobert 1*, M Dalgalarrondo 1, Y Choiset 1, T Haertlé ' 1 Laboratoire d'étude des interactions des molécules alimentaires, Inra, rue de la Géraudière, BP 71627, 44316 Nantes cedex 03, France; 2 Institute of Chemistry, Academy of Sciences, Vlan Bator, Mongolia (Received 25 November 1996; accepted 5 May 1997) Summary - The composition of acid-precipitated caseins from ruminant Mongolian domestic ani- maIs was analyzed and a comparative study between camel (Camelus bactrianus) and dromedary (Camelus dromedarius) was realized. Acid-precipitated whole caseins were analyzed for ami no acid composition, separated by anion exchange chromatography and identified by alkaline urea-PAGE.
    [Show full text]
  • The Preparation and Primary Structure of S-Peptides from Different Pancreatic Ribonucleases
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 40, number 1 FEBS LETTERS March 1974 THE PREPARATION AND PRIMARY STRUCTURE OF S-PEPTIDES FROM DIFFERENT PANCREATIC RIBONUCLEASES G.W. WELLING, G. GROEN, D. GABEL+, W. GAASTRA, J.J. BEINTEMA Biochemisch Laboratorium, Rijksuniversiteit, Zernikelaan, Groningen, The Netherlands Received 14 December 1973 1. Introduction Miles-Seravac Ltd. (Maidenhead). All other ribonu- cleases used in this study (goat, giraffe, gnu, reindeer, In 1955, Richards [l] described the isolation of dromedary, kangaroo, lesser rorqual, pig, and horse) ‘an active intermediate produced during the digestion were isolated according to Wierenga et al. [7] and rat of ribonuclease by subtilisin’. The characterisation RNase, according to Beintema et al. [8]. Subtilopep- and separation of the non-covalently linked compo- tidase A (Subtilisin Carlsberg) was a gift from Novo nents was described 4 years later [2] . Ribonuclease Industri (Copenhagen). Sephadex G-50 (fine) was S* possesses full enzymatic activity and the same purchased from Pharmacia (Uppsala). All other rea- holds for the enzyme reconstituted from S-peptide gents were analytical grade products from Merck AG and S-protein. The involvement of S-peptide residues (Darmstadt). in the binding of S-peptide to S-protein and in the Amino acid analysis, high-voltage paper electro- enzymatic activity of the reconstituted RNase S’ has phoresis, dansylation, and dansyl-Edman degrada- been studied by using synthetic S-peptide analogs [3,4] tion were performed as described earlier [7, 93. the cleavage by subtilisin takes place in an external loop. Klee [5] and Gold [6] did not succeed in 2.1.
    [Show full text]
  • Camel Prion Disease: a Possible Emerging Disease in Dromedary Camel Populations?
    Camel prion disease: a possible emerging disease in dromedary camel populations? ©B. Babelhadj/University Kasdi Merbah, Algeria The identification of a new prion disease in dromedary camels in Algeria and Tunisia, called camel prion disease (CPD), extends the spectrum of animal species naturally susceptible to prion diseases and opens up new research areas for investigation. Camel prion disease was identified in 2018 in adult camels showing clinical signs at the ante mortem inspection at slaughterhouses in the region of Ouargla (Algeria), and in 2019 in the region of Tataouine (Tunisia). It adds to the group of existing animal prion diseases, including scrapie in sheep and goats, chronic wasting disease (CWD) in cervids and BSE (mainly in bovines). The detection of a new prion disease in the dromedary population requires attention and investigation needs to be carried out to assess the risks of this disease to animal and public health. As of today, very limited epidemiological information is available to assess the prevalence, geographical distribution and dynamic of the transmission of the disease. Based on the clinical signs suggesting prion disease, CPD seems to have occurred in 3.1% of the dromedaries brought to the abattoir in Ouargla. Pathognomonic neurodegeneration and disease- specific prion protein (PrPSc) were detected in brain tissue from three symptomatic animals (source: CDC article wwwnc.cdc.gov/eid/article/24/6/17-2007_article). In May 2019, the OIE received a report from Tunisia on a single case of a 12-year-old slaughtered dromedary camel showing neurological signs confirmed as CPD by the Istituto Superiore di Sanità (ISS) based in Italy.
