Infrageneric Revision of the Fern Genus Deparia (Athyriaceae, Aspleniineae, Polypodiales)

Total Page:16

File Type:pdf, Size:1020Kb

Infrageneric Revision of the Fern Genus Deparia (Athyriaceae, Aspleniineae, Polypodiales) Systematic Botany (2018), 43(3): pp. 645–655 © Copyright 2018 by the American Society of Plant Taxonomists DOI 10.1600/036364418X697364 Date of publication August 10, 2018 Infrageneric Revision of the Fern Genus Deparia (Athyriaceae, Aspleniineae, Polypodiales) Li-Yaung Kuo,1,7 Atsushi Ebihara,2 Tian-Chuan Hsu,3 Germinal Rouhan,4 Yao-Moan Huang,5 Chun-Neng Wang,1,6,8 Wen-Liang Chiou,3 and Masahiro Kato2 1Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan 2Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan 3Botanical Garden Division, Taiwan Forestry Research Institute, Taipei 10066, Taiwan 4Mus´eum national d’Histoire naturelle, Institut de Syst´ematique, Evolution, Biodiversit´e ((ISYEB) CNRS, Sorbonne Universit´e EPHE), Herbier national, 16 rue Buffon CP39, F-75005 Paris, France 5Silviculture Division, Taiwan Forestry Research Institute, Taipei 10066, Taiwan 6Department of Life Science, National Taiwan University, Taipei 10617, Taiwan 7Current address: Boyce Thompson Institute, Ithaca, New York 14853, USA ([email protected]) 8Author for correspondence ([email protected]) Communicating Editor: Sven Buerki Abstract—Current molecular phylogenetic analyses support the monophyly and circumscription of the athyrioid fern genus Deparia (Athyr- iaceae), which includes previously recognized genera including Athyriopsis, 3Depazium, Dictyodroma, Dryoathyrium (5 Parathyrium), Lunathyrium, and Neotriblemma (5 Triblemma Ching), and 3Neotribleparia. This broad generic concept has been adopted in several recent taxonomic treatments, including the Pteridophyte Phylogeny Group I. However, the infrageneric taxonomy of Deparia still needs further revision. In this study, we provide a new infrageneric classification with five sections and three subsections based on the phylogenetic evidence. We recognize two new sections, sect. Dictyodroma and sect. Erectus, and two new subsections, sect. Deparia subsect. Caespites and subsect. Athyriopsis. In addition, we provide a key to the sections and subsections, a table of diagnostic characters, new combinations for three Deparia and one Diplazium species, and a list of species assigned to the sections/subsections. Hybrids derived from crosses between the sections and subsections are also noted. Keywords—Athyrioids, Dictyodroma, sect. Erectus, taxonomy. The fern genus Deparia Hook. & Grev. was established in published a replacing genus name, Neotriblemma. Ching (1964) 1829 and based on Deparia macraei Hook. & Grev. [5 Deparia indicated that Athyriopsis is similar to Lunathyrium but dif- prolifera (Kaulf.) Hook. & Grev.; Fig. 1A]. In recent fern clas- ferent in its slender and non-winged stipe bases, absence of sifications and floristic treatments (e.g. Christenhusz et al. pneumatophores, and long-creeping rhizomes (Fig. 2). Dic- 2011; Rothfels et al. 2012b; He et al. 2013; PPG I 2016), Deparia tyodroma was recognized by a unique combination of anas- belongs to Athyriaceae, and encompasses several genera that tomosing venation, winged distal pinnae and entire proximal had long been kept separate: Lunathyrium Koidz., Dry- pinnae, hairlike scales (a kind of indument morphologically oathyrium Ching (5 Parathyrium Holttum), Athyriopsis Ching, transient from multicellular hairs to scales), and discontinuous Dictyodroma Ching, Neotriblemma Nakaike (5 Triblemma grooves between rachises and costae (Fig. 2). Neotriblemma was Ching), 3Depazium Nakaike, and 3Neotribleparia Nakaike. characterized by having diplazioid sori (i.e. paired but non- Lunathyrium was established by Koidzumi (1932) and based