Body Size and Biomass Distributions of Carrion Visiting Beetles: Do Cities Host Smaller Species?

Total Page:16

File Type:pdf, Size:1020Kb

Body Size and Biomass Distributions of Carrion Visiting Beetles: Do Cities Host Smaller Species? Ecol Res (2008) 23: 241–248 DOI 10.1007/s11284-007-0369-9 ORIGINAL ARTICLE Werner Ulrich Æ Karol Komosin´ski Æ Marcin Zalewski Body size and biomass distributions of carrion visiting beetles: do cities host smaller species? Received: 15 November 2006 / Accepted: 14 February 2007 / Published online: 28 March 2007 Ó The Ecological Society of Japan 2007 Abstract The question how animal body size changes Introduction along urban–rural gradients has received much attention from carabidologists, who noticed that cities harbour Animal and plant body size is correlated with many smaller species than natural sites. For Carabidae this aspects of life history traits and species interactions pattern is frequently connected with increasing distur- (dispersal, reproduction, energy intake, competition; bance regimes towards cities, which favour smaller Brown et al. 2004; Brose et al. 2006). Therefore, species winged species of higher dispersal ability. However, body size distributions (here understood as the fre- whether changes in body size distributions can be gen- quency distribution of log body size classes, SSDs) are eralised and whether common patterns exist are largely often used to infer patterns of species assembly and unknown. Here we report on body size distributions of energy use (Peters 1983; Calder 1984; Holling 1992; carcass-visiting beetles along an urban–rural gradient in Gotelli and Graves 1996; Etienne and Olff 2004; Ulrich northern Poland. Based on samplings of 58 necrophages 2005a, 2006). and 43 predatory beetle species, mainly of the families Many of the studies on local SSDs focused on the Catopidae, Silphidae, and Staphylinidae, we found number of modes and the shape. Unimodal distributions contrary patterns of necrophages and predatory beetles. appeared to prevail (Loder 1997; Gaston and Blackburn Body sizes of necrophages decreased towards the city 2000; Ulrich 2006) and can be considered as the null centre and those of predators remained unchanged. expectation (May 1986) from which any deviation de- Small necrophages and large predators dominated in serves explanation. Vertebrate SSDs were frequently abundance in the city centre. Necrophage body sizes found to be right-skewed with an excess of smaller appeared to be more regularly spaced in the city centre species (Gaston and Blackburn 2000; Koz owski and than expected from a random null model and in com- ł Gawelczyk 2002; Smith et al. 2004). Arthropod com- parison to the rural pattern, pointing to increased munities tend to approach symmetrical distributions at competition. regional and local scales (Chislenko 1981; Espadaler and Gomez 2002; Ulrich 2005a, 2006; but see Gaston et al. Keywords Body size Æ Coleoptera Æ 2001), although there is a need for a critical meta-ana- Rural–urban gradient Æ Disturbance Æ Carrion lytical study to infer whether phylum-specific differences exist. W. Ulrich (&) Szyszko (1983) and later Gray (1989) and Blake et al. Department of Animal Ecology, Nicolaus Copernicus (1994) hypothesized that human-induced increased lev- University in Torun´, Gagarina 9, 87-100 Torun´, Poland els of disturbance should alter the distribution of body Tel.: +48-56-6114469 E-mail: [email protected] sizes towards a prevalence of small-sized species in URL: www.umk.pl/~ulrichw highly disturbed habitats. Such a decreasing body size pattern has subsequently been reported for several K. Komosin´ski ground beetle assemblages (Alaruikka et al. 2002; Nie- Department of Zoology, University of Warmia and Mazury, ul. Oczapowskiego 2, 10-719 Olsztyn, Poland mela¨ et al. 2000, 2002; Braun et al. 2004; Gaublomme et al. 2005; Magura et al. 2004, 2006; but see Lo¨ vei and M. Zalewski Magura 2004), although in a few cases it was only Polish Academy of Sciences, Centre for Ecological Studies, marginal (Niemela¨ et al. 2000, 2002). M. Konopnickiej 1, Dziekano´w Les´ny, 05-092 Łomianki, Poland The causes of this pattern are still not well under- E-mail: [email protected] stood. Lo¨ vei and Sunderland (1996) speculated that less 242 mobile larvae are more affected by changing conditions thropods rejected a regular spacing (Gotelli and Graves in disturbed habitats, whereas Thorbek and Bilde (2004) 1996; Ulrich 2006) or found only weak evidence for argued that lower total abundances under unfavourable nonrandom distributions (Weller and Ganzhorn 2004; conditions result in increased extinction rates of larger Ulrich 2005a). However, a detailed meta-analytical and therefore often less abundant species. In ground study is still missing. beetles, smaller species are frequently macropterous While the diversity patterns of arthropods, particu- whereas larger species are often wingless and therefore larly ground beetles, along disturbance gradients are potentially less dispersive (Thiele 1977). Thus, smaller now well known (Niemela¨ et al. 2002, Weller and species should be more abundant in fragmented or tem- Ganzhorn 2004; Angold et al. 2006; Magura et al. 2006), porary habitats. Lastly, disturbed habitats should par- there are astonishingly few detailed studies on the ticularly attract small-bodied r-strategists, thus shifting respective arthropod size distributions (Braun et al. the body size distribution towards lower weight classes 2004; Weller and Ganzhorn 2004; Magura et al. 2004, (Kotze and O’Hara 2003). 