Priority Effects on the Life-History Traits of Two Carrion Blow fly (Diptera, Calliphoridae) Species

Total Page:16

File Type:pdf, Size:1020Kb

Priority Effects on the Life-History Traits of Two Carrion Blow fly (Diptera, Calliphoridae) Species Ecological Entomology (2014), DOI: 10.1111/een.12128 Priority effects on the life-history traits of two carrion blow fly (Diptera, Calliphoridae) species ADRIENNE BRUNDAGE,1 MARK ERIC BENBOW 2 andJEFFERY K. TOMBERLIN1 1Department of Entomology, Texas A&M University, College Station, Texas, U.S.A. and 2Department of Entomology and Department of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, U.S.A. Abstract. 1. Third instars of the invasive blow fly Chrysomya rufifacies are facultative predators on larvae of the native blow fly Cochliomyia macellaria. 2. The effects of priority arrival time on the survivorship and fitness of C. rufifacies and C. macellaria were investigated in laboratory experiments. 3. Cochliomyia macellaria colonising a resource within 1–2 days after C. rufifacies resulted in a 20–70% reduction in survivorship, pupal weight and fecundity compared with those colonising a resource more than 2 days before or after C. rufifacies.Inversely, C. rufifacies exhibited a 50% increase in survivorship and fecundity when closely (∼2 days) associated temporally on the resource with C. macellaria and was negatively affected by disparate arrival. 4. These results demonstrate that arrival sequence significantly affects the fitness of both C. rufifacies and C. macellaria. Early colonisation may allow C. macellaria to persist in a community, while there are fitness benefits for C. rufifacies colonising after C. macellaria. 5. The 60% reduction in C. macellaria survivorship when in close temporal association with C. rufifacies may act as an agent of selection for C. macellaria to colonise a resource early and develop quickly to avoid predation on resources colonised by C. rufifacies. 6. Selection for such traits may explain how C. macellaria is able to persist despite intraguild predation by this invasive species. In contrast, the 50% increase in survivorship and fecundity exhibited by C. rufifacies when arriving after C. macellaria may select for C. rufifacies to delay colonisation. Key words. Chrysomya rufifacies, Cochliomyia macellaria, forensic entomology, interspecific competition, intraguild predation. Introduction 1971; Beaver, 1984; Shorrocks & Bingley, 1994; Hodge, 1996). Competitively inferior species exploiting resources before Patchy distribution of exploitable resources is widespread patch invasion by more competitively dominant species may throughout nature, and interspecific competition for such survive and consequently persist in an environment (Schoener, patches is often intense. Species’ colonisation patterns have 1974; Hodge, 1996). For example, offspring of Drosophila been considered random or governed by individual physiology sp. (Diptera, Drosophilidae) arriving to Instant Drosophila (Hodge, 1996). A temporal disparity between ecologically Medium (IDM) was significantly earlier than ecologically similar species may confer a competitive advantage to primary similar species, had a 35% increase in survivorship, a 22% colonisers under exploitative competition circumstances. An decrease in developmental time, and a 17% increase in adult early coloniser is relatively unaffected by the presence of size when compared with those resulting from adults arriving later species, but resource depletion may be a detriment to later (Hodge, 1996). This ‘priority effect’ (Alford & Wilbur, later-arriving conspecific or interspecific individuals (Bryant, 1985) has been documented in other systems, such as fish (Geange & Stier, 2009), crustaceans (Irving et al., 2007) and Correspondence: Jeffery K. Tomberlin, Department of Entomology, amphibians (Eitam et al., 2005). In each case, early-arriving Texas A&M University, 2475 TAMU, College Station, TX 77845-2475, species gained a fitness advantage by exploiting a patch before U.S.A. E-mail: [email protected] a competitor arrived. However, priority effects have not been © 2014 The Royal Entomological Society 1 2 Adrienne Brundage, Mark Eric Benbow and Jeffery K. Tomberlin examined in detail for blow flies (Diptera, Calliphoridae) that As C. macellaria and C. rufifacies larvae exploit carrion as often colonise discrete resource patches – carrion. their primary resource, they