Colour Break in Reverse Bicolour Daffodils Is Associated with the Presence of Narcissus Mosaic Virus Hunter Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs. -
The Occurrence of the Viruses in Narcissus L
Journal of Horticultural Research 2016, vol. 24(2): 19-24 DOI: 10.1515/johr-2016-0016 _______________________________________________________________________________________________________ THE FREQUENCY OF VIRAL INFECTIONS ON TWO NARCISSUS PLANTATIONS IN CENTRAL POLAND Short communication Dariusz SOCHACKI1*, Ewa CHOJNOWSKA2 1Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-767 Warsaw, Poland 2Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice Received: November 2016; Accepted: December 2016 ABSTRACT Viral diseases in narcissus can drastically affect yields and quality of narcissus bulbs and flowers, leading even to a total crop loss. To test the frequency of viral infections in production fields in Central Poland, samples were collected over three years from two cultivars and two plantations, and tested for the presence of Arabis mosaic (ArMV), Cucumber mosaic (CMV), Narcissus latent (NLV), Narcissus mosaic (NMV) and the potyvirus group using the Enzyme Linked ImmunoSorbent Assay. Potyviruses, NLV and NMV were detected in almost all leaf samples in both cultivars, in all three years of testing. Other viruses were detected in a limited number of samples. In most cases mixed infections were present. Tests on bulbs have shown the presence of potyviruses and NMV, with the higher number of positives in cultivar ‘Carlton’. In addition, for most viruses an increase in their detectability was observed on both plantations in subse- quent seasons. Key words: ELISA, flower bulbs, negative selection, viral disease INTRODUCTION (NMV). Many of the most important viruses infect- ing narcissus belongs to the potyvirus group. Viral diseases can drastically affect yield as Asjes (1996) reported that degeneration of nar- well as quality of narcissus bulbs and flowers, some- cissus plants caused by viruses may decrease bulb times resulting in a total crop loss. -
Comparison of Plant‐Adapted Rhabdovirus Protein Localization and Interactions
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Kathleen Marie Martin University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Martin, Kathleen Marie, "COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS" (2011). University of Kentucky Doctoral Dissertations. 172. https://uknowledge.uky.edu/gradschool_diss/172 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kathleen Marie Martin The Graduate School University of Kentucky 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Kathleen Marie Martin Lexington, Kentucky Director: Dr. Michael M Goodin, Associate Professor of Plant Pathology Lexington, Kentucky 2011 Copyright © Kathleen Marie Martin 2011 ABSTRACT OF DISSERTATION COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Sonchus yellow net virus (SYNV), Potato yellow dwarf virus (PYDV) and Lettuce Necrotic yellows virus (LNYV) are members of the Rhabdoviridae family that infect plants. SYNV and PYDV are Nucleorhabdoviruses that replicate in the nuclei of infected cells and LNYV is a Cytorhabdovirus that replicates in the cytoplasm. LNYV and SYNV share a similar genome organization with a gene order of Nucleoprotein (N), Phosphoprotein (P), putative movement protein (Mv), Matrix protein (M), Glycoprotein (G) and Polymerase protein (L). -
Ordine Tymovirales
Ordine Tymovirales Classificazione Dominium/Dominio: Acytota o Aphanobionta Gruppo: IV (Virus a ssRNA+) Ordo/Ordine: Tymovirales Il nome deriva dal genere Tymovirus (e dalla famiglia Tymoviridae). Questo è stato scelto perché le altre famiglie costituenti hanno nomi che riflettono i loro virioni flessi (non una caratteristica di tutti i membri del’'ordine). Tymovirales è un ordine di virus proposto nel 2007 e ufficialmente approvato dall’International Committee on Taxonomy of Viruses nel 2009. Quest’ordine possiede un genoma ad RNA a singolo filamento a senso positivo, di conseguenza fanno parte del gruppo IV secondo la classificazione di Baltimore. I virus appartenenti a quest’ordine hanno, come ospite, le piante. I Tymovirales hanno capside senza pericapside, filamentoso e flessibile o isometrico a simmetria icosaedrica e possiedono tutti una