    [Show full text]
  • Camelus Dromedarius) Need Shaded Areas? a Case Study of the Camel Market in Doha
    animals Article Do Camels (Camelus dromedarius) Need Shaded Areas? A Case Study of the Camel Market in Doha Martina Zappaterra, Laura Menchetti , Leonardo Nanni Costa and Barbara Padalino * Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy; [email protected] (M.Z.); [email protected] (L.M.); [email protected] (L.N.C.) * Correspondence: [email protected] Simple Summary: Scientific knowledge concerning dromedary camel behavior and welfare is still limited. To date, providing pens with adequate shaded areas is not regulated in camel husbandry. The objectives of this study were to document whether dromedary camels have a preference for shade and describe how their behavior would change depending on the presence of shade in pens with different animal densities. Analyzing the behavior of camels kept at a permanent market in Doha, we found they had a preference for shade, and adequate shaded areas seemed to exert a positive effect on their behavioral repertoire. Camels in shade expressed more natural behaviors such as lying in sternal recumbency and ruminating, while those in the sun showed more walking and standing. Limited space allowance, instead, seemed to affect camel welfare, increasing the expression of stereotypic behavior (i.e., pacing). Overall, the results of this pilot study suggest that provision of adequate shaded areas could safeguard camel wellbeing under extremely hot conditions. Citation: Zappaterra, M.; Menchetti, Abstract: This study aimed at documenting whether dromedary camels have a preference for shade L.; Nanni Costa, L.; Padalino, B. Do and how their behavior would change depending on the presence of shade and variable space Camels (Camelus dromedarius) Need allowance.
    [Show full text]
  • Cervid Mixed-Species Table That Was Included in the 2014 Cervid RC
    Appendix III. Cervid Mixed Species Attempts (Successful) Species Birds Ungulates Small Mammals Alces alces Trumpeter Swans Moose Axis axis Saurus Crane, Stanley Crane, Turkey, Sandhill Crane Sambar, Nilgai, Mouflon, Indian Rhino, Przewalski Horse, Sable, Gemsbok, Addax, Fallow Deer, Waterbuck, Persian Spotted Deer Goitered Gazelle, Reeves Muntjac, Blackbuck, Whitetailed deer Axis calamianensis Pronghorn, Bighorned Sheep Calamian Deer Axis kuhili Kuhl’s or Bawean Deer Axis porcinus Saurus Crane Sika, Sambar, Pere David's Deer, Wisent, Waterbuffalo, Muntjac Hog Deer Capreolus capreolus Western Roe Deer Cervus albirostris Urial, Markhor, Fallow Deer, MacNeil's Deer, Barbary Deer, Bactrian Wapiti, Wisent, Banteng, Sambar, Pere White-lipped Deer David's Deer, Sika Cervus alfredi Philipine Spotted Deer Cervus duvauceli Saurus Crane Mouflon, Goitered Gazelle, Axis Deer, Indian Rhino, Indian Muntjac, Sika, Nilgai, Sambar Barasingha Cervus elaphus Turkey, Roadrunner Sand Gazelle, Fallow Deer, White-lipped Deer, Axis Deer, Sika, Scimitar-horned Oryx, Addra Gazelle, Ankole, Red Deer or Elk Dromedary Camel, Bison, Pronghorn, Giraffe, Grant's Zebra, Wildebeest, Addax, Blesbok, Bontebok Cervus eldii Urial, Markhor, Sambar, Sika, Wisent, Waterbuffalo Burmese Brow-antlered Deer Cervus nippon Saurus Crane, Pheasant Mouflon, Urial, Markhor, Hog Deer, Sambar, Barasingha, Nilgai, Wisent, Pere David's Deer Sika 52 Cervus unicolor Mouflon, Urial, Markhor, Barasingha, Nilgai, Rusa, Sika, Indian Rhino Sambar Dama dama Rhea Llama, Tapirs European Fallow Deer
    [Show full text]
  • Reticulated Giraffe Giraffa Camelopardalis Reticulata
    Reticulated Giraffe Giraffa camelopardalis reticulata I’m Just Browsing… - Everything about a giraffe is longer or taller than other animals! Because of their height, giraffes do not have to compete for food. The giraffe’s legs are longer than an average man is tall (six feet), and their front legs are longer than their back legs. Even the giraffe’s tongue is long – as much as 18 inches. The tongue is strong and flexible allowing them to grasp and strip leaves from thorny branches. Pacing and Galloping - Because of their long legs, giraffe walk by moving both legs on one side of the body forward at the same time – a movement called pacing. When they run or gallop, their back legs are brought forward and ahead of their front legs. Giraffe