are considered direct competitors Priority effect may be responsible for the coexistence of (Kneidel, 1984a; Baumgartner, 1993; De Jong, 1997). Studies competing Calliphoridae on a carrion resource (Denno, 1975; documented competition among carrion flies in the field (Denno, O’Flynn, 1983; Schoenly, 1992). Primary colonisers of car- 1975; Denno et al., 1995; Archer & Elgar, 2003), and in rion tend to exhibit efficient detection, location and colonisa- experimental caged populations illustrated that some species tion (Tomberlin et al., 2011a,b), along with rapid feeding and regularly outcompete others to the point of extinction (Hanski growth while on the resource (Beaver, 1984). These traits lead & Kuusela, 1977). However, these results do not completely to carrion colonisers arriving at a patch early in the decomposi- apply to C. macellaria and C. rufifacies, as both species tion process and consuming the maximum amount of resource continue to persist in the southern U.S.A. The objective of before competitors arrive (Schoenly, 1992). Secondary colonis- this study was to determine the priority effects between C. ers must contend with reduced nutrient value and high com- macellaria and C. rufifacies larvae on liver. These effects petitor diversity (Beaver, 1984). Natural selection would seem- on each species were determined by measuring the impact ingly therefore favour the earliest and most efficient colonis- of temporal variation in colonisation on the fitness-related ers of a carcass (Kneidel, 1984a,b). Secondary colonisers of life-history traits of survivorship, pupal weight, adult longevity carrion require an advantage over those already in residence and egg production of resulting adults. (Lane, 1975). Two common hypotheses about such an advan- tage are that: (i) the species must be an inferior competitor when in direct competition with other species on a resource Materials and methods (Atkinson & Shorrocks, 1981); or (ii) the species requires the resource to be modified by early colonisers in a way that Laboratory colonies of C. rufifacies and C. macellaria larvae enhances the fitness of the secondary colonising species (Lang used in this study were initiated from flies collected in Bra- zos County, Texas, U.S.A., during spring and summer of 2009 et al., 2006). and 2010. Larvae were reared on fresh bovine liver provided Central Texas has 10 commonly occurring species of Cal- ad libitum in 3-litre plastic containers (Sterilite Corporation, liphoridae that naturally colonise and feed on decomposing Townsend, Massachusetts) housed in a walk-in growth chamber animal tissue of carrion (Tenorio et al., 2003) and are consid- at 27.0 ± 1.0 ∘C, 60.0% RH, and with a LD 12:12 h photoperiod. ered a major part of the necrobiome (Benbow et al., 2013). Dispersing third-instar larvae were transferred to 3-litre contain- Of these, Cochliomyia macellaria (Fabricius) and Chrysomya ers with autoclaved sand (Town & Country Landscape Supply rufifacies (Macquart) are the most abundant species during the Co., Chicago, Illinois) for pupation. Resulting adults were main- warm months of the year (Goddard, 1988; Tenorio et al., 2003; tained in 30 × 30 × 30 cm3 cages (Bioquip Products, Rancho Bucheli et al., 2009). Cochliomyia macellaria is native to the Dominguez, California) held in the growth chamber previously New World (Baumgartner, 1993) with a distribution from south- described. Granulated sugar (Imperial Sugar Co., Sugar Land, ern Canada, throughout the U.S.A., Mexico, Central America, Texas), buttermilk powder (Saco foods Inc., Middleton, Wiscon- and as far south as central Argentina. Cochliomyia macellaria is sin), and water were provided ad libitum, and 20 g of bovine liver a primary coloniser of vertebrate carrion arriving early (within was placed in the cage between 4 and 15 days post-emergence minutes in some cases) in the decomposition process (Tomber- for 4 h to induce oviposition as needed. lin & Adler, 1998). Large collective egg masses may result in Collected eggs were homogenized prior to placement in treat- > 2 1000 larvae cm in large, aggregate masses, which can quickly ments and controls. For mixed species treatments, 100 eggs consume a carcass or cadaver (Laake et al., 1936; dos Reis et al., (determined gravimetrically) of the pioneer species were intro- 1999; Slone & Gruner, 2007; Oliveira & Vasconcelos, 2010). duced to 100 g of fresh bovine liver in a 20.5 × 34.5 × 20.5 cm Chrysomya rufifacies is native to Southeast Asia. It was intro- plastic tub with 1.5 litres of sand. Eggs were transferred using duced to Central America in the mid- to late 1970s (Baum- a camel hair paintbrush. The competing species (100 eggs per gartner, 1993), arrived in the U.S.A. by 1980 (Gagne, 1981), species) was introduced 0, 1, 2, 3 or 4 days after introduction and has become well established across North America, includ- of the pioneering species (Fig. 1). To ensure that results were ing southern Canada (Rosati, 2007). Chrysomya rufifacies acts not due to resource age, a pure culture of 200 eggs of each as a secondary coloniser of vertebrate carrion (Bohart, 1951; species independently (controls) was placed on liver aged 0, 1, Norris, 1959), with adults arriving within minutes after death 2, 3 or 4 days in the growth chamber under conditions described and suspected to colonise 1–2 days later (Baumgartner,
Recommended publications
  • Winged Undertakers Digest the Deceased STORY and PHOTOS by LOWELL WASHBURN
    nderrated and nappreciated Winged Undertakers Digest the Deceased STORY AND PHOTOS BY LOWELL WASHBURN 28 Iowa outdoors • JULY / AUGUST 2008 Although no one can for sure say why, turkey vultures have become increasingly common during the past two decades. Often referred to as “TVs” by birding enthusiasts, turkey vultures derive their name from the featherless, red heads of adults. And there’s no denying that, at least from a distance, a roosted vulture does somewhat resemble a male wild turkey. There’s good reason for the vulture’s distinctive, though ugly, bare head. As an avid consumer of carrion, TVs routinely forage in some pretty nasty places. The complete lack of head and neck feathers aids in maintaining cleanliness. Contrary to popular belief, vultures are among the cleanest of birds, spending up to four hours per day bathing and preening—more time than is documented for any other Iowa bird. WWW.IOWADNR.GOV 29 “It’s a dirty job, but someone has to do it.” t’s a dirty job, but someone has to do it.” than a bit disgusting. But for hungry vultures, the opportunity We’ve all heard that line a thousand times. represented nothing less than a four-star banquet—an asphalt But for me, the well-worn phrase gained new version of a carrion eater’s 21 Club of New York fame. “ meaning as I paused to watch members of a local After slowing and pulling aside to observe, it quickly Ihighway cleanup crew doing their dirty job. became apparent this bird show was not designed The crew was a gathering of turkey vultures, and for anyone with a queasy stomach.
    [Show full text]
  • Body Size and Biomass Distributions of Carrion Visiting Beetles: Do Cities Host Smaller Species?
    Ecol Res (2008) 23: 241–248 DOI 10.1007/s11284-007-0369-9 ORIGINAL ARTICLE Werner Ulrich Æ Karol Komosin´ski Æ Marcin Zalewski Body size and biomass distributions of carrion visiting beetles: do cities host smaller species? Received: 15 November 2006 / Accepted: 14 February 2007 / Published online: 28 March 2007 Ó The Ecological Society of Japan 2007 Abstract The question how animal body size changes Introduction along urban–rural gradients has received much attention from carabidologists, who noticed that cities harbour Animal and plant body size is correlated with many smaller species than natural sites. For Carabidae this aspects of life history traits and species interactions pattern is frequently connected with increasing distur- (dispersal, reproduction, energy intake, competition; bance regimes towards cities, which favour smaller Brown et al. 2004; Brose et al. 2006). Therefore, species winged species of higher dispersal ability. However, body size distributions (here understood as the fre- whether changes in body size distributions can be gen- quency distribution of log body size classes, SSDs) are eralised and whether common patterns exist are largely often used to infer patterns of species assembly and unknown. Here we report on body size distributions of energy use (Peters 1983; Calder 1984; Holling 1992; carcass-visiting beetles along an urban–rural gradient in Gotelli and Graves 1996; Etienne and Olff 2004; Ulrich northern Poland. Based on samplings of 58 necrophages 2005a, 2006). and 43 predatory beetle species, mainly of the families Many of the studies on local SSDs focused on the Catopidae, Silphidae, and Staphylinidae, we found number of modes and the shape.
