Place & Route Tutorial #1

Total Page:16

File Type:pdf, Size:1020Kb

Place & Route Tutorial #1 NC State University Fall 2016 ECE Department ECE 720 W. Rhett Davis Place & Route Tutorial #1 In this tutorial you will use Synopsys IC Compiler (ICC) to place, route, and analyze the timing and wire- length of two simple designs. This tutorial assumes that you have worked through Tutorial #1: Introduction to Simulation and Synthesis on the ECE 520 ASIC Design Tutorials Page and that you know how to simulate, synthesize and analyze timing on basic designs. I. Setup Log in to a Linux machine. Download and unpack the file pr_tut1.tar.gz. This archive contains a directory called ''pr_tut1'' with two subdirectories called “counter” and “xbar”. Each of these directories contains two subdirectories called ''v'' and ''pr'' with files needed to complete this tutorial. We will start with the counter design and move on to the xbar design. Change to the counter/v/synth directory and synthesize the simple ''counter.v'' design with the command “make”. This design is copied from the ECE 520 tutorial #1 mentioned above. When complete, you should have a file called “counter/v/src/gate/counter_final.v”, which will serve as the starting point for this tutorial. II. Initialize the Design 1. Change to the PR directory and Start ICC with the command “make gui”. Look inside the Makefile, and you’ll see that this recipe executes the following commands add synopsys2015 icc_shell -gui 2. Once the ICC Main Window appears, type the command “source import.tcl” at the icc_shell> prompt at the bottom of the window. You may want to open the import.tcl file in a separate window to see what’s inside. If you do, you’ll notice that it’s doing the following: (You should update these details as needed to for your own designs) Sources setup.tcl – The setup.tcl file defines various variables used throughout the design flow. In particular, it sets a variable used in the remainder of the file called modname, which is the module-name, set to “counter” for this tutorial. This file gives the standard-cell netlist that will be placed and routed. Creates the MilkyWay library – The next command creates a library called “work” in the current directory to store all results. This library is in the Synopsys MilkyWay database format and uses a 32nm technology file and standard-cell library. Imports the Verilog Netlist – The Verilog netlist is imported into a cell called “counter_init” (i.e. initialized). To successfully import the file, the path is specified, along with the name of the top-level cell in the Verilog file. Sources the Timing Constraint File - This reads the timing constraint(s) that will be used for the design. The file loaded is almost identical to the “Constrainsts.tcl” file used earlier to synthesize the design with Synopsys Design Compiler. Look in this file and you'll see that it defines the clock port and a 10 ns clock period. NC State University Fall 2016 ECE Department ECE 720 W. Rhett Davis 3. At this point, your design should look like the figure below. To make your view look exactly like the one below, you will need to edit the “View Settings”. You can do that by using F8 or by selecting View → Toolbars → View Settings. Then select the check-boxes in the “Vis.” column (i.e. “visible”) for object types Pin and Site Row and then click the “Apply” button. You can zoom in by left-clicking on the zoom-tool and draging a box. Some convenient key-bindings are included below. Button/Key Action Description Select Tool Allows selection of objects in the Layout Window q Query Display the object attributes for the selected object. Selection f Fit Display Zooms the display to fit the design area. z Zoom Tool Selects the Zoom tool + Zoom-in Zooms in the display, 2x. Shift-z or - Zoom-out Zooms out the display, 2x. Arrows Pan Pans the display in direction of arrow. Ctrl-U Ruler Selects the Ruler tool for measuring distance. Clear Rulers Clears all rulers in the view. 4. Now that the design has been loaded, you can analyze the timing of the design. Type the command “report_timing” in the Main Window icc_shell> prompt. This timing report should look identical to the report in Design Compiler. The slack on the critical path is 7.7901 ns. This is pretty good! Our clock period is not set very aggressively for this design. If we reduce the clock period in the constraints.tcl file by more than 7.7901ns, then we will see a negative number here. Compare this to the critical path given in the file ''../v/synth/timing_max_slow_holdfixed_tut1.rpt'', and you'll note that the path and delay are NC State University Fall 2016 ECE Department ECE 720 W. Rhett Davis identical. This is no great surprise, since ICC and Design Compiler are using the same timing engine. 