can run up to 35 miles per hour over short distances. Classification One of nine described subspecies, all of which can easily interbreed. The closest living relative is the okapi. Class: Mammalia Order: Artiodactyla Family: Giraffidae Genus: Giraffa Species: camelopardalis Subspecies: reticulata Distribution Inhabits Eastern Africa and game reserves in South Africa. Habitat Dry savannah and open woodlands. Physical Description • Male giraffes are 16-18 feet (4.8-5.5 m) tall; females are 14-16 feet (4.2-4.8 m) tall. • Males can weigh up to 4,200 pounds (1,900 kg), and females weigh up to 2,600 pounds (1,180 kg). • Their coat has a regular box-like pattern of brown patches against a white background. • Their dark prehensile tongue is about 18 inches (45 cm) long.
    [Show full text]
  • Amplification of Potential Thermogenetic Mechanisms In
    www.nature.com/scientificreports OPEN Amplifcation of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains Paul R. Manger1*, Nina Patzke1,10, Muhammad A. Spocter1,2, Adhil Bhagwandin1,11, Karl Æ. Karlsson3, Mads F. Bertelsen4, Abdulaziz N. Alagaili5, Nigel C. Bennett5,6, Osama B. Mohammed5, Suzana Herculano‑Houzel7, Patrick R. Hof8 & Kjell Fuxe9 To elucidate factors underlying the evolution of large brains in cetaceans, we examined 16 brains from 14 cetartiodactyl species, with immunohistochemical techniques, for evidence of non‑shivering thermogenesis. We show that, in comparison to the 11 artiodactyl brains studied (from 11 species), the 5 cetacean brains (from 3 species), exhibit an expanded expression of uncoupling protein 1 (UCP1, UCPs being mitochondrial inner membrane proteins that dissipate the proton gradient to generate heat) in cortical neurons, immunolocalization of UCP4 within a substantial proportion of glia throughout the brain, and an increased density of noradrenergic axonal boutons (noradrenaline functioning to control concentrations of and activate UCPs). Thus, cetacean brains studied possess multiple characteristics indicative of intensifed thermogenetic functionality that can be related to their current and historical obligatory aquatic niche. These fndings necessitate reassessment of our concepts regarding the reasons for large brain evolution and associated functional capacities in cetaceans. Cetaceans (whales, dolphins and porpoises) in general have large relative and absolute brain
    [Show full text]
  • Camel Anatomy; More Than Just a Hump
    The Review: A Journal of Undergraduate Student Research Volume 20 Article 5 2019 Camel Anatomy; More Than Just a Hump Michael Chase St. John Fisher College, [email protected] Follow this and additional works at: https://fisherpub.sjfc.edu/ur Part of the Anatomy Commons How has open access to Fisher Digital Publications benefited ou?y Recommended Citation Chase, Michael. "Camel Anatomy; More Than Just a Hump." The Review: A Journal of Undergraduate Student Research 20 (2019): -. Web. [date of access]. <https://fisherpub.sjfc.edu/ur/vol20/iss1/5>. This document is posted at https://fisherpub.sjfc.edu/ur/vol20/iss1/5 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact [email protected]. Camel Anatomy; More Than Just a Hump Abstract The one-humped camel (Camelus dromedarius) is capable of living in extreme, arid environments due to its numerous anatomical adaptations. Its modified eaturf es of the muscular system, integument, skeletal system, and several internal organs allow this animal to survive in such harsh environmental conditions. Many of these adaptations allow for conservation of energy and water as well as improvement of locomotion to acquire scarce resources. In this paper we will look more closely at some of these adaptations and determine their function in promoting the survival and reproduction of the one-humped camel in desert environments. Keywords camel, anatomy, hump, camelus, dromedarius, desert, anatomy This article is available in The Review: A Journal of Undergraduate Student Research: https://fisherpub.sjfc.edu/ur/ vol20/iss1/5 Chase: Camel Anatomy; More Than Just a Hump The Review, Volume 20 (2019) Camel Anatomy: More Than Just a Hump Michael Chase ABSTRACT The one-humped camel (Camelus dromedarius) is capable of living in extreme, arid environments due to its numerous anatomical adaptations.