    [Show full text]
  • Tree Swallows (Tachycineta Bicolor) Nesting on Wetlands Impacted by Oil Sands Mining Are Highly Parasitized by the Bird Blow Fly Protocalliphora Spp
    Journal of Wildlife Diseases, 43(2), 2007, pp. 167–178 # Wildlife Disease Association 2007 TREE SWALLOWS (TACHYCINETA BICOLOR) NESTING ON WETLANDS IMPACTED BY OIL SANDS MINING ARE HIGHLY PARASITIZED BY THE BIRD BLOW FLY PROTOCALLIPHORA SPP. Marie-Line Gentes,1 Terry L. Whitworth,2 Cheryl Waldner,3 Heather Fenton,1 and Judit E. Smits1,4 1 Department of Veterinary Pathology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada 2 Whitworth Pest Solutions, Inc., 2533 Inter Avenue, Puyallup, Washington, USA 3 Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada 4 Corresponding author (email: [email protected]) ABSTRACT: Oil sands mining is steadily expanding in Alberta, Canada. Major companies are planning reclamation strategies for mine tailings, in which wetlands will be used for the bioremediation of water and sediments contaminated with polycyclic aromatic hydrocarbons and naphthenic acids during the extraction process. A series of experimental wetlands were built on companies’ leases to assess the feasibility of this approach, and tree swallows (Tachycineta bicolor) were designated as upper trophic biological sentinels. From May to July 2004, prevalence and intensity of infestation with bird blow flies Protocalliphora spp. (Diptera: Calliphoridae) were measured in nests on oil sands reclaimed wetlands and compared with those on a reference site. Nestling growth and survival also were monitored. Prevalence of infestation was surprisingly high for a small cavity nester; 100% of the 38 nests examined were infested. Nests on wetlands containing oil sands waste materials harbored on average from 60% to 72% more blow fly larvae than those on the reference site.
    [Show full text]
  • Trade‐Off Between Early Emergence and Herbivore
    UC San Diego UC San Diego Previously Published Works Title Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community. Permalink https://escholarship.org/uc/item/3ht2w2q4 Journal Ecology and evolution, 6(24) ISSN 2045-7758 Authors Waterton, Joseph Cleland, Elsa E Publication Date 2016-12-01 DOI 10.1002/ece3.2610 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 4 August 2016 | Revised: 13 October 2016 | Accepted: 22 October 2016 DOI: 10.1002/ece3.2610 ORIGINAL RESEARCH Trade-­off­between­early­emergence­and­herbivore­ susceptibility­mediates­exotic­success­in­an­experimental­ California­plant­community Joseph­Waterton | Elsa­E.­Cleland Ecology, Behavior and Evolution Section, University of California San Diego, La Abstract Jolla, CA, USA Ecological trade- offs are fundamental to theory in community ecology; critical for un- Correspondence derstanding species coexistence in diverse plant communities, as well as the evolution Joseph Waterton, Ecology, Behavior & of diverse life- history strategies. Invasions by exotic species can provide insights into Evolution Section, University of California San Diego, 9500 Gilman Dr., La Jolla, the importance of trade- offs in community assembly, because the ecological strategies California 92093 U.S.A. of invading species often differ from those present in the native species pool. Exotic Email: [email protected] annual species have invaded many Mediterranean- climate areas around the globe, and Funding­information often germinate and emerge earlier in the growing season than native species. Early- Jeanne M. Messier Memorial Fellowship season growth can enable exotic annual species to preempt space and resources, com- petitively suppressing later- emerging native species; however, early- emerging individuals may also be more apparent to herbivores.
    [Show full text]
  • Turkey Vulture AKA: Turkey Buzzard, Buzzard, Vulture, Carrion Crow, Carrion Buzzard, Etc
    Turkey Vulture AKA: Turkey Buzzard, Buzzard, Vulture, Carrion Crow, Carrion Buzzard, etc. Scientific Classification: Animalia, Chordata, Aves, Incertae sedis (disputed), Cathartidae; Cathartes; C. aura. Bird Size & Markings: Adult Turkey Vultures can be 32” long, stand 30” high and have 6 foot wingspans. Males and females have brownish-black body plum- age, silvery-gray flight feathers, bare red heads and a short yellow hooked bill. Turkey Vultures have very limited vocalization; it can only hiss or grunt. Habitat: The Turkey Vulture is the most abundant vulture in the Americas. It is commonly found in open and semi-open areas throughout the Americas from southern Canada to Cape Horn. It is a permanent resident in southern US States, though northern birds may migrate as far as South America. It prefers to roost on tall dead trees or high bare cliffs. It will roost on man-made structures such as water towers, skyscrapers, billboards and other structures of sufficient height. Nesting/Dens: There is little or no construction of a nest; eggs are laid on bare surfaces in protected locations such as a cliff, cave, burrow or inside a hollow A Turkey Vulture’s primary method of defence tree. They lay 1 or 2 eggs for each brood. Chicks fledge 9 to 10 weeks after hatch- is the projection vomiting of semi-digested car- ing. Family groups stay together until fall. rion. This deters most attackers (No doubt!). Food: Turkey Vultures prefer to feed on fresh carrion ranging in size from small mammals and dead fish to dead cattle and other grazers. They prefer fresh car- rion and avoid rotting carcasses.
