Open Channel Flow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calculate the Friction Factor for a Pipe Using the Colebrook-White Equation
TOPIC T2: FLOW IN PIPES AND CHANNELS AUTUMN 2013 Objectives (1) Calculate the friction factor for a pipe using the Colebrook-White equation. (2) Undertake head loss, discharge and sizing calculations for single pipelines. (3) Use head-loss vs discharge relationships to calculate flow in pipe networks. (4) Relate normal depth to discharge for uniform flow in open channels. 1. Pipe flow 1.1 Introduction 1.2 Governing equations for circular pipes 1.3 Laminar pipe flow 1.4 Turbulent pipe flow 1.5 Expressions for the Darcy friction factor, λ 1.6 Other losses 1.7 Pipeline calculations 1.8 Energy and hydraulic grade lines 1.9 Simple pipe networks 1.10 Complex pipe networks (optional) 2. Open-channel flow 2.1 Normal flow 2.2 Hydraulic radius and the drag law 2.3 Friction laws – Chézy and Manning’s formulae 2.4 Open-channel flow calculations 2.5 Conveyance 2.6 Optimal shape of cross-section Appendix References Chadwick and Morfett (2013) – Chapters 4, 5 Hamill (2011) – Chapters 6, 8 White (2011) – Chapters 6, 10 (note: uses f = 4cf = λ for “friction factor”) Massey (2011) – Chapters 6, 7 (note: uses f = cf = λ/4 for “friction factor”) Hydraulics 2 T2-1 David Apsley 1. PIPE FLOW 1.1 Introduction The flow of water, oil, air and gas in pipes is of great importance to engineers. In particular, the design of distribution systems depends on the relationship between discharge (Q), diameter (D) and available head (h). Flow Regimes: Laminar or Turbulent laminar In 1883, Osborne Reynolds demonstrated the occurrence of two regimes of flow – laminar or turbulent – according to the size of a dimensionless parameter later named the Reynolds number. -
Intermittency As a Transition to Turbulence in Pipes: a Long Tradition from Reynolds to the 21St Century Christophe Letellier
Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century Christophe Letellier To cite this version: Christophe Letellier. Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century. Comptes Rendus Mécanique, Elsevier Masson, 2017, 345 (9), pp.642- 659. 10.1016/j.crme.2017.06.004. hal-02130924 HAL Id: hal-02130924 https://hal.archives-ouvertes.fr/hal-02130924 Submitted on 16 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License C. R. Mecanique 345 (2017) 642–659 Contents lists available at ScienceDirect Comptes Rendus Mecanique www.sciencedirect.com A century of fluid mechanics: 1870–1970 / Un siècle de mécanique des fluides : 1870–1970 Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century Les intermittencies comme transition vers la turbulence dans des tuyaux : Une longue tradition, de Reynolds au XXIe siècle Christophe Letellier Normandie Université, CORIA, avenue de l’Université, 76800 Saint-Étienne-du-Rouvray, France a r t i c l e i n f o a b s t r a c t Article history: Intermittencies are commonly observed in fluid mechanics, and particularly, in pipe Received 21 October 2016 flows. -
DETERMINING the LOCATION of HYDRAULIC JUMP by MODEL TEST and HEC-2 FLOW ROUTING/ a Thesis Presented to the Faculty of the Fritz
L-DETERMINING THE LOCATION OF HYDRAULIC JUMP BY MODEL TEST AND HEC-2 FLOW ROUTING/ A Thesis Presented to The Faculty of the Fritz J. and Dolores H. Russ College of Engineering and Technology Ohio University In Partial Fulment of the Requirement for the Degree Master of Science by Chen-Feng Li, 4 August, 1995 ACKNOWLEDGEMENTS The author gratefdly acknowledges the hanicial support fiom my family, advisor Dr. Chang (Civil Engineering Dept., Ohio University) and Feng Chia University (Taiwan). The author would like to thank the Civil Engineering Department for the help they provided by supplying the various equipment used for my studies. The author also wants to thank those who have helped in my thesis writing. TABLE OF CONTENTS TABLE OF CONTENTS ................................iv LIST OF TABLES ...................................vii LIST OF FIGURES .................................. viii LIST OF SYMBOLS ..................................xii I. INTRODUCTION .................................. 1 I. 1 Background of Study .......................... 1 1.2 Purpose of Study ............................ 2 1.3 Buckingham PI Theorem and Dynamic Simulation ........... 2 1.4 Experiments and Requirements ..................... 3 I .5 The FUTURE Development of the Study ................ 4 I1 . SELECTED LITERATURE REVIEW ..................... 6 11 . 1 Theoretical Development of Hydraulic Jump .............. 6 II.2 Studies of Hydraulic Jump ....................... 6 LI.3 Channel Slope and Hydraulic Jump ................... 8 v 11.4 Length and Location of Hydraulic Jump .................11 II.5 Force and Hydraulic Jump ........................14 II.6 Hydraulic Structures and Hydraulic Jump ................16 II.6.1 Hydraulic Jump in A Stilling Basin ...............17 II.6.2 Sluice Gate and Hydraulic Jump ................17 11.6.3 Sill and Hydraulic Jump ....................19 11.7 Computer Simulation ofHydraulic Jump Surface Profiles ........24 m . -