on connected sori on both sides of veinlets), long-creeping rhi- Lunathyrium pycnosorum (Christ) Koidz. [[ Athyrium pycno- zomes, and tuberculate perine (Ching 1978). In addition, Wang sorum Christ [ Deparia pycnosora (Christ) M. Kato; Fig. 1C]; it is (1982) established a new section under Athyriopsis, sect. characterized by its pneumatophores and almost asplenioid Caespites, based on Athyriopsis omeiensis Z. R. Wang [[ Deparia sori (i.e. linear and restricted to the acroscopic sides of veinlets; omeiensis (Z. R. Wang) M. Kato], characterized by its erect Fig. 2). Ching (1941) described Dryoathyrium based on Dry- rhizomes. 3Depazium, originally described as a nothogenus oathyrium boryanum (Willd.) Ching [[ Aspidium boryanum resulting from a cross between Deparia and Diplazium Sw., was Willd. [ Deparia boryana (Willd.) M. Kato], which is charac- based on 3Depazium tomitaroanum (Masam.) Nakaike [[ terized by the non-scaly stipe bases, creeping rhizomes, and Deparia 3tomitaroana (Masam.) R. Sano] (Nakaike 1992). One round-reniform (Fig. 2J) to U- and J-shaped sori. Holttum of the parent species of this hybrid is Diplazium subsinuatum, (1958) described the genus Parathyrium, also based on Deparia which is now, however, a synonym of Deparia lancea. Similarly, boryana, emphasizing its swollen stipe bases, presence of 3Neotribleparia was originally published for inter-generic hairlike scales, and discontinuous grooves between rachises hybrids between Neotriblemma and Deparia (Nakaike 2004) and costae (Fig. 2E and 2I). Ching (1964, 1978) recognized three but Neotriblemma is now included under the genus Deparia. additional new genera, Athyriopsis, Dictyodroma, and Tri- Affinities of species treated under the genera Athyriopsis, blemma, based on Athyriopsis japonica (Thunb.) Ching [[ Dryoathyrium, and Lunathyrium were first indicated by Asplenium japonicum Thunb. [ Deparia japonica (Thunb.) M. Tagawa (1959), and they were transferred to Lunathyrium by Kato; Fig. 1D], Dictyodroma heterophlebia (Mett. ex Baker) Kurata (1961). Taking Kurata (1961) and Ching (1964) into Ching [[ Asplenium heterophlebium Mett. ex Baker [ Deparia account, Ohba (1965) further established three sections within heterophlebia (Mett. ex Baker) R. Sano; Fig. 1G], and Triblemma Lunathyrium s. l.: sect. Lunathyrium, sect. Dryoathyrium, and lancea (Thunb.) Ching [[ Asplenium lanceum Thunb. [ Deparia sect. Athyriopsis. The morphological similarity between lancea (Thunb.) Fraser-Jenk. [ Neotriblemma lancea (Thunb.) Deparia prolifera and Lunathyrium s. l. was first noted by Kato Nakaike 5 Diplazium subsinuatum (Hook. & Grev.) Tagawa; (1977), who proposed four sections under Deparia, three of Fig. 1H], respectively. Because the genus Triblemma by Ching which were transferred from Lunathyrium s. l. This four-section (1978) is illegitimate due to the earlier name of Triblemma classification was detailed in the monographic work by Kato R. Br. ex C. Sprengel in Melastomataceae, Nakaike (2004) (1984); two subsections under sect. Athyriopsis were also 645 646 SYSTEMATIC BOTANY [Volume 43 Fig. 1. The diversity of Deparia (Athyriaceae). A. Deparia prolifera (Kaulf.) Hook. & Grev. B. Deparia dickasonii M. Kato. C. Deparia pycnosora (Christ) M. Kato. D. Deparia japonica (Thunb.) M. Kato. E. Deparia erecta (Z. R. Wang) M. Kato. F. Deparia parvisora (C. Chr.) M. Kato. G. Deparia heterophlebia (Mett. ex Baker) R. Sano. H. Deparia lancea (Thunb.) Fraser-Jenk. Photos: A by John Game; B, D, E, G by Li-Yaung Kuo; C, H by Pi-Fong Lu; and F by Germinal Rouhan. recognized by Wang (1982). The inclusion of Neotriblemma in deparioid genera as distinct: Athyriopsis, Dictyodroma, Dry- Deparia was first implied by Matsumoto and Nakaike (1990), oathyrium, Lunathyrium, and Neotriblemma (i.e. Triblemma). and