2006; Sadler et al. 2006;Lo¨ vei and Magura 2004; Ulrich Shifts in mean body size along a disturbance gradient 2006). The present study uses size distributions of beetle might also influence the general shape of the SSD. If the species (necrophages and their predators) that were mode of the SSD remains constant, any shift in body trapped from decaying dead fish exposed along an ur- size towards smaller species should be visible as a change ban–rural gradient in Northern Poland. Carrion-visiting in the skew towards more negative values (if measured species seem to be well suited to study size distributions by the third moment). Alternatively, the whole SSD because they form well-defined communities that depend might shift to the left, leaving the shape of the distri- on the same type of resource. bution unchanged (Fig. 1). The ecological interpretation The present paper intends to answer the following of the first case is an accumulation of smaller species at questions: the disturbed sites (assuming similar species richness) 1. Can the decreasing body size pattern be generalized? due to a reduced proportion of medium-sized species, 2. Are size distributions habitat-type-specific? while larger species still persist in the community. The 3. Do beetle body size distributions differ between tro- second case in turn implies the local extinction of larger phic groups? species at disturbed sites. Both processes, of course, can 4. Do SSD shapes differ with respect to disturbance? work together, as has been reported by Sadler et al. 5. Are body sizes in disturbed habitats more regularly (2006) for carabid assemblages. spaced than in undisturbed sites? Changes in body size distributions might also cause changes in the respective competitive regimes. Under the We will show that there are marked differences in the assumption that species of similar size also have similar size distributions of necrophagous beetles along the resource requirements, interspecific competition should gradient, while these differences are less pronounced in cause a more regular spacing of body sizes along the size the predators. axis than expected from a random draw (Strong et al. 1979; Gotelli and Graves 1996). Most studies on ar- Materials and methods Eighty traps (four at each of 20 sites) were placed along A two 120 km transects (west–east, north–south, Fig. 2) Undisturbed crossing in the centre of the city of Olsztyn (Mazurian lake district of northern Poland, 53°47¢N; 20°30¢E). Additionally we placed ten identical traps at two sites on Frequency Disturbed the periphery of the city and in the city centre (Ale- ksandrowicz and Komosin´ski 2005). The sampling sites log body size covered two major habitat types, a forested (mixed coniferous forests) and an open (grassland) type. Mean B Disturbed Undisturbed trap distance was ca. 1 km. The traps operated during August and September 1997. Material was collected at the end of the trapping period. Traps were made of glass jars (diameter 9 cm) dug into soil and covered with Frequency wooden roofs. To avoid the capture of too many acci- dental species, the upper edges were 3–4 cm above log body size ground level. Each trap had a layer of 2–3 cm of glycol. One hundred grams of rotten fish (placed above the Fig. 1A–B Two ways in which a shift towards smaller species could glycol layer) served to attract beetle species. Four traps change a SSD. A The skew of the distribution changes and the were lost. The voucher specimens are kept at the proportion of medium-sized species is reduced. B The whole distribution shifts to the left and the large species become extinct. Department of Zoology of the University of Warmia Both mechanisms can occur in combination and Mazury (Aleksandrowicz and Komosin´ski 2005). 243 N from 1,000 random draws. Computations were made with the software Structure (Ulrich 2005b). WE DOBRE MIASTO An often used graphical representation that links S body size distributions to abundance data is the Lorenz MR GOWO curve (Lorenz 1905), where the cumulative percentage of BISKUPIEC MOR G individuals is plotted against cumulative percentage of body size (Damgaard and Weiner 2000; Magura et al. BARCZEWO 2006). If all individuals are of the same body size, the OSTRÓDA curve follows the isocline of equality. Increasing differ- OLSZTYN ences in body size force the curve below this line. While the Lorenz curve allows for the identification of size OLSZTYNEK inequalities, the fact that it is always a concave function LUBAWA often makes it difficult to compare different communities SZCZYTNO (Dixon et al. 1987; Damgaard and Weiner 2000; Magura et al. 2006). Therefore, in the present study we use a slightly different approach and plot cumulative per- Fig.