Basic Principles of Flow of Liquid and Particles in a Pipeline
1. BASIC PRINCIPLES OF FLOW OF LIQUID AND PARTICLES IN A PIPELINE 1.1 LIQUID FLOW The principles of the flow of a substance in a pressurised pipeline are governed by the basic physical laws of conservation of mass, momentum and energy. The conservation laws are expressed mathematically by means of balance equations. In the most general case, these are the differential equations, which describe the flow process in general conditions in an infinitesimal control volume. Simpler equations may be obtained by implementing the specific flow conditions characteristic of a chosen control volume. 1.1.1 Conservation of mass Conservation of mass in a control volume (CV) is written in the form: the rate of mass input = the rate of mass output + the rate of mass accumulation. Thus d ()mass =−()qq dt ∑ outlet inlet in which q [kg/s] is the total mass flow rate through all boundaries of the CV. In the general case of unsteady flow of a compressible substance of density ρ, the differential equation evaluating mass balance (or continuity) is ∂ρ G G +∇.()ρV =0 (1.1) ∂t G in which t denotes time and V velocity vector. For incompressible (ρ = const.) liquid and steady (∂ρ/∂t = 0) flow the equation is given in its simplest form ∂vx ∂vy ∂vz ++=0 (1.2). ∂x ∂y ∂z The physical explanation of the equation is that the mass flow rates qm = ρVA [kg/s] for steady flow at the inlet and outlet of the control volume are equal. Expressed in terms of the mean values of quantities at the inlet and outlet of the control volume, given by a pipeline length section, the equation is 1.1 1.2 CHAPTER 1 qm = ρVA = const. -
Characteristics of Undular Hydraulic Jump Downstream of a Sluice Gate
CHARACTERISTICS OF UNDULAR HYDRAULIC JUMP DOWNSTREAM OF A SLUICE GATE KARAKTERISTIK LONCATAN HIDROLIK UNDULAR DI HILIR PINTU AIR Komang Arya Utama 1), Bambang Yulistiyanto 2), and Budi S. Wignyosukarto 2) 1) Lecturer in Civil Engineering Department, Faculty of Engineering, Gorontalo State University 2) Lecturer in Civil and Environmental Engineering Department, Faculty of Engineering, Gadjah Mada University ABSTRACT Undular hydraulic jump is a hydraulic jump with a low Froude number which is marked by the emergence of a fixed roller. Information about the characteristics of undular hydraulic jump is still very poor. In order for the interests of the development of science, it is necessary to in-depth study of the hydraulic characteristics and phenomenon that appear on the undular hy- draulic jump. This research is applying the 2D physical model that used a tilting flume. Sluice gate is used as a tool to gene- rate the undular hydraulic jump. Measurement of distance and depth using a point gauge while the flow velocity was measu- red using a Nixon Streamflo 422 Currentmeter. Circulation flow is driven by using water pumps with discharge 15 l/s and 30 l/s. The results of this study indicate that the maximum flow velocity of dimensionless velocity distribution are at 0.5 - 0.9. Lowest value of Froude number obtained in running model Q9A1 is Fr1 = 1.197 and its highest value obtained in running mo- del Q3A1 is Fr1 limit = 2.258. The wave steepness is mild with a slope range are 0.1 to 0.3 or 10% to 30%. The length and height of the wave form are reduce at the first, second, third and so on until the condition of conjugate depth (y3). -
Analysis of Turbulent Hydraulic Jump Over a Transitional Rough Bed of a Rectangular Channel: Universal Relations Noor Afzal Aligarh Muslim University, India
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Civil Engineering Faculty Publications Civil Engineering 2011 Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations Noor Afzal Aligarh Muslim University, India A. Bushra University of Nebraska-Lincoln Abu Seena Korea Advanced Institute of Science and Technology, Daejeon, Korea Follow this and additional works at: http://digitalcommons.unl.edu/civilengfacpub Part of the Hydraulic Engineering Commons Afzal, Noor; Bushra, A.; and Seena, Abu, "Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations" (2011). Civil Engineering Faculty Publications. 54. http://digitalcommons.unl.edu/civilengfacpub/54 This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Civil Engineering Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Journal of Engineering Mechanics 137:12 (2011), pp. 835-845; doi: 10.1061/(ASCE)EM .1943-7889.0000294 Copyright © 2011 American Society of Civil Engineers. Used by permission. Submitted August 9, 2010; approved June 27, 2011; published online June 29, 2011. digitalcommons.unl.edu Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations Noor Afzal,1 A. Bushra,2 and Abu Seena3 1. Visiting Professor, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea, and Faculty of Engineering, Aligarh Muslim University, Aligarh, India 2. Department of Civil Engineering, University of Nebraska 3. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea. -