    [Show full text]
  • COYOTES Animal Damage Control Lakewood, Colorado 80228
    Jeffrey S. Green Assistant Regional Director USDA-APHIS- COYOTES Animal Damage Control Lakewood, Colorado 80228 F. Robert Henderson Extension Specialist Animal Damage Control Kansas State University Manhattan, Kansas 66506-1600 Mark D. Collinge State Director USDA-APHIS- Animal Damage Control Boise, Idaho 83705 Fig. 1. Coyote, Canis latrans Damage Prevention and Shed lambing, kidding, and calving Toxicants usually reduce coyote predation. Control Methods M-44 ejector devices for use with Remove carrion to help limit coyote sodium cyanide-loaded plastic Exclusion populations. capsules. They are most effective Produce livestock in confinement. Frightening Agents and during cold weather (fall to spring). Repellents Herd livestock into pens at night. Livestock protection collars (LPC) Guarding dogs: Some dogs have containing Compound 1080 Exclusion fences (net-wire and/or (sodium monofluoroacetate) are electric), properly constructed and significantly reduced coyote predation. registered for use only in certain maintained, can aid significantly in states. reducing predation. Donkeys and llamas: Some are Fumigants Cultural Methods and aggressive toward canines and have Habitat Modification reduced coyote predation. Gas cartridges are registered as a burrow (den) fumigant. Select pastures that have a lower Sonic and visual repellents: Strobe incidence of predation to reduce lights, sirens, propane cannons, and Trapping exposure of livestock to predation. others have reduced predation on both sheep and calves. Leghold traps (Nos. 3 and 4) are Herding of livestock generally reduces effective and are the most versatile Chemical odor and taste repellents: predation due to human presence control tool. during the herding period. None have shown sufficient effectiveness to be registered for Snares are effective where coyotes pass Change lambing, kidding, and calving use.
    [Show full text]
  • Protophormia Terraenovae (Robineau-Desvoidy, 1830) (Diptera, Calliphoridae) a New Forensic Indicator to South-Western Europe
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional de la Universidad de Alicante Ciencia Forense, 12/2015: 137–152 ISSN: 1575-6793 PROTOPHORMIA TERRAENOVAE (ROBINEAU-DESVOIDY, 1830) (DIPTERA, CALLIPHORIDAE) A NEW FORENSIC INDICATOR TO SOUTH-WESTERN EUROPE Anabel Martínez-Sánchez1 Concepción Magaña2 Martin Toniolo Paola Gobbi Santos Rojo Abstract: Protophormia terraenovae larvae are found frequently on corpses in central and northern Europe but are scarce in the Mediterranean area. We present the first case in the Iberian Peninsula where P. terraenovae was captured during autopsies in Madrid (Spain). In the corpse other nec- rophagous flies were found, Lucilia sericata, Chrysomya albiceps and Sarcopha- ga argyrostoma. To calculate the posmortem interval, the life cycle of P. ter- raenovae was studied at constant temperature, room laboratory and natural fluctuating conditions. The total developmental time was 16.61±0.09 days, 16.75±4.99 days in the two first cases. In natural conditions, developmental time varied between 31.22±0.07 days (average temperature: 15.6oC), 15.58±0.08 days (average temperature: 21.5oC) and 14.9±0.10 days (average temperature: 23.5oC). Forensic importance and the implications of other necrophagous Diptera presence is also discussed. Key words: Calliphoridae, forensic entomology, accumulated degrees days, fluctuating temperatures, competition, postmortem interval, Spain. Resumen: Las larvas de Protophormia terraenovae se encuentran con frecuen- cia asociadas a cadáveres en el centro y norte de Europa pero son raras en el área Mediterránea. Presentamos el primer caso en la Península Ibérica don- 1 Departamento de Ciencias Ambientales/Instituto Universitario CIBIO-Centro Iberoame- ricano de la Biodiversidad.