Fraser-Jenkins (1997) pointed out the similarity in indu- The currently defined Deparia s. l. comprises 60–90 species, ment between Deparia lancea and Deparia sensu Kato (1984); with highest diversity in Asia but also distributed in Africa and this generic treatment was also supported by evidence from islands of the western Indian Ocean, northeastern North the rachis-groove morphology, cytology, and molecular America, the Hawaiian Islands, Australia, New Zealand, and phylogenetic studies (Nakato and Mitui 1979; Matsumoto and South Pacific Islands (Kato 1984; Rothfels et al. 2012b; He et al. Nakaike 1990; Sano et al. 2000b). Sano et al. (2000c) transferred 2013; Kuo et al. 2016, 2018b; PPG I 2016; and this study). Dictyodroma to Deparia, based on their cytological and mo- Irrespective of the marked taxonomic changes, this genus can lecular phylogenetic data (Sano et al. 2000a). However, the be distinguished from other athyrioids by both morphological species that were moved from Neotriblemma and Dictyodroma and cytological features. The hairlike scales (Fig. 2D, E), and still have not been assigned to any section. While He et al. the discontinuous grooves between rachises and costae (2013) transferred most Chinese species to Deparia, some (Fig. 2E) are the diagnostic and synapomorphic characters taxonomists (e.g. Chu et al. 1999) still recognized many (Kato 1973, 1977, 1984; Rothfels et al. 2012b; Sundue and 2018] KUO ET AL.: DEPARIA INFRAGENERIC REVISION 647 Fig. 2. Diagnostic characters in Deparia and other athyrioids. A. Cross section of broadly U-shaped rachis groove of Diplazium chinense (Baker) C. Chr. B. Narrowly U-shaped rachis groove of Deparia formosana (Rosenst.) R. Sano. C. V-shaped rachis groove of Athyrium opacum (D. Don) Copel. D. Hairlike scale of Deparia formosana (Rosenst.) R. Sano (upper) and gland-tipped hair of Deparia concinna (Z. R. Wang) M. Kato (lower) (provided by Li-Yaung Kuo). E. Discontinuous groove between rachis and costa of Deparia jiulungensis (Ching) Z. R. Wang; rachis and costae are covered by hairlike scales. F. Continuous groove between rachis and
Recommended publications
  • Native Herbaceous Perennials and Ferns for Shade Gardens
    Green Spring Gardens 4603 Green Spring Rd ● Alexandria ● VA 22312 Phone: 703-642-5173 ● TTY: 703-803-3354 www.fairfaxcounty.gov/parks/greenspring NATIVE HERBACEOUS PERENNIALS AND FERNS FOR � SHADE GARDENS IN THE WASHINGTON, D.C. AREA � Native plants are species that existed in Virginia before Jamestown, Virginia was founded in 1607. They are uniquely adapted to local conditions. Native plants provide food and shelter for a myriad of birds, butterflies, and other wildlife. Best of all, gardeners can feel the satisfaction of preserving a part of our natural heritage while enjoying the beauty of native plants in the garden. Hardy herbaceous perennials form little or no woody tissue and live for several years. Some of these plants are short-lived and may live only three years, such as wild columbine, while others can live for decades. They are a group of plants that gardeners are very passionate about because of their lovely foliage and flowers, as well as their wide variety of textures, forms, and heights. Most of these plants are deciduous and die back to the ground in the winter. Ferns, in contrast, have no flowers but grace our gardens with their beautiful foliage. Herbaceous perennials and ferns are a joy to garden with because they are easily moved to create new design combinations and provide an ever-changing scene in the garden. They are appropriate for a wide range of shade gardens, from more formal gardens to naturalistic woodland gardens. The following are useful definitions: Cultivar (cv.) – a cultivated variety designated by single quotes, such as ‘Autumn Bride’.