Chapter 6 155 Design of PE Piping Systems
Chapter 6 155 Design of PE Piping Systems Chapter 6 Design of PE Piping Systems Introduction Design of a PE piping system is essentially no different than the design undertaken with any ductile and flexible piping material. The design equations and relationships are well-established in the literature, and they can be employed in concert with the distinct performance properties of this material to create a piping system which will provide very many years of durable and reliable service for the intended application. In the pages which follow, the basic design methods covering the use of PE pipe in a variety of applications are discussed. The material is divided into four distinct sections as follows: Section 1 covers Design based on Working Pressure Requirements. Procedures are included for dealing with the effects of temperature, surge pressures, and the nature of the fluid being conveyed, on the sustained pressure capacity of the PE pipe. Section 2 deals with the hydraulic design of PE piping. It covers flow considerations for both pressure and non-pressure pipe. Section 3 focuses on burial design and flexible pipeline design theory. From this discussion, the designer will develop a clear understanding of the nature of pipe/soil interaction and the relative importance of trench design as it relates to the use of a flexible piping material. Finally, Section 4 deals with the response of PE pipe to temperature change. As with any construction material, PE expands and contracts in response to changes in temperature. Specific design methodologies will be presented in this section to address this very important aspect of pipeline design as it relates to the use of PE pipe. -
Fluid Mechanics 2016
Fluid Mechanics 2016 CE 15008 Fluid Mechanics LECTURE NOTES Module-III Prepared By Dr. Prakash Chandra Swain Professor in Civil Engineering Veer Surendra Sai University of Technology, Burla BranchBranch - Civil- Civil Engineering Engineering in B Tech B TECHth SemesterSemester – 4 –th 4 Se Semmesterester Department Of Civil Engineering VSSUT, Burla Prof. P. C. Swain Page 1 Fluid Mechanics 2016 Disclaimer This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by Prof. P. C. Swain with the inputs of Post Graduate students for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available materials from internet were consulted for preparing this document. Further, this document is not intended to be used for commercial purpose and the authors are not accountable for any issues, legal or otherwise, arising out of use of this document. The authors make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. Prof. P. C. Swain Page 2 Fluid Mechanics 2016 COURSE CONTENT CE 15008: FLUID MECHANICS (3-1-0) CR-04 Module – III (12 Hours) Fluid dynamics: Basic equations: Equation of continuity; One-dimensional Euler’s equation of motion and its integration to obtain Bernoulli’s equation and momentum equation. Flow through pipes: Laminar and turbulent flow in pipes; Hydraulic mean radius; Concept of losses; Darcy-Weisbach equation; Moody’s (Stanton) diagram; Flow in sudden expansion and contraction; Minor losses in fittings; Branched pipes in parallel and series, Transmission of power; Water hammer in pipes (Sudden closure condition). -
Undular Jump, Numerical Model and Sensitivity
Alma Mater Studiorum - Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea specialistica in Fisica Dipartimento di Fisica UNDULAR JUMP NUMERICAL MODEL AND SENSITIVITY ANALYSIS Tesi di laurea di: Relatore: MICHELE RAMAZZA Prof. RAMBALDI SANDRO Correlatori: Prof. MANSERVISI SANDRO Dott. CERVONE ANTONIO Sessione III Anno Accademico 2007-2008 2 CONTENTS Abstract................................................................................................................................................5 Sommario.............................................................................................................................................5 List of symbol ....................................................................................................................................6 1.Introduction ....................................................................................................................................8 1.1.Open channel flow.................................................................................................................8 1.1.1.Introduction....................................................................................................................8 1.1.2.Classification of open channel flows.........................................................................8 1.1.3.Complexity ....................................................................................................................8 1.2.Bases of open channel hydraulics ...................................................................................10 -