    [Show full text]
  • The Overlooked Role of Priority Effects in Grassland Overyielding
    Received: 27 May 2019 | Accepted: 8 September 2019 DOI: 10.1111/1365-2435.13455 RESEARCH ARTICLE When history matters: The overlooked role of priority effects in grassland overyielding Benjamin M. Delory1 | Emanuela W. A. Weidlich2 | Philipp von Gillhaussen2 | Vicky M. Temperton1,2 1Ecosystem Functioning and Services, Institute of Ecology, Leuphana University, Abstract Lüneburg, Germany 1. Biodiversity–ecosystem functioning experiments have shown that plant species 2 Plant Sciences, Institute for Bio and and functional group richness are important drivers of grassland productivity, but Geosciences, IBG‐2, Forschungszentrum Jülich GmbH, Jülich, Germany the impact that plant order of arrival (i.e. priority effects) has on grassland ove- ryielding and its drivers (complementarity and dominance effects) has been over- Correspondence Benjamin M. Delory looked so far. Email: [email protected] 2. Using species‐specific plant biomass data collected in mixture and monoculture Vicky M. Temperton plots of a grassland field experiment (Jülich Priority Effect experiment) that ma- Email: [email protected] nipulated the order of arrival of three plant functional groups (forbs, grasses and Present address legumes), we quantified net biodiversity effects (overyielding) as well as comple- Emanuela W. A. Weidlich, Botanical Department, Universidade Federal de Santa mentarity and dominance effects in mixtures one and 2 years after sowing. In Catarina, Florianópolis, Brazil this experiment, priority effects were created by sowing one functional group 6 weeks before the two others. First, we tested whether plant order of arrival Funding information Forschungszentrum Jülich GmbH affected overyielding, complementarity and dominance effects. Second, we in- vestigated whether the magnitude of net biodiversity, complementarity and domi- Handling Editor: Marko Spasojevic nance effects was dependent on the strength and direction of priority effects.
    [Show full text]
  • Diptera: Calliphorida
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 91(2): 257-264, Mar./Apr. 1996 257 Theoretical Estimates of Consumable Food and Probability of Acquiring Food in Larvae of Chrysomya putoria (Diptera: Calliphoridae) WAC Godoy, CJ Von Zuben*/+, SF dos Reis**/ +/++, FJ Von Zuben***/+ Departamento de Parasitologia, IB, Universidade Estadual Paulista, 18618-000 Botucatu, SP, Brasil *Curso de Pós-graduação em Ciências Biológicas, Universidade Estadual Paulista, 13506-900 Rio Claro, SP, Brasil **Departamento de Parasitologia, IB, Universidade Estadual de Campinas, Caixa Postal 6109, 13083-970 Campinas, SP, Brasil ***Departamento de Computação e Automação Industrial, FEE, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brasil An indirect estimate of consumable food and probability of acquiring food in a blowfly species, Chrysomya putoria, is presented. This alternative procedure combines three distinct models to estimate consumable food in the context of the exploitative competition experienced by immature individuals in blowfly populations. The relevant parameters are derived from data for pupal weight and survival and estimates of density-independent larval mortality in twenty different larval densities. As part of this procedure, the probability of acquiring food per unit of time and the time taken to exhaust the food supply are also calculated. The procedure employed here may be valuable for estimations in insects whose immature stages develop inside the food substrate, where it is difficult to partial out confounding effects such as separation of faeces. This procedure also has the advantage of taking into account the population dynamics of immatures living under crowded conditions, which are particularly character- istic of blowflies and other insects as well.
    [Show full text]
  • A Global Study of Forensically Significant Calliphorids: Implications for Identification
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) A global study of forensically significant calliphorids: Implications for identification M.L. Harveya, S. Gaudieria, M.H. Villet and I.R. Dadoura Abstract A proliferation of molecular studies of the forensically significant Calliphoridae in the last decade has seen molecule-based identification of immature and damaged specimens become a routine complement to traditional morphological identification as a preliminary to the accurate estimation of post-mortem intervals (PMI), which depends on the use of species-specific developmental data. Published molecular studies have tended to focus on generating data for geographically localised communities of species of importance, which has limited the consideration of intraspecific variation in species of global distribution. This study used phylogenetic analysis to assess the species status of 27 forensically important calliphorid species based on 1167 base pairs of the COI gene of 119 specimens from 22 countries, and confirmed the utility of the COI gene in identifying most species. The species Lucilia cuprina, Chrysomya megacephala, Ch. saffranea, Ch. albifrontalis and Calliphora stygia were unable to be monophyletically resolved based on these data. Identification of phylogenetically young species will require a faster-evolving molecular marker, but most species could be unambiguously characterised by sampling relatively few conspecific individuals if they were from distant localities. Intraspecific geographical variation was observed within Ch. rufifacies and L. cuprina, and is discussed with reference to unrecognised species. 1. Introduction The advent of DNA-based identification techniques for use in forensic entomology in 1994 [1] saw the beginning of a proliferation of molecular studies into the forensically important Calliphoridae.