5. Lastly, note that all of the output that you see in the Main Window is also appearing in the UNIX shell window where you typed “make gui”. This output is also recorded in the file icc_output.log. We’ll be referring to this file throughout the rest of this tutorial. III. Place & Route the Design Choose Placement → Core Placement and Optimization… to run the Placer. Click OK on the next pop-up to run placement with default options. Once complete, your design should look like the one below. Choose File → Save Design.... In the Save Design dialog box, check the “Show Advanced Options” box and then scroll to the right until you see the “Save As Name” box. Enter the name “counter_placed” and check the “Save As” box to the left of the name. Then click Ok. Once saved, you can open the design with File → Open Design... in the ICC Main Window. Choose Route → Global Route… and click OK on the next pop-up to route with default options. Your routed design should look like the one below. The only difference you should see will be that some vias have been added to connect from one metal layer to another, but no wires have been routed, yet. This is because the Global Route performs only the first part of the routing process. That is, all wires are assigned to Global Routing Cells (GRCs). NC State University Fall 2016 ECE Department ECE 720 W. Rhett Davis To perform the next part of the routing process, choose Route → Track Assignment… and click OK on the next pop-up to route with default options. Once complete, your design will look like the one below. You can turn the different routing layers on and off to get an idea which wires are in which layers. To do that, select the “Layers” tab in the view settings as shown below. Then click on the box in the “shape” column and metal-layer row of interest, and click “Apply” to save the view settings. It’s tempting to thing that the route is done, since we can see the wires. But these shapes are only the second step in getting a legal route. At each step, there will be a varying number of short-circuits and other design-rule violations. We can current number by running a geometry check, which is normally NC State University Fall 2016 ECE Department ECE 720 W. Rhett Davis done after a “Detail Route”. Choose Route→Verify Route... and click Ok on the pop-up window. When done, you will be able to browse the violations by choosing Verification → Error Browser…, selecting “Detail Route” on the subsequent dialog box, and clicking Ok. The image below shows a short on layer M2 between nets n37 and n45. You should also see the following messages appear in the icc_output.log file: DRC-SUMMARY: @@@@@@@ TOTAL VIOLATIONS = 39 Less than minimum area : 15 Needs fat contact : 2 Same net spacing : 13 Short : 9 Ideally, a completed design will have zero violations. Any violations that cannot be fixed within ICC will need to be fixed manually, using a tool such as Cadence Virtuoso. For now, however, we won’t worry about them, because these violations are likely to be fixed once we perform a Detail Route. One of the main reason for performing a trial route is so that we can get a more accurate idea of delays due to wire parasitic capacitances and resistances. Type the command “report_timing” in the Main Window again, and you will see that the critical-path slack has increased slightly to 8.8331 ns. Look through the icc_output.log file, and you'll see the following messages: NC State University Fall 2016 ECE Department ECE 720 W. Rhett Davis Information: The RC model used is detail route TLU+. (RCEX-015) Information: Start mixed mode parasitic extraction. (RCEX-023) Information: Start rc extraction... Information: Parasitic source is LPE. (RCEX-040) Information: Parasitic mode is RealRC. (RCEX-041) Information: Using virtual shield extraction. (RCEX-081) Information: Extraction mode is MIN_MAX. (RCEX-042) Information: Extraction derate is 125/125/125. (RCEX-043) Information: Coupling capacitances are lumped to ground. (RCEX-044) Information: Start back annotation for parasitic extraction. (RCEX-023) Information: End back annotation for parasitic extraction. (RCEX-023) Information: Start timing update for parasitic extraction. (RCEX-023) Information: End timing update for parasitic extraction. (RCEX-023) Information: End parasitic extraction. (RCEX-023) You will also see the following messages printed out with the timing report, indicating that the parasitcs are being used in the delay calculation: Operating Conditions: ss0p95v125c Library: saed32lvt_ss0p95v125c Parasitic source : LPE Parasitic mode : RealRC Extraction mode : MIN_MAX Extraction derating : 125/125/125 It is important to make note of the kind of extractor that was used for a particular timing report, because it is difficult to tell if a particular design change has had a positive or negative effect, especially if the timing reports were created with different types of extractors.