poliproteina di replicazione alpha-like. I Tymovirales, hanno una singola molecola di ssRNA senso positivo e sono uniti dalle somiglianze nelle loro poliproteine associate alla replicazione. I virioni all’interno delle famiglie Alphaflexiviridae, Betaflexiviridae e Gammaflexiviridae sono filamenti flessuosi ed hanno solitamente un diametro di 12-13 nm e una lunghezza compresa tra circa 470 e 1000 nm, a seconda del genere. Hanno una simmetria elicoidale e in alcuni generi c’è un crossbanding ben visibile. Quasi tutti i membri hanno una singola proteina di rivestimento (CP) di 18-44 kDa e nel caso dei generi Lolavirus e alcuni Marafivirus, ci sono due proteine strutturali, che sono di forme diverse dallo stesso genere. La più grande proteina codificata è una poliproteina associata alla replicazione di circa 150-250 kDa vicino all'estremità 5' del genoma e che è tradotta direttamente dall’RNA genomico. -
Cellular and Molecular Aspects of Rhabdovirus Interactions with Insect and Plant Hosts∗
ANRV363-EN54-23 ARI 23 October 2008 14:4 Cellular and Molecular Aspects of Rhabdovirus Interactions with Insect and Plant Hosts∗ El-Desouky Ammar,1 Chi-Wei Tsai,3 Anna E. Whitfield,4 Margaret G. Redinbaugh,2 and Saskia A. Hogenhout5 1Department of Entomology, 2USDA-ARS, Department of Plant Pathology, The Ohio State University-OARDC, Wooster, Ohio 44691; email: [email protected], [email protected] 3Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720; email: [email protected] 4Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506; email: [email protected] 5Department of Disease and Stress Biology, The John Innes Centre, Norwich, NR4 7UH, United Kingdom; email: [email protected] Annu. Rev. Entomol. 2009. 54:447–68 Key Words First published online as a Review in Advance on Cytorhabdovirus, Nucleorhabdovirus, insect vectors, virus-host September 15, 2008 interactions, transmission barriers, propagative transmission The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges 10.1146/annurev.ento.54.110807.090454 include humans, other vertebrates, invertebrates, and plants. There are Copyright c 2009 by Annual Reviews. at least 90 plant-infecting rhabdoviruses, several of which are economi- by U.S. Department of Agriculture on 12/31/08. For personal use only. All rights reserved cally important pathogens of various crops. All definitive plant-infecting 0066-4170/09/0107-0447$20.00 and many vertebrate-infecting rhabdoviruses are persistently transmit- Annu. Rev. Entomol. 2009.54:447-468. -
Synthesis of Potato Virus X Rnas by Membrane- Containing Extracts
JOURNAL OF VIROLOGY, July 1996, p. 4795–4799 Vol. 70, No. 7 0022-538X/96/$04.0010 Copyright q 1996, American Society for Microbiology Synthesis of Potato Virus X RNAs by Membrane- Containing Extracts SERGEY V. DORONIN AND CYNTHIA HEMENWAY* Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622 Received 16 October 1995/Accepted 30 March 1996 Membrane-containing extracts isolated from tobacco plants infected with the plus-strand RNA virus, potato virus X (PVX), supported synthesis of four major, high-molecular-weight PVX RNA products (R1 to R4). Nuclease digestion and hybridization studies indicated that R1 and R2 are a mixture of partially single- stranded replicative intermediates and double-stranded replicative forms. R3 and R4 are double-stranded products containing sequences typical of the two major PVX subgenomic RNAs. The newly synthesized RNAs were demonstrated to have predominantly plus-strand polarity. Synthesis of these products was remarkably stable in the presence of ionic detergents. Potato virus X (PVX), the type member of the Potexvirus tracts were derived from Nicotiana tabacum leaves at 7 days genus, is a flexuous rod-shaped particle containing a single, postinoculation by a procedure similar to that described by genomic RNA of 6.4 kb that is capped and polyadenylated (21, Lurie and Hendrix (15). Inoculated and upper leaves (50 g) 27). Of the five open reading frames (ORFs), the first encodes were homogenized in 150 ml of buffer I (50 mM Tris-HCl [pH a 165-kDa protein (P1) that has homology to other known 7.5], 250 mM sucrose, 5 mM MgCl2, 1 mM EDTA, 10 mM RNA-dependent RNA polymerase (RdRp) proteins (23). -
Examination of Potato Virus X Subgenomic Rnas: Their Umbn Er, Their Oc Ding Properties, and Their Possible Encapsidation