    [Show full text]
  • COX BRENTON, a C I Date: COX BRENTON, a C I USDA, APHIS, Animal Care 16-MAY-2018 Title: ANIMAL CARE INSPECTOR 6021 Received By
    BCOX United States Department of Agriculture Animal and Plant Health Inspection Service Insp_id Inspection Report Customer ID: ALVIN, TX Certificate: Site: 001 Type: FOCUSED INSPECTION Date: 15-MAY-2018 2.40(b)(2) DIRECT REPEAT ATTENDING VETERINARIAN AND ADEQUATE VETERINARY CARE (DEALERS AND EXHIBITORS). ***In the petting zoo, two goats continue to have excessive hoof growth One, a large white Boer goat was observed walking abnormally as if discomforted. ***Although the attending veterinarian was made aware of the Male Pere David's Deer that had a front left hoof that appeared to be twisted approximately 90 degrees outward from the other three hooves and had a long hoof on the last report, the animal has not been assessed and a treatment pan has not been created. This male maneuvers with a limp on the affect leg. ***A female goat in the nursery area had a large severely bilaterally deformed udder. The licensee stated she had mastitis last year when she kidded and he treated her. The animal also had excessive hoof length on its rear hooves causing them to curve upward and crack. The veterinarian has still not examined this animal. Mastitis is a painful and uncomfortable condition and this animal has a malformed udder likely secondary to an inappropriately treated mastitis. ***An additional newborn fallow deer laying beside an adult fallow deer inside the rhino enclosure had a large round spot (approximately 1 1/2 to 2 inches round) on its head that was hairless and grey. ***A large male Watusi was observed tilting its head at an irregular angle.
    [Show full text]
  • Deciduous Forest
    Biomes and Species List: Deciduous Forest, Desert and Grassland DECIDUOUS FOREST Aardvark DECIDUOUS FOREST African civet DECIDUOUS FOREST American bison DECIDUOUS FOREST American black bear DECIDUOUS FOREST American least shrew DECIDUOUS FOREST American pika DECIDUOUS FOREST American water shrew DECIDUOUS FOREST Ashy chinchilla rat DECIDUOUS FOREST Asian elephant DECIDUOUS FOREST Aye-aye DECIDUOUS FOREST Bobcat DECIDUOUS FOREST Bornean orangutan DECIDUOUS FOREST Bridled nail-tailed wallaby DECIDUOUS FOREST Brush-tailed phascogale DECIDUOUS FOREST Brush-tailed rock wallaby DECIDUOUS FOREST Capybara DECIDUOUS FOREST Central American agouti DECIDUOUS FOREST Chimpanzee DECIDUOUS FOREST Collared peccary DECIDUOUS FOREST Common bentwing bat DECIDUOUS FOREST Common brush-tailed possum DECIDUOUS FOREST Common genet DECIDUOUS FOREST Common ringtail DECIDUOUS FOREST Common tenrec DECIDUOUS FOREST Common wombat DECIDUOUS FOREST Cotton-top tamarin DECIDUOUS FOREST Coypu DECIDUOUS FOREST Crowned lemur DECIDUOUS FOREST Degu DECIDUOUS FOREST Working Together to Live Together Activity—Biomes and Species List 1 Desert cottontail DECIDUOUS FOREST Eastern chipmunk DECIDUOUS FOREST Eastern gray kangaroo DECIDUOUS FOREST Eastern mole DECIDUOUS FOREST Eastern pygmy possum DECIDUOUS FOREST Edible dormouse DECIDUOUS FOREST Ermine DECIDUOUS FOREST Eurasian wild pig DECIDUOUS FOREST European badger DECIDUOUS FOREST Forest elephant DECIDUOUS FOREST Forest hog DECIDUOUS FOREST Funnel-eared bat DECIDUOUS FOREST Gambian rat DECIDUOUS FOREST Geoffroy's spider monkey
    [Show full text]
  • 242-243244-245