    [Show full text]
  • Summer/Fall 2012
    Wildland Weeds SUMMER/SUMMER/FALLFALL 2012 Call for Abstracts We invite abstract submissions for contributed oral or poster presentations at the 2013 FLEPPC/SE-EPPC Joint Annual Symposium. This year’s theme is Plant Wars: The EPPC’s Strike Back. The meeting will be held Tuesday, May 21st through Thursday, May 23nd at the Edgewater Beach Resort in Panama City Beach, Florida. Deadline for Abstract Submissions: February 15, 2013 Program Topics: Submissions Student Poster Competition: All student posters are welcome for any area presented at the annual meeting are eligible for of invasive plant species consideration. Posters may have multiple authors, but investigation, including but not the first author must be a graduate student. A team limited to: composed of representatives from each SE-EPPC chapter will judge student posters, based on scientific • Ecology merit, design, and poster discussion with judges. • Economics Awards: • Management 1st place: $150; 2nd place: $100; 3rd place: $50. • Restoration To participate, send an email indicating interest • Risk Assessment by 5 pm January 31st, 2013, to Dr. Nancy Loewenstein, [email protected] • Policy and Regulation Please include SE-EPPC Student Poster Award in • Evolutionary Biology the subject line. • Interdisciplinary Projects SUBMIT YOUR ABSTRACT ONLINE! www.fleppc.org/Symposium/2013/abstractsubmission.html Abstracts must include the following information: • Title of the proposed paper or poster • Full name and professional title of the author(s), affiliation, mailing address, phone number(s), and email address • If there are multiple authors, please provide the above information for each. • Text of the abstract (limit of 400 words) If web access is not available, please submit abstracts to: Sherry Williams, Seminole County Natural Lands Program, 3485 N.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Importance of Diplazium Esculentum (Retz.) Sw
    Plant Archives Vol. 18 No. 1, 2018 pp. 439-442 ISSN 0972-5210 IMPORTANCE OF DIPLAZIUM ESCULENTUM (RETZ.) SW. (ATHYRIACEAE) ON THE LIVES OF LOCAL ETHNIC COMMUNITIES IN TERAI AND DUARS OF WEST BENGAL -A REPORT Baishakhi Sarkar1, Mridushree Basak1, Monoranjan Chowdhury1* and A. P. Das2 1*Taxonomy of Angiosperms and Biosystematics Laboratory, Department of Botany, University of North Bengal, Siliguri-734013 (West Bengal) India 2Department of Botany, Rajiv Gandhi University, Itanagar (Arunachal Pradesh), India Abstract Diplazium esculentum (Retz.) Sw. or ‘Dheki Shak’ is used as a nutritive leafy vegetable by the local communities of Terai and Duars parts of West Bengal. From our study and previous literatures it was found of having very important ethnobotanical value. The people of lower socio-economic communities rely mainly upon the collection and selling of this plant during the summer and monsoon season in the study area. The step wise photographs from field to market are represented here along with the ethnobotanical uses by different communities across India. Key words: Diplazium esculentum, Terai and Duars, vegetable, ethnic Communities. Introduction Diplazium esculentum (Retz.) Sw. (commonly called There are many naturally growing plant species which vegetable fern) of family Athyriaceae is abundant in open are eaten by the local people and even marketed locally moist herb land vegetation and the partially open young but are never cultivated. These are referred as Wild Edible and circinately coiled fronds of this plant are regularly Plants (WEP) (Beluhan et al., 2010). These plants are consumed by local people as a nutritive leafy vegetable. often found in abundance and the people of different It is known as ‘Dhekishak’ by Bengalee (Sen and Ghosh, cultures and tribes collect these as source of nutrition, 2011; Panda, 2015), ‘Paloi’ in Hindi (Panda, 2015), medicine etc.
