MONILOPHYTA – Ferns and Allies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Draft Plant Propagation Protocol
Plant Propagation Protocol for Gymnocarpium dryopteris ESRM 412 – Native Plant Production Pictures from plants.usda.gov TAXONOMY Family Names Family Scientific Name: Dryopteridaceae Family Common Name: Wood Fern Family Scientific Names Genus: Gymnocarpium Species: dryopteris Species Authority: (L.) Newman Variety: Sub-species: Cultivar: Authority for Variety/Sub-species: Common Synonym(s) (include full Dryopteris disjuncta (Ledeb.) Mort.(1) scientific names (e.g., Elymus Dryopteris linnaeana Christens.(1) glaucus Buckley), including Phegopteris dryopteris (L.) Fee(1) variety or subspecies information) Thelypteris dryopteris (L.) Slosson(1) Common Name(s): Western Oak Fern Species Code (as per USDA Plants GYDR database): GENERAL INFORMATION Geographical range (distribution maps for North America and Washington state) Ecological distribution (ecosystems Temperate cool forests, conifer or mixed, circum-boreal it occurs in, etc): found in northern regions of Asia, Europe and North America.(1) Climate and elevation range Cool to temperate forests, found as far south as Virginia. (1) Local habitat and abundance; may Abundant in conifer understory in Washington and include commonly associated other PNW states. species Plant strategy type / successional A Facultative Seral Species That can re-sprout after fire stage (stress-tolerator, competitor, from roots. (1) weedy/colonizer, seral, late successional) Plant characteristics longevity, key Forb, can dominate understory for 100 years starting 25 characteristics, etc) to 35 years after disturbance, -
Native Herbaceous Perennials and Ferns for Shade Gardens
Green Spring Gardens 4603 Green Spring Rd ● Alexandria ● VA 22312 Phone: 703-642-5173 ● TTY: 703-803-3354 www.fairfaxcounty.gov/parks/greenspring NATIVE HERBACEOUS PERENNIALS AND FERNS FOR � SHADE GARDENS IN THE WASHINGTON, D.C. AREA � Native plants are species that existed in Virginia before Jamestown, Virginia was founded in 1607. They are uniquely adapted to local conditions. Native plants provide food and shelter for a myriad of birds, butterflies, and other wildlife. Best of all, gardeners can feel the satisfaction of preserving a part of our natural heritage while enjoying the beauty of native plants in the garden. Hardy herbaceous perennials form little or no woody tissue and live for several years. Some of these plants are short-lived and may live only three years, such as wild columbine, while others can live for decades. They are a group of plants that gardeners are very passionate about because of their lovely foliage and flowers, as well as their wide variety of textures, forms, and heights. Most of these plants are deciduous and die back to the ground in the winter. Ferns, in contrast, have no flowers but grace our gardens with their beautiful foliage. Herbaceous perennials and ferns are a joy to garden with because they are easily moved to create new design combinations and provide an ever-changing scene in the garden. They are appropriate for a wide range of shade gardens, from more formal gardens to naturalistic woodland gardens. The following are useful definitions: Cultivar (cv.) – a cultivated variety designated by single quotes, such as ‘Autumn Bride’. -
Natural Heritage Program List of Rare Plant Species of North Carolina 2016
Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate. -
Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there. -
A Contribution Towards a Vascular Flora of the Great Dismal Swamp