Recommended publications
  • Placement and Routing in Computer Aided Design of Standard Cell Arrays by Exploiting the Structure of the Interconnection Graph
    325 Computer-Aided Design and Applications © 2008 CAD Solutions, LLC http://www.cadanda.com Placement and Routing in Computer Aided Design of Standard Cell Arrays by Exploiting the Structure of the Interconnection Graph Ioannis Fudos1, Xrysovalantis Kavousianos 1, Dimitrios Markouzis 1 and Yiorgos Tsiatouhas1 1University of Ioannina, {fudos,kabousia,dimmark,tsiatouhas}@cs.uoi.gr ABSTRACT Standard cell placement and routing is an important open problem in current CAD VLSI research. We present a novel approach to placement and routing in standard cell arrays inspired by geometric constraint usage in traditional CAD systems. Placement is performed by an algorithm that places the standard cells in a spiral topology around the center of the cell array driven by a DFS on the interconnection graph. We provide an improvement of this technique by first detecting dense graphs in the interconnection graph and then placing cells that belong to denser graphs closer to the center of the spiral. By doing so we reduce the wirelength required for routing. Routing is performed by a variation of the maze algorithm enhanced by a set of heuristics that have been tuned to maximize performance. Finally we present a visualization tool and an experimental performance evaluation of our approach. Keywords: CAD VLSI design, geometric constraints, graph algorithms. DOI: 10.3722/cadaps.2008.325-337 1. INTRODUCTION VLSI circuits become more and more complex increasingly fast. This denotes that the physical layout problem is becoming more and more cumbersome. From the early years of VLSI design, engineers have sought techniques for automated design targeted to a) decreasing the time to market and b) increasing the robustness of the final product.
    [Show full text]
  • "Routing-Directed Placement for the Triptych FPGA" (PDF)
    ACM/SIGDA Workshop on Field-Programmable Gate Arrays, Berkeley, February, 1992. Routing-directed Placement for the TRIPTYCH FPGA Elizabeth A. Walkup, Scott Hauck, Gaetano Borriello, Carl Ebeling Department of Computer Science and Engineering, FR-35 University of Washington Seattle, WA 98195 [Carter86], where the routing resources consume more Abstract than 90% of the chip area. Even so, the largest Xilinx Currently, FPGAs either divorce the issues of FPGA (3090) seldom achieves more than 50% logic placement and routing by providing logic and block utilization for random logic. A lack of interconnect as separate resources, or ignore the issue interconnect resources also leads to decreased of routing by targeting applications that use only performance as critical paths are forced into more nearest-neighbor communication. Triptych is a new circuitous routes. FPGA architecture that attempts to support efficient Domain-specific FPGAs like the Algotronix implementation of a wide range of circuits by blending CAL1024 (CAL) and the Concurrent Logic CFA6000 the logic and interconnect resources. This allows the (CFA) increase the chip area devoted to logic by physical structure of the logic array to more closely reducing routing to nearest-neighbor communication match the structure of logic functions, thereby [Algotronix91, Concurrent91]. The result is that these providing an efficient substrate (in terms of both area architectures are restricted to highly pipelined dataflow and speed) in which to implement these functions. applications, for which they are more efficient than Full utilization of this architecture requires an general-purpose FPGAs. Implementing circuits using integrated approach to the mapping process which these FPGAs requires close attention to routing during consists of covering, placement, and routing.