    [Show full text]
  • Glenda Gabriela Cárdenas Ramírez
    ANNALES UNIVERSITATIS TURKUENSIS UNIVERSITATIS ANNALES A II 353 Glenda Gabriea Cárdenas Ramírez EVOLUTIONARY HISTORY OF FERNS AND THE USE OF FERNS AND LYCOPHYTES IN ECOLOGICAL STUDIES Glenda Gabriea Cárdenas Ramírez Painosaama Oy, Turku , Finand 2019 , Finand Turku Oy, Painosaama ISBN 978-951-29-7645-4 (PRINT) TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS ISBN 978-951-29-7646-1 (PDF) ISSN 0082-6979 (Print) ISSN 2343-3183 (Online) SARJA - SER. A II OSA - TOM. 353 | BIOLOGICA - GEOGRAPHICA - GEOLOGICA | TURKU 2019 EVOLUTIONARY HISTORY OF FERNS AND THE USE OF FERNS AND LYCOPHYTES IN ECOLOGICAL STUDIES Glenda Gabriela Cárdenas Ramírez TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. A II OSA – TOM. 353 | BIOLOGICA - GEOGRAPHICA - GEOLOGICA | TURKU 2019 University of Turku Faculty of Science and Engineering Doctoral Programme in Biology, Geography and Geology Department of Biology Supervised by Dr Hanna Tuomisto Dr Samuli Lehtonen Department of Biology Biodiversity Unit FI-20014 University of Turku FI-20014 University of Turku Finland Finland Reviewed by Dr Helena Korpelainen Dr Germinal Rouhan Department of Agricultural Sciences National Museum of Natural History P.O. Box 27 (Latokartanonkaari 5) 57 Rue Cuvier, 75005 Paris 00014 University of Helsinki France Finland Opponent Dr Eric Schuettpelz Smithsonian National Museum of Natural History 10th St. & Constitution Ave. NW, Washington, DC 20560 U.S.A. The originality of this publication has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-7645-4 (PRINT) ISBN 978-951-29-7646-1 (PDF) ISSN 0082-6979 (Print) ISSN 2343-3183 (Online) Painosalama Oy – Turku, Finland 2019 Para Clara y Ronaldo, En memoria de Pepe Barletti 5 TABLE OF CONTENTS ABSTRACT ...........................................................................................................................
    [Show full text]
  • Physico-Chemical Analysis of the Aerial Parts of Diplazium Esculentum (Retz.) SW
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2017; 9(6); 772-774 DOI number: 10.25258/phyto.v9i6.8176 ISSN: 0975-4873 Research Article Physico-Chemical Analysis of the Aerial Parts of Diplazium esculentum (Retz.) SW. (Family: Athyriaceae) Gouri Kumar Dash1*, Siti Khadijah Jusof Khadidi1, Ahmad Fuad Shamsuddin1,2 1Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Malaysia 2Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia Received: 2nd May, 17; Revised 15th May, 17, Accepted: 1st June, 17; Available Online:25th June, 2017 ABSTRACT Diplazium esculentum (Retz.) Sw. (Family: Athyriaceae) is one of the very popular edible ferns, a common pteridophytes usually included in one of the major ingredients in the traditional 'Ulam' (salads) preparations in Malaysia. The plant is highly valued for its several medicinal attributes. The present paper reports the physicochemical studies of the aerial parts. Diagnostic characteristics of the aerial parts powder showed presence of lignified xylem fibres and non-lignified phloem fibres, fragments of epidermal cells containing anomocytic stomata, mesophyll, palisade cells, parenchyma and collenchyma tissues, covering trichomes and prismatic crystals of calcium oxalate. Preliminary phytochemical screening of different extracts showed presence of steroids, triterpenoids, tannins and phenolic substances, flavonoids, carbohydrates, gum and mucilage. The findings of
    [Show full text]
  • Ferns As a Shade Crop in Forest Farming
    FERNS AS A FOREST FARMING CROP: EFFECTS OF LIGHT LEVELS ON GROWTH AND FROND QUALITY OF SELECTED SPECIES WITH POTENTIAL IN MISSOURI A Thesis presented to the Faculty of the Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by JOHN D. KLUTHE Dr. H. E. ‘Gene’ Garrett, Thesis Supervisor May 2006 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled FERNS AS A FOREST FARMING CROP: EFFECTS OF LIGHT LEVELS ON GROWTH AND FROND QUALITY OF SELECTED SPECIES WITH POTENTIAL IN MISSOURI Presented by John D. Kluthe a candidate for the degree of Masters of Science and hereby certify that in their opinion it is worthy of acceptance. _______________________________________H.Garrett _______________________________________W.Kurtz _______________________________________M.Ellersieck _______________________________________C.Starbuck ACKNOWLEDGEMENTS First and foremost, I thank H. E. ‘Gene’ Garrett, Director of the University of Missouri Center for Agroforestry who has patiently guided me to completion of this Master’s thesis. Thanks to my other advisors who have also been very helpful; William B. Kurtz, University of Missouri – Professor of Forestry and Director of Undergraduate Studies in the School of Natural Resources; Christopher Starbuck, University of Missouri – Associate Professor of Horticulture. Furthermore, thanks to Mark Ellersieck, University of Missouri – Professor of Statistics; and Michele Warmund, University of Missouri – Professor of Plant Sciences. Dr. Ellersieck was very helpful analyzing the statistics while Dr. Warmund assisted with defining color with the use of a spectrophotometer. Many thanks to Bom kwan Chun who gladly helped with this study’s chores at HARC.