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1991 Examination of Potato Virus X Subgenomic RNAs: Their umbN er, Their oC ding Properties, and Their Possible Encapsidation. Mary A. Price Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Price, Mary A., "Examination of Potato Virus X Subgenomic RNAs: Their umbeN r, Their odC ing Properties, and Their osP sible Encapsidation." (1991). LSU Historical Dissertations and Theses. 5270. https://digitalcommons.lsu.edu/gradschool_disstheses/5270 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. -
Virus Diseases of Trees and Shrubs
VirusDiseases of Treesand Shrubs Instituteof TerrestrialEcology NaturalEnvironment Research Council á Natural Environment Research Council Institute of Terrestrial Ecology Virus Diseases of Trees and Shrubs J.1. Cooper Institute of Terrestrial Ecology cfo Unit of Invertebrate Virology OXFORD Printed in Great Britain by Cambrian News Aberystwyth C Copyright 1979 Published in 1979 by Institute of Terrestrial Ecology 68 Hills Road Cambridge CB2 ILA ISBN 0-904282-28-7 The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to and draws upon the collective knowledge of the fourteen sister institutes \Which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. Nearly half of ITE's work is research commissioned by customers, such as the Nature Con- servancy Council who require information for wildlife conservation, the Forestry Commission and the Department of the Environment. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organisations in overseas projects and programmes of research. The photograph on the front cover is of Red Flowering Horse Chestnut (Aesculus carnea Hayne). -
Alternanthera Mosaic Potexvirus in Scutellaria1 Carlye A
Plant Pathology Circular No. 409 (396 revised) Florida Department of Agriculture and Consumer Services January 2013 Division of Plant Industry FDACS-P-01861 Alternanthera Mosaic Potexvirus in Scutellaria1 Carlye A. Baker2, and Lisa Williams2 INTRODUCTION: Skullcap, Scutellaria species. L. is a member of the mint family, Labiatae. It is represented by more than 300 species of perennial herbs distributed worldwide (Bailey and Bailey 1978). Skullcap grows wild or is naturalized as ornamentals and medicinal herbs. Fuschia skullcap is a Costa Rican variety with long, trailing stems, glossy foliage and clusters of fuschia-colored flowers. SYMPTOMS: Vegetative propagations of fuschia skullcap grown in a Central Florida nursery located in Manatee County showed symptoms of viral infec- tion in the fall of 1998, including foliar mottle and chlorotic to necrotic ring- spots and wavy-line patterns (Fig. 1). SURVEY AND DETECTION: Symptomatic leaves were collected and ex- amined by electron microscopy. Flexuous virus-like particles, approximately 500 nm long, like those associated with potexvirus infections, were observed. Subsequent enzyme-linked immunosorbent assay (ELISA) for a potexvirus known to occur in Florida, resulted in a positive reaction to papaya mosaic virus (PapMV) antiserum. However, further tests indicated that while this virus was related to PapMV, it was not PapMV. Sequencing data showed that the virus was actually Alternanthera mosaic virus (Baker et al. 2006). VIRUS DISTRIBUTION: In 1999, a Potexvirus closely related to PapMY was found in Queensland, Australia. It was isolated from Altrernanthera pugens (Amaranthaceae), a weed found in both the Southern U.S. and Australia. Despite its apparent relationship with PapMV using serology, sequencing Fig. -
United States Patent (19) 11 Patent Number: 5,677,124 Dubois Et Al
USOO.5677124A United States Patent (19) 11 Patent Number: 5,677,124 DuBois et al. 45) Date of Patent: Oct. 14, 1997 54 RBONUCLEASE RESISTANT WIRAL RNA Gal-On et al., "Nucleotide Sequence of the ZucchiniYellow STANDARDS Mosaic Virus Capsid-Encoding Gene and its Expression in Escherichia coli,' Gene 87:273-277, 1990. 75) Inventors: Dwight B. DuBois; Matthew M. Gallie et al., “In Vivo Uncoating and Efficient Expression of Winkler; Brittan L. Pasloske, all of Foreign mRNAS Packaged in TMV-Like Particles,” Sci Austin, Tex. ence, 236:1122-1124, 1987. Gallie et al., "The Effect of Multiple Dispersed Copies of the 73). Assignees: Ambion, Inc.; Cemetron Diagnostics Origin-of-Assembly Sequence From TMV RNA on the LLC, both of Austin, Tex. Morphology of Pseudovirus Particles Assembled In Vitro,” Virology, 158:473–476, 1987. 