- i -. A Contribution towards a Vascular Flora of the Great Dismal Swamp LYTTON J. MUSSELMAN, DANIEL L. NICKRENT, AND GERALD F. LEVY r Reprinted from RHODORA, Vol. 79, No. 818, April 1977 pages 240-268 - A CONTRIBUTION TOW ARDS A VASCULAR FLORA OF THE GREAT DISMAL SWAMP LYTTON J. MUSSELMAN, DANIELL. NICKRENT,1 AND GERALD F. LEVY This flora is an enumeration of the vascular plants growing without cultivation in the Great Dismal Swamp. It is hoped that this work will be of value to the rapidly increasing number of persons visiting the swamp, particularly since the establishment of the Dismal Swamp National Wildlife Refuge in 1973. Great pains have been taken to ensure completeness of the inventory presented here. Yet, the Dismal Swamp is difficult to botanize, and additional species will undoubtedly be added to the present list. Previous botanical work in the swamp is listed in Kirk et al. (in press). LOCATION AND EXTENT OF AREA The Great Dismal Swamp, which occupies about 104,000 ha. of North Carolina and Virginia (Figure 1), is one of the largest remaining swamp forests on the Coastal Plain. Although the swamp is considered to be centered around Lake Drummond in the Virginia cities of Suffolk and Chesapeake, it extends into the North Carolina counties of Currituck, Camden, Perquimans, Gates, and Pasquotank. Except for the western edge, which is delimited by the Suffolk Escarpment (Henry, 1970), the boundaries of the swamp are not sharply defined. TOPOGRAPHY AND DRAINAGE The Dismal Swamp is situated on a low, poorly drained flat marine terrace which ranges from 4.5 to 7 m. -
Ferns of the National Forests in Alaska
Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p. -
Redalyc.CYSTOPTERIS (CYSTOPTERIDACEAE) DEL
Darwiniana ISSN: 0011-6793 [email protected] Instituto de Botánica Darwinion Argentina Arana, Marcelo D.; Mynssen, Claudine M. CYSTOPTERIS (CYSTOPTERIDACEAE) DEL CONO SUR Y BRASIL Darwiniana, vol. 3, núm. 1, 2015, pp. 73-88 Instituto de Botánica Darwinion Buenos Aires, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=66940406003 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto DARWINIANA, nueva serie 3(1): 73-88. 2015 Versión final, efectivamente publicada el 31 de julio de 2015 DOI: 10.14522/darwiniana.2015.31.639 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea CYSTOPTERIS (CYSTOPTERIDACEAE) DEL CONO SUR Y BRASIL Marcelo D. Arana1 & Claudine M. Mynssen2 1 Orientación Plantas Vasculares, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Quími- cas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, X5804ZAB Río Cuarto, Córdoba, Argentina; [email protected] (autor corresponsal). 2 Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Diretoria de Pesquisa Científica, Rua Pacheco Leão 915, CEP 22460-030 Rio de Janeiro; Rio de Janeiro, Brasil; [email protected] Abstract. Arana, M. D. & C. M. Mynssen. 2015. Revision of Cystopteris (Cystopteridaceae) from South Cone and Brazil. Darwiniana, nueva serie 3(1): 73-88. A taxonomical treatment of the representatives of Cystopteris (Cystopteridaceae) occurring in Argen- tina, Bolivia, Brazil, Chile and Uruguay is presented. In this region, the genus is represented by three species: Cystopteris apiiformis from Argentina and Chile, C. -
American Fern Journal
AMERICAN FERN JOURNAL QUARTERLY JOURNAL OF THE AMERICAN FERN SOCIETY Broad-Scale Integrity and Local Divergence in the Fiddlehead Fern Matteuccia struthiopteris (L.) Todaro (Onocleaceae) DANIEL M. KOENEMANN Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, CA 91711-3157, e-mail: [email protected] JACQUELINE A. MAISONPIERRE University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] DAVID S. BARRINGTON University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] American Fern Journal 101(4):213–230 (2011) Broad-Scale Integrity and Local Divergence in the Fiddlehead Fern Matteuccia struthiopteris (L.) Todaro (Onocleaceae) DANIEL M. KOENEMANN Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, CA 91711-3157, e-mail: [email protected] JACQUELINE A. MAISONPIERRE University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] DAVID S. BARRINGTON University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] ABSTRACT.—Matteuccia struthiopteris (Onocleaceae) has a present-day distribution across much of the north-temperate and boreal regions of the world. Much of its current North American and European distribution was covered in ice or uninhabitable tundra during the Pleistocene. Here we use DNA sequences and AFLP data to investigate the genetic variation of the fiddlehead fern at two geographic scales to infer the historical biogeography of the species. Matteuccia struthiopteris segregates globally into minimally divergent (0.3%) Eurasian and American lineages. -