    [Show full text]
  • Research Needs in Computer-Aided Design: Logic and Physical Design and Analysis
    Research Needs in Computer-Aided Design: Logic and Physical Design and Analysis Logic synthesis and physical design, once considered separate topics, have grown together with the increasing need for tools which reach upward toward design at the system level and at the same time require links to detailed physical and electrical circuit characteristics. This list is a summary of important areas of research in computer-aided design seen by SRC members, ranging from behavioral-level design and synthesis to capacitance and inductance analysis. Note that research in CAD for analog/mixed signal is particularly encouraged, in addition to digital and hybrid system-on-chip design and analysis tools. Not included here are research needs in test and in verification, which are addressed in separate needs documents, and needs in circuit and system design itself, rather than tools research; these needs are assessed in the science area page for Integrated Circuits and Systems Sciences. Earlier needs lists with additional details are found in the "Top Ten" lists in synthesis and physical design developed by SRC task forces. System-Level Estimation and Partitioning System-level design tools require estimates to rapidly select a small number of potentially optimum candidates from a possibly enormous set of possible solutions. Models should consider power consumption, performance, die area (manufacturing cost), package size and cost, noise, test cost and other requirements and constraints. Partitioning of functional tasks between multiple hardware and software components, considering trade-offs between requirements and constraints, must be made using reasonably accurate models. Standard methods are also needed to estimate the performance of microprocessors and DSP cores to enable automated core selection.
    [Show full text]
  • PDF of the Configured Flow
    mflowgen Sep 20, 2021 Contents 1 Quick Start 3 2 Reference: Graph-Building API7 2.1 Class Graph...............................................7 2.1.1 ADK-related..........................................7 2.1.2 Adding Steps..........................................7 2.1.3 Connecting Steps Together...................................8 2.1.4 Parameter System........................................8 2.1.5 Advanced Graph-Building...................................8 2.2 Class Step................................................9 2.3 Class Edge................................................ 10 3 User Guide 11 3.1 User Guide................................................ 11 3.2 Connecting Steps Together........................................ 11 3.2.1 Automatic Connection by Name................................ 11 3.2.2 Explicit Connections...................................... 13 3.3 Instantiating a Step Multiple Times................................... 14 3.4 Sweeping Large Design Spaces..................................... 15 3.4.1 More Details.......................................... 17 3.5 ADK Paths................................................ 19 3.6 Assertions................................................ 20 3.6.1 The File Class and Tool Class................................ 21 3.6.2 Adding Assertions When Constructing Your Graph...................... 21 3.6.3 Escaping Special Characters.................................. 21 3.6.4 Multiline Assertions...................................... 21 3.6.5 Defining Python Helper Functions..............................
    [Show full text]
  • Magic: an Industrial-Strength Logic Optimization, Technology Mapping, and Formal Verification Tool
    Magic: An Industrial-Strength Logic Optimization, Technology Mapping, and Formal Verification Tool Alan Mishchenko Niklas Een Robert Brayton Stephen Jang Maciej Ciesielski Thomas Daniel Department of EECS LogicMill Technology Abound Logic University of California, Berkeley San Jose, CA / Amherst, MA Santa Clara, CA {alanmi, een, brayton}@eecs.berkeley.edu {sjang, mciesielski}@logic-mill.com [email protected] ABSTRACT The present paper outlines the result of integrating ABC into one commercial flow and shows the results produced. This paper presents an industrial-strength CAD system for logic We named the result of this integration “Magic” to distinguish it optimization, technology mapping, and formal verification of from ABC as a public-domain system. The two are closely related synchronous designs. The new system, Magic, is based on the but not the same: ABC is a store-house of implementations called code of ABC that has been improved by adding industrial application packages, most of which are experimental, requirements. Distinctive features include: global-view incomplete, or have known bugs, while Magic integrates and optimizations for area and delay, scalable sequential synthesis, the extends only those features that create a robust optimization flow. use of white-boxes for instances that should not be mapped, and a Magic features an all-new design database developed within built-in formal verification framework to run combinational and ABC to meet industrial requirements. The database was developed sequential equivalence checking. Comparison against a reference from scratch, based on our experience gained while applying ABC industrial flow shows that Magic is capable of reducing both area to industrial designs.