21 Appl. No.: 675,153 Gibbs, "Tobamovirus Group.” C.M.I.A.A.B. Descriptions of Fed: Jul. 3, 1996 Plant Viruses, No. 184, Commonwealth Bureaux and the 22 Association of Applied Biologists, Sep. 1977. 51 Int. Cl. ... C20O 1/70; C12M 1/24; Goelet et al., “Nucleotide Sequence of Tobacco Mosaic C12N 7/01; C12P 19/34 Virus RNA,” Proc. Nati, Acad. Sci. USA, 79:5818-5922, 52 U.S. Cl. ......................... 435/5; 435/69.1; 435/235.1; 1982. 435/240.1; 435/287.2: 435/288.1; 536/23.1 Goulden et al., "Structure of Tobraviral Particles: A Model 58 Field of Search .............................. 435/5, 69.1, 91.1, Suggested From Sequence Conservation in Tobraviral and 435/235.1, 320.1, 287.2, 88.1; 536/23. -
Disruption of Virus Movement Confers Broad-Spectrum Resistance Against
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 10310-10314, October 1994 Plant Biology Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block (trnenic plant/doinat negative mutaton/ n l movement proein) DAVID L. BECK, CRAIG J. VAN DOLLEWEERD, TONY J. LOUGH, EZEQUIEL BALMORI, DAVIN M. VOOT, MARK T. ANDERSEN, IONA E. W. O'BRIEN, AND RICHARD L. S. FORSTERt Molecular Genetics Group, The Horticultural and Food Research Institute of New Zealand Ltd., Private Bag 92169, Auckland, New Zealand Communicated by George Bruening, June 23, 1994 ABSTRACT White clover mosaic virus strain 0 (WCIMV- tially difficult. New forms ofresistance active against several 0), species of the Potexvirus genus, contains a set of three different viruses or groups of viruses are being sought. One partially overlapping genes (the triple gene block) that encodes such approach involved the introduction of the gene coding nonvirion proteins of 26 kDa, 13 kDa, and 7 kDa. These for rat 2'-5' oligoadenylate synthetase into the genome of proteins are necesy for cell-to-cell movement in plants but potato plants (4). Genetically engineering transgenic plants to not for replication. The WCIMV-O 13-kDa gene was mutated block virus movement, mimicking the mechanism of some (to 13*) in a region of the gene that is conserved in all viruses natural resistance genes, has been proposed (1, 5, 6) but known to possess triple-gene-block proteins. All 10 13* trans- remains mostly unexploited. genic lines of Nicodiana benthamiana designed to express the The movement function of plant viruses can be comple- mutated movement protein were shown to be resistant to mented by another, frequently unrelated, virus in double systemic infection by WCIMV-O at 1 jug ofWCIMV virions per infections (7). -
Untranslated Region of Potexvirus RNA Reveals a Role in Viral Replication and Cell-To-Cell Movement ⁎ Tony J
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 351 (2006) 455–465 www.elsevier.com/locate/yviro Functional analysis of the 5′ untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement ⁎ Tony J. Lough a, , Robyn H. Lee a, Sarah J. Emerson a, Richard L.S. Forster a, William J. Lucas b a Horticulture and Food Research Institute of New Zealand, Plant Health and Development Group, Private Bag 11030, Palmerston North, New Zealand b Section of Plant Biology, Division of Biological Sciences, University of California, Davis, CA 95616, USA Received 17 February 2006; returned to author for revision 6 March 2006; accepted 27 March 2006 Available online 11 May 2006 Abstract Cell-to-cell movement of potexviruses requires cognate recognition between the viral RNA, the triple gene block proteins (TGBp1–3) and the coat protein (CP). cis-acting motifs required for recognition and translocation of viral RNA were identified using an artificial potexvirus defective RNA encoding a green fluorescent protein (GFP) reporter transcriptionally fused to the terminal viral sequences. Analysis of GFP fluorescence produced in vivo from these defective RNA constructs, referred to as chimeric RNA reporters, was used to identify viral cis-acting motifs required for RNA trafficking. Mapping experiments localized the cis-acting element to nucleotides 1–107 of the Potato virus X (PVX) genome. This sequence forms an RNA secondary structural element that has also been implicated in viral plus-strand accumulation [Miller, E.D., Plante, C.A., Kim, K.-H., Brown, J.W.