The Fern Family Blechnaceae: Old and New
ANDRÉ LUÍS DE GASPER THE FERN FAMILY BLECHNACEAE: OLD AND NEW GENERA RE-EVALUATED, USING MOLECULAR DATA Tese apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Departamento de Botânica do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutor em Biologia Vegetal. Área de Concentração Taxonomia vegetal BELO HORIZONTE – MG 2016 ANDRÉ LUÍS DE GASPER THE FERN FAMILY BLECHNACEAE: OLD AND NEW GENERA RE-EVALUATED, USING MOLECULAR DATA Tese apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Departamento de Botânica do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutor em Biologia Vegetal. Área de Concentração Taxonomia Vegetal Orientador: Prof. Dr. Alexandre Salino Universidade Federal de Minas Gerais Coorientador: Prof. Dr. Vinícius Antonio de Oliveira Dittrich Universidade Federal de Juiz de Fora BELO HORIZONTE – MG 2016 Gasper, André Luís. 043 Thefern family blechnaceae : old and new genera re- evaluated, using molecular data [manuscrito] / André Luís Gasper. – 2016. 160 f. : il. ; 29,5 cm. Orientador: Alexandre Salino. Co-orientador: Vinícius Antonio de Oliveira Dittrich. Tese (doutorado) – Universidade Federal de Minas Gerais, Departamento de Botânica. 1. Filogenia - Teses. 2. Samambaia – Teses. 3. RbcL. 4. Rps4. 5. Trnl. 5. TrnF. 6. Biologia vegetal - Teses. I. Salino, Alexandre. II. Dittrich, Vinícius Antônio de Oliveira. III. Universidade Federal de Minas Gerais. Departamento de Botânica. IV. Título. À Sabrina, meus pais e a vida, que não se contém! À Lucia Sevegnani, que não pode ver esta obra concluída, mas que sempre foi motivo de inspiração. -
Infrageneric Revision of the Fern Genus Deparia (Athyriaceae, Aspleniineae, Polypodiales)
Systematic Botany (2018), 43(3): pp. 645–655 © Copyright 2018 by the American Society of Plant Taxonomists DOI 10.1600/036364418X697364 Date of publication August 10, 2018 Infrageneric Revision of the Fern Genus Deparia (Athyriaceae, Aspleniineae, Polypodiales) Li-Yaung Kuo,1,7 Atsushi Ebihara,2 Tian-Chuan Hsu,3 Germinal Rouhan,4 Yao-Moan Huang,5 Chun-Neng Wang,1,6,8 Wen-Liang Chiou,3 and Masahiro Kato2 1Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan 2Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan 3Botanical Garden Division, Taiwan Forestry Research Institute, Taipei 10066, Taiwan 4Mus´eum national d’Histoire naturelle, Institut de Syst´ematique, Evolution, Biodiversit´e ((ISYEB) CNRS, Sorbonne Universit´e EPHE), Herbier national, 16 rue Buffon CP39, F-75005 Paris, France 5Silviculture Division, Taiwan Forestry Research Institute, Taipei 10066, Taiwan 6Department of Life Science, National Taiwan University, Taipei 10617, Taiwan 7Current address: Boyce Thompson Institute, Ithaca, New York 14853, USA ([email protected]) 8Author for correspondence ([email protected]) Communicating Editor: Sven Buerki Abstract—Current molecular phylogenetic analyses support the monophyly and circumscription of the athyrioid fern genus Deparia (Athyr- iaceae), which includes previously recognized genera including Athyriopsis, 3Depazium, Dictyodroma, Dryoathyrium (5 Parathyrium), Lunathyrium, and Neotriblemma (5 Triblemma Ching), and 3Neotribleparia. This broad generic concept has been adopted in several recent taxonomic treatments, including the Pteridophyte Phylogeny Group I. However, the infrageneric taxonomy of Deparia still needs further revision. In this study, we provide a new infrageneric classification with five sections and three subsections based on the phylogenetic evidence. -