    [Show full text]
  • Ferns of the National Forests in Alaska
    Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p.
    [Show full text]
  • American Fern Journal
    AMERICAN FERN JOURNAL QUARTERLY JOURNAL OF THE AMERICAN FERN SOCIETY Broad-Scale Integrity and Local Divergence in the Fiddlehead Fern Matteuccia struthiopteris (L.) Todaro (Onocleaceae) DANIEL M. KOENEMANN Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, CA 91711-3157, e-mail: [email protected] JACQUELINE A. MAISONPIERRE University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] DAVID S. BARRINGTON University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] American Fern Journal 101(4):213–230 (2011) Broad-Scale Integrity and Local Divergence in the Fiddlehead Fern Matteuccia struthiopteris (L.) Todaro (Onocleaceae) DANIEL M. KOENEMANN Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, CA 91711-3157, e-mail: [email protected] JACQUELINE A. MAISONPIERRE University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] DAVID S. BARRINGTON University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] ABSTRACT.—Matteuccia struthiopteris (Onocleaceae) has a present-day distribution across much of the north-temperate and boreal regions of the world. Much of its current North American and European distribution was covered in ice or uninhabitable tundra during the Pleistocene. Here we use DNA sequences and AFLP data to investigate the genetic variation of the fiddlehead fern at two geographic scales to infer the historical biogeography of the species. Matteuccia struthiopteris segregates globally into minimally divergent (0.3%) Eurasian and American lineages.
    [Show full text]
  • The Fern Family Blechnaceae: Old and New
    ANDRÉ LUÍS DE GASPER THE FERN FAMILY BLECHNACEAE: OLD AND NEW GENERA RE-EVALUATED, USING MOLECULAR DATA Tese apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Departamento de Botânica do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutor em Biologia Vegetal. Área de Concentração Taxonomia vegetal BELO HORIZONTE – MG 2016 ANDRÉ LUÍS DE GASPER THE FERN FAMILY BLECHNACEAE: OLD AND NEW GENERA RE-EVALUATED, USING MOLECULAR DATA Tese apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Departamento de Botânica do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutor em Biologia Vegetal. Área de Concentração Taxonomia Vegetal Orientador: Prof. Dr. Alexandre Salino Universidade Federal de Minas Gerais Coorientador: Prof. Dr. Vinícius Antonio de Oliveira Dittrich Universidade Federal de Juiz de Fora BELO HORIZONTE – MG 2016 Gasper, André Luís. 043 Thefern family blechnaceae : old and new genera re- evaluated, using molecular data [manuscrito] / André Luís Gasper. – 2016. 160 f. : il. ; 29,5 cm. Orientador: Alexandre Salino. Co-orientador: Vinícius Antonio de Oliveira Dittrich. Tese (doutorado) – Universidade Federal de Minas Gerais, Departamento de Botânica. 1. Filogenia - Teses. 2. Samambaia – Teses. 3. RbcL. 4. Rps4. 5. Trnl. 5. TrnF. 6. Biologia vegetal - Teses. I. Salino, Alexandre. II. Dittrich, Vinícius Antônio de Oliveira. III. Universidade Federal de Minas Gerais. Departamento de Botânica. IV. Título. À Sabrina, meus pais e a vida, que não se contém! À Lucia Sevegnani, que não pode ver esta obra concluída, mas que sempre foi motivo de inspiração.