    [Show full text]
  • Application-Specific Integrated Circuits
    Application-Specific Integrated Circuits (ASICS) S. K. Tewksbury Microelectronic Systems Research Center Dept. of Electrical and Computer Engineering West Virginia University Morgantown, WV 26506 (304)293-6371 May 15, 1996 Contents 1 Introduction 1 2 The Primary Steps of VLSI ASIC Design 3 3 The Increasing Impact of Interconnection Delays on Design 5 4 General Transistor Level Design of CMOS Circuits 6 5 ASIC Technologies 8 5.1 Full Custom Design ......................................... 8 5.2 Standard Cell ASIC Technology ................................... 9 5.3 Gate Array ASIC Technology .................................... 10 5.4 Sea-of-Gates ASIC Technology ................................... 10 5.5 CMOS Circuits using Megacell Elements .............................. 10 5.6 Field Programmable Gate Arrays: Evolving to an ASIC Technology .............. 11 6 Interconnection Performance Modeling 12 7 Clock Distribution 14 8 Power Distribution 15 9 Analog and Mixed-Signal ASICs 16 10 Summary 16 1 Introduction Today’s VLSI CMOS technologies can place and interconnect several million transistors (representing over a million gates) on a single integrated circuit (IC) approximately 1 cm square. Provided with such a vast number of gates, a digital system designer can implement very sophisticated and complex system functions (including full systems) on a single IC. However, ecient design (including optimized performance) of such functions using all these gates is a complex puzzle of immense complexity. If this technology were to have been provided to the world overnight, it is doubtful that designers could in fact make use of this vast amount of logic on an IC. 1 Figure 1: Photomicrograph of the SHARC digital signal processor of Analog Devices, Inc., provided for this chapter by Douglas Garde, Analog Devices, Inc., Norwood, MA.
    [Show full text]
  • Verilog HDL 1
    chapter 1.fm Page 3 Friday, January 24, 2003 1:44 PM Overview of Digital Design with Verilog HDL 1 1.1 Evolution of Computer-Aided Digital Design Digital circuit design has evolved rapidly over the last 25 years. The earliest digital circuits were designed with vacuum tubes and transistors. Integrated circuits were then invented where logic gates were placed on a single chip. The first integrated circuit (IC) chips were SSI (Small Scale Integration) chips where the gate count was very small. As technologies became sophisticated, designers were able to place circuits with hundreds of gates on a chip. These chips were called MSI (Medium Scale Integration) chips. With the advent of LSI (Large Scale Integration), designers could put thousands of gates on a single chip. At this point, design processes started getting very complicated, and designers felt the need to automate these processes. Electronic Design Automation (EDA)1 techniques began to evolve. Chip designers began to use circuit and logic simulation techniques to verify the functionality of building blocks of the order of about 100 transistors. The circuits were still tested on the breadboard, and the layout was done on paper or by hand on a graphic computer terminal. With the advent of VLSI (Very Large Scale Integration) technology, designers could design single chips with more than 100,000 transistors. Because of the complexity of these circuits, it was not possible to verify these circuits on a breadboard. Computer- aided techniques became critical for verification and design of VLSI digital circuits. Computer programs to do automatic placement and routing of circuit layouts also became popular.