Jan Ptáček, Tomáš Urfus: Vyřešení Poslední Biosystematické Záhady U Kapradin? Příběh Z Evoluce Rodu Puchýřník (Živa 2020, 4: 173–176)
Jan Ptáček, Tomáš Urfus: Vyřešení poslední biosystematické záhady u kapradin? Příběh z evoluce rodu puchýřník (Živa 2020, 4: 173–176) Citovaná a doporučená literatura Blasdell R. F. (1963): A Monographic Study of the Fern Genus Cystopteris. – Mem. Torrey Bot. Club 21: 1–102. Dostál J. (1984): Cystopteris. In Kramer K.U. & Hegi G. (eds.), Illustrierte Flora von Mitteleuropa. Band I, Teil 1. Pteridophyta., pp. 192–201. – Verlag Paul Parey, Berlin, Hamburg, Germany. Dyer A. F., Parks J. C., & Lindsay S. (2000): Historical review of the uncertain taxonomic status of Cystopteris dickieana R. Sim (Dickie’s bladder fern). – Edinburgh J. Bot. 57: 71–81. Gamperle E. & Schneller J. J. (2002): Phenotypic and isozyme variation in Cystopteris fragilis (Pteridophyta) along an altitudinal gradient in Switzerland. – Flora 197: 203–213. Gastony G. J. (1986): Electrophoretic Evidence for the Origin of Fern Species by Unreduced Spores. – Am. J. Bot. 73: 1563–1569. Hadinec J. & Lustyk P. (2012): Additamenta ad floram Reipublicae Bohemicae. X. – Zprávy České Bot. společnosti 47: 43–158. Haufler C. H. & Ranker T. A. (1985): Differential Antheridiogen Response and Evolutionary Mechanisms in Cystopteris. – Am. J. Bot. 72: 659–665. Haufler C. H. & Windham M. D. (1991): New species of North American Cystopteris and Polypodium, with Comments on Their Reticulate Relationships. – Am. Fern J. 81: 7–23. Haufler C. H., Windham M. D., Britton D. M., & Robinson S. J. (1985): Triploidy and its evolutionary significance in Cystopteris protrusa. – Can. J. Bot. 63: 1855–1863. Haufler C. H., Windham M. D., & Ranker T. A. (1990): Biosystematic Analysis of the Cystopteris tennesseensis (Dryopteridaceae) Complex. – Ann. -
Ecophysiology of Four Co-Occurring Lycophyte Species: an Investigation of Functional Convergence
Research Article Ecophysiology of four co-occurring lycophyte species: an investigation of functional convergence Jacqlynn Zier, Bryce Belanger, Genevieve Trahan and James E. Watkins* Department of Biology, Colgate University, Hamilton, NY 13346, USA Received: 22 June 2015; Accepted: 7 November 2015; Published: 24 November 2015 Associate Editor: Tim J. Brodribb Citation: Zier J, Belanger B, Trahan G, Watkins JE. 2015. Ecophysiology of four co-occurring lycophyte species: an investigation of functional convergence. AoB PLANTS 7: plv137; doi:10.1093/aobpla/plv137 Abstract. Lycophytes are the most early divergent extant lineage of vascular land plants. The group has a broad global distribution ranging from tundra to tropical forests and can make up an important component of temperate northeast US forests. We know very little about the in situ ecophysiology of this group and apparently no study has eval- uated if lycophytes conform to functional patterns expected by the leaf economics spectrum hypothesis. To determine factors influencing photosynthetic capacity (Amax), we analysed several physiological traits related to photosynthesis to include stomatal, nutrient, vascular traits, and patterns of biomass distribution in four coexisting temperate lycophyte species: Lycopodium clavatum, Spinulum annotinum, Diphasiastrum digitatum and Dendrolycopodium dendroi- deum. We found no difference in maximum photosynthetic rates across species, yet wide variation in other traits. We also found that Amax was not related to leaf nitrogen concentration and is more tied to stomatal conductance, suggestive of a fundamentally different sets of constraints on photosynthesis in these lycophyte taxa compared with ferns and seed plants. These findings complement the hydropassive model of stomatal control in lycophytes and may reflect canaliza- tion of function in this group.