Recommended publications
  • Fisheries in Large Marine Ecosystems: Descriptions and Diagnoses
    Fisheries in Large Marine Ecosystems: Descriptions and Diagnoses D. Pauly, J. Alder, S. Booth, W.W.L. Cheung, V. Christensen, C. Close, U.R. Sumaila, W. Swartz, A. Tavakolie, R. Watson, L. Wood and D. Zeller Abstract We present a rationale for the description and diagnosis of fisheries at the level of Large Marine Ecosystems (LMEs), which is relatively new, and encompasses a series of concepts and indicators different from those typically used to describe fisheries at the stock level. We then document how catch data, which are usually available on a smaller scale, are mapped by the Sea Around Us Project (see www.seaaroundus.org) on a worldwide grid of half-degree lat.-long. cells. The time series of catches thus obtained for over 180,000 half-degree cells can be regrouped on any larger scale, here that of LMEs. This yields catch time series by species (groups) and LME, which began in 1950 when the FAO started collecting global fisheries statistics, and ends in 2004 with the last update of these datasets. The catch data by species, multiplied by ex-vessel price data and then summed, yield the value of the fishery for each LME, here presented as time series by higher (i.e., commercial) groups. Also, these catch data can be used to evaluate the primary production required (PPR) to sustain fisheries catches. PPR, when related to observed primary production, provides another index for assessing the impact of the countries fishing in LMEs. The mean trophic level of species caught by fisheries (or ‘Marine Trophic Index’) is also used, in conjunction with a related indicator, the Fishing-in-Balance Index (FiB), to assess changes in the species composition of the fisheries in LMEs.
    [Show full text]
  • Plants Are Producers! Draw the Different Producers Below
    Name: ______________________________ The Unique Producer Every food chain begins with a producer. Plants are producers. They make their own food, which creates energy for them to grow, reproduce and survive. Being able to make their own food makes them unique; they are the only living things on Earth that can make their own source of food energy. Of course, they require sun, water and air to thrive. Given these three essential ingredients, you will have a healthy plant to begin the food chain. All plants are producers! Draw the different producers below. Apple Tree Rose Bushes Watermelon Grasses Plant Blueberry Flower Fern Daisy Bush List the three essential needs that every producer must have in order to live. © 2009 by Heather Motley Name: ______________________________ Producers can make their own food and energy, but consumers are different. Living things that have to hunt, gather and eat their food are called consumers. Consumers have to eat to gain energy or they will die. There are four types of consumers: omnivores, carnivores, herbivores and decomposers. Herbivores are living things that only eat plants to get the food and energy they need. Animals like whales, elephants, cows, pigs, rabbits, and horses are herbivores. Carnivores are living things that only eat meat. Animals like owls, tigers, sharks and cougars are carnivores. You would not catch a plant in these animals’ mouths. Then, we have the omnivores. Omnivores will eat both plants and animals to get energy. Whichever food source is abundant or available is what they will eat. Animals like the brown bear, dogs, turtles, raccoons and even some people are omnivores.