    [Show full text]
  • Verilog Synthesis and Formal Verification with Yosys Clifford Wolf
    Verilog Synthesis and Formal Verification with Yosys Clifford Wolf Easterhegg 2016 Overview A) Quick introduction to HDLs, digital design flows, ... B) Verilog HDL Synthesis with Yosys 1. OSS iCE40 FPGA Synthesis flow 2. Xilinx Verilog-to-Netlist Synthesis with Yosys 3. OSS Silego GreenPAK4 Synthesis flow 4. Synthesis to simple Verilog or BLIF files 5. ASIC Synthesis and custom flows C) Formal Verification Flows with Yosys 1. Property checking with build-in SAT solver 2. Property checking with ABC using miter circuits 3. Property checking with yosys-smtbmc and SMT solvers 4. Formal and/or structural equivalence checking Quick Introduction ● What is Verilog? What are HDLs? ● What are HDL synthesis flows? ● What are verification, simulation, and formal verification? ● What FOSS tools exist for working with Verilog designs? ● How to use Yosys? Where is the documentation? What is Verilog? What are HDLs? ● Hardware Description Languages (HDLs) are computer languages that describe digital circuits. ● The two most important HDLs are VHDL and Verilog / SystemVerilog. (SystemVerilog is Verilog with a lot of additional features added to the language.) ● Originally HDLs where only used for testing and documentation. But nowadays HDLs are also used as design entry (instead of e.g. drawing schematics). ● Converting HDL code to a circuit is called HDL Synthesis. Simple Verilog Example module example000 ( input clk, output [4:0] gray_counter ); localparam PRESCALER = 100; reg [$clog2(PRESCALER)-1:0] fast_counter = 0; reg [4:0] slow_counter = 0; always @(posedge clk) begin if (fast_counter == PRESCALER) begin fast_counter <= 0; slow_counter <= slow_counter + 1; end else begin fast_counter <= fast_counter + 1; end end assign gray_counter = slow_counter ^ (slow_counter >> 1); endmodule Simple Verilog Example .
    [Show full text]
  • A Modern Approach to IP Protection and Trojan Prevention: Split Manufacturing for 3D Ics and Obfuscation of Vertical Interconnects
    c 2019 IEEE. This is the author’s version of the work. It is posted here for personal use. Not for redistribution. The definitive Version of Record is published in IEEE TETC, DOI 10.1109/TETC.2019.2933572 A Modern Approach to IP Protection and Trojan Prevention: Split Manufacturing for 3D ICs and Obfuscation of Vertical Interconnects Satwik Patnaik, Student Member, IEEE, Mohammed Ashraf, Ozgur Sinanoglu, Senior Member, IEEE, and Johann Knechtel, Member, IEEE Abstract—Split manufacturing (SM) and layout camouflaging (LC) are two promising techniques to obscure integrated circuits (ICs) from malicious entities during and after manufacturing. While both techniques enable protecting the intellectual property (IP) of ICs, SM can further mitigate the insertion of hardware Trojans (HTs). In this paper, we strive for the “best of both worlds,” that is we seek to combine the individual strengths of SM and LC. By jointly extending SM and LC techniques toward 3D integration, an up-and-coming paradigm based on stacking and interconnecting of multiple chips, we establish a modern approach to hardware security. Toward that end, we develop a security-driven CAD and manufacturing flow for 3D ICs in two variations, one for IP protection and one for HT prevention. Essential concepts of that flow are (i) “3D splitting” of the netlist to protect, (ii) obfuscation of the vertical interconnects (i.e., the wiring between stacked chips), and (iii) for HT prevention, a security-driven synthesis stage. We conduct comprehensive experiments on DRC-clean layouts of multi-million-gate DARPA and OpenCores designs (and others). Strengthened by extensive security analysis for both IP protection and HT prevention, we argue that entering the third dimension is eminent for effective and efficient hardware security.