Selecting the Optimum Pipe Size
PDHonline Course M270 (12 PDH) Selecting the Optimum Pipe Size Instructor: Randall W. Whitesides, P.E. 2012 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDH Course M270 www.PDHonline.org Selecting the Optimum Pipe Size Copyright © 2008, 2015 Randall W. Whitesides, P.E. Introduction Pipe, What is It? Without a doubt, one of the most efficient and natural simple machines has to be the pipe. By definition it is a hollow cylinder of metal, wood, or other material, used for the conveyance of water, gas, steam, petroleum, and so forth. The pipe, as a conduit and means to transfer mass from point to point, was not invented, it evolved; the standard circular cross sectional geometry is exhibited even in blood vessels. Pipe is a ubiquitous product in the industrial, commercial, and residential industries. It is fabricated from a wide variety of materials - steel, copper, cast iron, concrete, and various plastics such as ABS, PVC, CPVC, polyethylene, and polybutylene, among others. Pipes are identified by nominal or trade names that are proximately related to the actual diametral dimensions. It is common to identify pipes by inches using NPS or Nominal Pipe Size. Fortunately pipe size designation has been standardized. It is fabricated to nominal size with the outside diameter of a given size remaining constant while changing wall thickness is reflected in varying inside diameter. The outside diameter of sizes up to 12 inch NPS are fractionally larger than the stated nominal size. -
Shallow-Water Theory and Channel Flow with Hydraulic Jump: Non-Steady Consideration
www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 1; January 2012 Shallow-Water Theory and Channel Flow with Hydraulic Jump: Non-Steady Consideration Asuquo E Eyo Department of Mathematics and Statistics, University of Uyo, Uyo, Nigeria E-mail: [email protected] Received: August 15, 2011 Accepted: November 17, 2011 Published: January 1, 2012 doi:10.5539/mas.v6n1p50 URL: http://dx.doi.org/10.5539/mas.v6n1p50 Abstract We examine the classical hydraulic jump in an open channel flow and show that it can be qualitatively understood using the model, namely, equations of shallow-water type. In the analysis, we consider the following cases: (i) unsteady, one dimensional flow of a liquid in an open channel, (ii) uniform and smooth flow with the channel bed flat and viscosity neglected almost everywhere, and (iii) a steady uniform flow U from left (positive flux) with the flow elsewhere taken to be two dimensional. Based on this model the relation for the speed of propagation of the jump in terms of depth ratio is obtained. We employ the method of characteristics and the Riemann invariants to determine the precise location and time of the onset of the hydraulic ump. Our analysis reveals that the location xJ and time tJ of the jump formation are influenced by the initial acceleration of the fluid. Specializations are later made to the cases where the initial acceleration is positive and finite, negative, infinite. Results are obtained in each of these cases. Keywords: Equations of shallow-water type, Channel flow, Hydraulic jump, Method of characteristics, Remann inivariants 1. -
Steady Flow Analysis of Pipe Networks: an Instructional Manual
Utah State University DigitalCommons@USU Reports Utah Water Research Laboratory January 1974 Steady Flow Analysis of Pipe Networks: An Instructional Manual Roland W. Jeppson Follow this and additional works at: https://digitalcommons.usu.edu/water_rep Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons Recommended Citation Jeppson, Roland W., "Steady Flow Analysis of Pipe Networks: An Instructional Manual" (1974). Reports. Paper 300. https://digitalcommons.usu.edu/water_rep/300 This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. STEADY FLOW ANALYSIS OF PIPE NETWORKS An Instructional Manual by Roland W. Jeppson Developed with support from the Quality of Rural Life Program funded by the Kellogg Foundation and Utah State University Copyright ® 1974 by Roland W. Jeppson This manual, or parts thereof, may not be reproduced in any form without permission of the author. Department of Civil and Environmental Engineering and Utah Water Research Laboratory Utah State University Logan. Utah 84322 $6.50 September 1974 TABLE OF CONTENTS Chapter Page FUNDAMENTALS OF FLUID MECHANICS Introduction . Fluid Properties Density. I Specific weight I Viscosity 1 Example Problems Dealing with Fluid Properties 2 Conservation Laws 3 In trodu cti on 3 Continuity. 3 Example Problems Applying Continuity 4 Conservation of Energy (Bernoulli Equation) 6 Example Problems Dealing with Conservation Laws 9 Momentum Principle in Fluid Mechanics 12 II FRICTIONAL HEAD LOSSES 13 Introduction . 13 Darcy-Weisbach Equation.