    Index │242-243244-245 88551 White Lion Cub - Walking 089 88824 African Civet 090 88681 Spotted Seal Pup 134 88554 Red River Hog 086 88829 Père David's Deer 097 88710 South African Penguin 127 88001 Red Fox 110 88560 Brown Bear 105 88830 Common Zebra 091 88726 Blacktip Reef Shark 125 88002 Rabbit 111 88561 Brown Bear Cub 105 88831 Ring-Tailed Lemur 080 88729 Great White Shark - Open Jaw 121 88003 Barn Owl 110 88562 Waterbuck 086 88832 White-Tailed Deer 112 88761 Blainville's Beaked Whale 130 88012 Brown Hare 111 88563 Giant Eland Antelope 084 88833 Hippopotamus 087 88765 Wandering Albatross 127 88015 Eurasian Badger 111 88564 Giant Sable Antelope Male 085 88837 Musk Ox 113 88766 Dugong 126 88025 African Elephant 085 88565 Lynx 097 88844 Timber Wolf Howling 113 88788 124 88026 African Elephant Calf 085 88566 Striped Hyena 082 88845 Timber Wolf Hunting 114 88804 120 88053 Common Otter 110 88578 Giant Sable Antelope Female 084 88850 Zebra Foal 091 88806 Leopard Seal 134 88089 White Rhinoceros Calf 090 88595 Maned Wolf 116 88852 White Rhinoceros 091 88834 Blue Whale 130 88090 Hippopotamus Calf 087 88596 Baird's Tapir 116 88859 Porcupine 096 88835 Sperm Whale 130 88166 Giant Panda 104 88597 Tapir Calf 116 88865 Dama Gazelle 090 88836 Gray Whale 128 88167 Giant Panda Cub - Standing 104 88602 Przewalski Stallion 096 88866 African Leopard 090 88851 King Crab 124 88204 Baboon Male 088 88604 Dartmoor Pony Bay 110 88881 Malayan Tapir 098 88862 Minke Whale 129 88207 Flamingo 118 88607 Fennec Fox 083 88890 Black Leopard 091 88895 126 88208 Dromedary
    [Show full text]
  • Kenya Nairobi-Amboseli-Samburu Mount Kenya-Lake Nakuru- Lake Naivasha-Masai Mara 13 Days | African Charm & Close to Nature
    Kenya Nairobi-amboseli-Samburu mount Kenya-Lake Nakuru- Lake Naivasha-masai mara 13 Days | African Charm & Close to Nature DAY 1 Destination: Arrival at Jomo Kenyatta International Airport; Transfer to Nairobi Accommodations: Ololo Safari Lodge Activities: Optional Game Drive Arrival at Jomo Kenyatta International Airport. After clearing customs, you will be met by your expert naturalist guide and transferred to the lovely Ololo Safari Lodge, an elegant, thatched-roof African manor situated right on the edge of the African wilderness, overlooking Nairobi National Park. Just outside of Nairobi’s central business district is Nairobi National Park, Kenya’s first national park established in 1946. This park is iconic for its wide open grass plains and scattered acacia bush with the city of Nairobi’s skyscrapers in the backdrop. Despite its small size and proximity to human civilization, this park plays host to a wide variety of wildlife including lions, leopards, cheetahs, hyenas, buffaloes, giraffes and diverse birdlife with over 400 species recorded. As well, it is home to one of Kenya’s most successful rhino sanctuaries, and you are likely to see the endangered black rhino here. After settling in, you will meet with your guide to briefly go over your safari itinerary. Enjoy a lovely lunch, featuring Ololo’s garden grown produce and eggs. You then have the option of going on a late afternoon game drive into Nairobi National Park or staying at the lodge, perhaps taking a dip in the pool, walking around the beautiful gardens, reading a book by the fire, or enjoying a drink on the terrace overlooking the park.
    [Show full text]