    [Show full text]
  • Life-History Traits of Chrysomya Rufifacies (Macquart) (Diptera
    LIFE-HISTORY TRAITS OF CHRYSOMYA RUFIFACIES (MACQUART) (DIPTERA: CALLIPHORIDAE) AND ITS ASSOCIATED NON-CONSUMPTIVE EFFECTS ON COCHLIOMYIA MACELLARIA (FABRICIUS) (DIPTERA: CALLIPHORIDAE) BEHAVIOR AND DEVELOPMENT A Dissertation by MICAH FLORES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Jeffery K. Tomberlin Committee Members, S. Bradleigh Vinson Aaron M. Tarone Michael Longnecker Head of Department, David Ragsdale August 2013 Major Subject: Entomology Copyright 2013 Micah Flores ABSTRACT Blow fly (Diptera: Calliphoridae) interactions in decomposition ecology are well studied; however, the non-consumptive effects (NCE) of predators on the behavior and development of prey species have yet to be examined. The effects of these interactions and the resulting cascades in the ecosystem dynamics are important for species conservation and community structures. The resulting effects can impact the time of colonization (TOC) of remains for use in minimum post-mortem interval (mPMI) estimations. The development of the predacious blow fly, Chrysomya rufifacies (Macquart) was examined and determined to be sensitive to muscle type reared on, and not temperatures exposed to. Development time is important in forensic investigations utilizing entomological evidence to help establish a mPMI. Validation of the laboratory- based development data was done through blind TOC calculations and comparisons with known TOC times to assess errors. A range of errors was observed, depending on the stage of development of the collected flies, for all methods tested with no one method providing the most accurate estimation. The NCE of the predator blow fly on prey blow fly, Cochliomyia macellaria (Fabricius) behavior and development were observed in the laboratory.
    [Show full text]
  • Blow Fly (Diptera: Calliphoridae) in Thailand: Distribution, Morphological Identification and Medical Importance Appraisals
    International Journal of Parasitology Research ISSN: 0975-3702 & E-ISSN: 0975-9182, Volume 4, Issue 1, 2012, pp.-57-64. Available online at http://www.bioinfo.in/contents.php?id=28. BLOW FLY (DIPTERA: CALLIPHORIDAE) IN THAILAND: DISTRIBUTION, MORPHOLOGICAL IDENTIFICATION AND MEDICAL IMPORTANCE APPRAISALS NOPHAWAN BUNCHU Department of Microbiology and Parasitology and Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand. *Corresponding Author: Email- [email protected] Received: April 03, 2012; Accepted: April 12, 2012 Abstract- The blow fly is considered to be a medically-important insect worldwide. This review is a compilation of the currently known occur- rence of blow fly species in Thailand, the fly’s medical importance and its morphological identification in all stages. So far, the 93 blow fly species identified belong to 9 subfamilies, including Subfamily Ameniinae, Calliphoridae, Luciliinae, Phumosiinae, Polleniinae, Bengaliinae, Auchmeromyiinae, Chrysomyinae and Rhiniinae. There are nine species including Chrysomya megacephala, Chrysomya chani, Chrysomya pinguis, Chrysomya bezziana, Achoetandrus rufifacies, Achoetandrus villeneuvi, Ceylonomyia nigripes, Hemipyrellia ligurriens and Lucilia cuprina, which have been documented already as medically important species in Thailand. According to all cited reports, C. megacephala is the most abundant species. Documents related to morphological identification of all stages of important blow fly species and their medical importance also are summarized, based upon reports from only Thailand. Keywords- Blow fly, Distribution, Identification, Medical Importance, Thailand Citation: Nophawan Bunchu (2012) Blow fly (Diptera: Calliphoridae) in Thailand: Distribution, Morphological Identification and Medical Im- portance Appraisals. International Journal of Parasitology Research, ISSN: 0975-3702 & E-ISSN: 0975-9182, Volume 4, Issue 1, pp.-57-64.
    [Show full text]