    [Show full text]
  • Part I Chinese Plant Names Index 2010-2017
    This Book is Sponsored by Shanghai Chenshan Botanical Garden 上海辰山植物园 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences 中国科学院上海辰山植物科学研究中心 Special Fund for Scientific Research of Shanghai Landscaping & City Appearance Administrative Bureau (G182415) 上海市绿化和市容管理局科研专项 (G182415) National Specimen Information Infrastructure, 2018 Special Funds 中国国家标本平台 2018 年度专项 Shanghai Sailing Program (14YF1413800) 上海市青年科技英才扬帆计划 (14YF1413800) Chinese Plant Names Index 2010-2017 DU Cheng & MA Jin-shuang Chinese Plant Names Index 2010-2017 中国植物名称索引 2010-2017 DU Cheng & MA Jin-shuang Abstract The first two volumes of Chinese Plant Names Index (CPNI) cover the years 2000 through 2009, with entries 1 through 5,516, and 2010 through 2017, with entries 5,517 through 10,795. A unique entry is generated for the specific name of each taxon in a specific publication. Taxonomic treatments cover all novelties at the rank of family, genus, species, subspecies, variety, form and named hybrid taxa, new name changes (new combinations and new names), new records, new synonyms and new typifications for vascular plants reported or recorded from China. Detailed information on the place of publication, including author, publication name, year of publication, volume, issue, and page number, are given in detail. Type specimens and collects information for the taxa and their distribution in China, as well as worldwide, are also provided. The bibliographies were compiled from 182 journals and 138 monographs or books published worldwide. In addition, more than 400 herbaria preserve type specimens of Chinese plants are also listed as an appendix. This book can be used as a basic material for Chinese vascular plant taxonomy, and as a reference for researchers in biodiversity research, environmental protection, forestry and medicinal botany.
    [Show full text]
  • Hemidictyum Marginatum (L.) C
    Polibotánica ISSN: 1405-2768 Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas Palacios-Rios, M.; Arana, M. D. Hemidictyum marginatum (L.) C. Presl (Hemidictyaceae), nuevo registro para Veracruz, México Polibotánica, núm. 45, 2018, pp. 7-13 Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas DOI: https://doi.org/10.18387/polibotanica.45.2 Disponible en: https://www.redalyc.org/articulo.oa?id=62157576002 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Núm. 45: 7-13 Enero 2018 ISSN electrónico: 2395-9525 Polibotánica ISSN electrónico: 2395-9525 [email protected] Instituto Politécnico Nacional México http:www.polibotanica.mx Hemidictyum marginatum (L.) C. Presl (HEMIDICTYACEAE), NUEVO REGISTRO PARA VERACRUZ, MÉXICO Hemidictyum marginatum (L.) C. Presl (HEMIDICTYACEAE), NEW RECORD FOR VERACRUZ, MEXICO Palacios-Rios, M., y M. D. Arana Hemidictyum marginatum (L.) C. Presl (HEMIDICTYACEAE), NUEVO REGISTRO PARA VERACRUZ, MÉXICO Hemidictyum marginatum (L.) C. Presl (HEMIDICTYACEAE), NEW RECORD FOR VERACRUZ, MEXICO Núm. 45: 7-13, México. Enero 2018 Instituto Politécnico Nacional DOI: 10.18387/polibotanica.45.2 7 Núm. 45: 7-13 Enero 2018 ISSN electrónico: 2395-9525 Hemidictyum marginatum (L.) C. Presl (HEMIDICTYACEAE), NUEVO REGISTRO PARA VERACRUZ, MÉXICO Hemidictyum marginatum (L.) C. Presl (HEMIDICTYACEAE), NEW RECORD FOR VERACRUZ, MÉXICO M. Palacios-Rios/[email protected] Instituto de Ecología, A.C., km 2.5 carretera antigua a Coatepec núm. 351, Congregación El Haya, Xalapa, 91070, Veracruz, México Palacios-Rios, M., y M.
    [Show full text]