    [Show full text]
  • Ebook Download Formal Equivalence Checking and Design Debugging
    FORMAL EQUIVALENCE CHECKING AND DESIGN DEBUGGING PDF, EPUB, EBOOK Shi-Yu Huang | 229 pages | 30 Jun 1998 | Springer | 9780792381846 | English | Dordrecht, Netherlands Formal Equivalence Checking and Design Debugging PDF Book Although the syntax of the assertions presents a learning curve, they are easier to handle than mathematical expressions. Ghosh, M. The second part of the book gives a thorough survey of previous and recent literature on design error diagnosis and design error correction. To get access to this content you need the following product:. Do not get confused between un-mapped and non-equivalent reports. How is equivalence checking related to other formal approaches? If you continue to use this site we will assume that you are happy with it. Then, formal logic debugging methods are evaluated using industrial buggy circuits. Importance of LEC Design passes through various steps like synthesis, place and route, sign- offs, ECOs engineering change orders , and numerous optimizations before it reaches production. Does it take a lot of work to get results from formal tools? The second part of the book gives a thorough survey of previous and recent literature on design error diagnosis and design error correction. Either way, the changes to the design must be made carefully so that any proofs obtained are also valid for the original design. Formal verification is the use of mathematical analysis to prove or disprove the correctness of a design with respect to a set of assertions specifying intended design behavior. You have deactivated JavaScript in your browser settings. This approach automatically inserts faults bugs into the formal model and checks to see whether any assertions detect them.
    [Show full text]
  • Routing Architectures for Hierarchical Field Programmable Gate Arrays
    Routing Architectures for Hierarchical Field Programmable Gate Arrays Aditya A. Aggarwal and David M. Lewis University of Toronto Department of Electrical and Computer Engineering Toronto, Ontario, Canada Abstract architecture to that of a symmetrical FPGA, and holding all other features constant, we hope to clarify the impact of This paper evaluates an architecture that implements a HFPGA architecture in isolation. hierarchical routing structure for FPGAs, called a hierarch- ical FPGA (HFPGA). A set of new tools has been used to The remainder of this paper studies the effect of rout- place and route several circuits on this architecture, with ing architectures in HFPGAs as an independent architec- the goal of comparing the cost of HFPGAs to conventional tural feature. It first defines an architecture for HFPGAs symmetrical FPGAs. The results show that HFF'GAs can with partially populated switch pattems. Experiments are implement circuits with fewer routing switches, and fewer then presented comparing the number of routing switches switches in total, compared to symmetrical FGPAs, required to the number required by a symmetrical FPGA. although they have the potential disadvantage that they Results for the total number of switches and tracks are also may require more logic blocks due to coarser granularity. given. 1. Introduction 2. Architecture and Area Models for HPFGAs Field programmable gate array architecture has been Figs. l(a) and I@) illustrate the components in a the subject of several studies that attempt to evaluate vari- HFPGA. An HFPGA consists of two types of primitive ous logic blocks and routing architectures, with the goals blocks, or level-0 blocks: logic blocks and U0 blocks.
    [Show full text]
  • Efficient Place and Route for Pipeline Reconfigurable Architectures
    Efficient Place and Route for Pipeline Reconfigurable Architectures Srihari Cadambi*and Seth Copen Goldsteint Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213. Abstract scheme for a class of reconfigurable architectures that exhibit pipeline reconfiguration. The target pipeline In this paper, we present a fast and eficient compi- reconfigurable architecture is represented by a sim- lation methodology for pipeline reconfigurable architec- ple VLIW-style model with a list of architectural con- tures. Our compiler back-end is much faster than con- straints. We heuristically represent all constraints by a ventional CAD tools, and fairly eficient. We repre- single graph parameter, the routing path length (RPL) sent pipeline reconfigurable architectures by a general- of the graph, which we then attempt to minimize. Our ized VLI W-like model. The complex architectural con- compilation scheme is a combination of high-level syn- straints are effectively expressed in terms of a single thesis heuristics and a fast, deterministic place-and- graph parameter: the routing path length (RPL). Com- route algorithm made possible by a compiler-friendly piling to our model using RPL, we demonstrate fast architecture. The scheme may be used to design a compilation times and show speedups of between lox compiler for any pipeline reconfigurable architecture, and 200x on a pipeline reconfigurable architecture when as well as any architecture that may be represented by compared to an UltraSparc-II. our model. It is very fast and fairly efficient. The remainder of the paper is organized as follows: Section 2 describes the concept of pipeline reconfigura- 1. Introduction tion and its benefits.
    [Show full text]