    [Show full text]
  • Disturbance and Recovery of Litter Fauna: a Contribution to Environmental Conservation
    Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis committee PhD promotors Prof. dr. Herbert H.T. Prins Professor of Resource Ecology Wageningen University Prof. dr. Steven de Bie Professor of Sustainable Use of Living Resources Wageningen University PhD supervisor Dr. Frank van Langevelde Assistant Professor, Resource Ecology Group Wageningen University Other members Prof. dr. Lijbert Brussaard, Wageningen University Prof. dr. Peter C. de Ruiter, Wageningen University Prof. dr. Nico M. van Straalen, Vrije Universiteit, Amsterdam Prof. dr. Wim H. van der Putten, Nederlands Instituut voor Ecologie, Wageningen This research was conducted under the auspices of the C.T. de Wit Graduate School of Production Ecology & Resource Conservation Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 21 October 2013 at 11 a.m. in the Aula Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation 114 pages Thesis, Wageningen University, Wageningen, The Netherlands (2013) With references, with summaries in English and Dutch ISBN 978-94-6173-749-6 Propositions 1. The environmental filters created by constraining environmental conditions may influence a species assembly to be driven by deterministic processes rather than stochastic ones. (this thesis) 2. High species richness promotes the resistance of communities to disturbance, but high species abundance does not.
    [Show full text]
  • Can More K-Selected Species Be Better Invaders?
    Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France.
    [Show full text]
  • Nocturnal Rodents
    Nocturnal Rodents Peter Holm Objectives (Chaetodipus spp. and Perognathus spp.) and The monitoring protocol handbook (Petryszyn kangaroo rats (Dipodomys spp.) belong to the 1995) states: “to document general trends in family Heteromyidae (heteromyids), while the nocturnal rodent population size on an annual white-throated woodrats (Neotoma albigula), basis across a representative sample of habitat Arizona cotton rat (Sigmodon arizonae), cactus types present in the monument”. mouse (Peromyscus eremicus), and grasshopper mouse (Onychomys torridus), belong to the family Introduction Muridae. Sigmodon arizonae, a native riparian Nocturnal rodents constitute the prey base for species relatively new to OPCNM, has been many snakes, owls, and carnivorous mammals. recorded at the Dos Lomitas and Salsola EMP All nocturnal rodents, except for the grasshopper sites, adjacent to Mexican agricultural fields. mouse, are primary consumers. Whereas Botta’s pocket gopher (Thomomys bottae) is the heteromyids constitute an important guild lone representative of the family Geomyidae. See of granivores, murids feed primarily on fruit Petryszyn and Russ (1996), Hoffmeister (1986), and foliage. Rodents are also responsible for Petterson (1999), Rosen (2000), and references considerable excavation and mixing of soil layers therein, for a thorough review. (bioturbation), “predation” on plants and seeds, as well as the dispersal and caching of plant seeds. As part of the Sensitive Ecosystems Project, Petryszyn and Russ (1996) conducted a baseline Rodents are common in all monument habitats, study originally titled, Special Status Mammals are easily captured and identified, have small of Organ Pipe Cactus National Monument. They home ranges, have high fecundity, and respond surveyed for nocturnal rodents and other quickly to changes in primary productivity and mammals in various habitats throughout the disturbance (Petryszyn 1995, Petryszyn and Russ monument and found that murids dominated 1996, Petterson 1999).
    [Show full text]
  • Introduction to the Special Issue on Spatial Ecology
    International Journal of Geo-Information Editorial Space-Ruled Ecological Processes: Introduction to the Special Issue on Spatial Ecology Duccio Rocchini 1,2,3 1 University of Trento, Center Agriculture Food Environment, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy; [email protected] 2 University of Trento, Centre for Integrative Biology, Via Sommarive, 14, 38123 Povo (TN), Italy 3 Fondazione Edmund Mach, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy Received: 12 December 2017; Accepted: 23 December 2017; Published: 2 January 2018 This special issue explores most of the scientific issues related to spatial ecology and its integration with geographical information at different spatial and temporal scales. Papers are mainly related to challenging aspects of species variability over space and landscape dynamics, providing a benchmark for future exploration on this theme. The need for a spatial view in Ecology is a fact. Dealing with ecological changes over space and time represents a long-lasting theme, now faced by means of innovative techniques and modelling approaches (e.g., Chaudhary et al. [1], Palmer [2], Rocchini [3]). This special issue explores some of them, with challenging ideas facing different components of spatial patterns related to ecological processes, such as: (i) species variability over space [4–11]; and (ii) landscape dynamics [12,13]. Concerning biodiversity variability over space, key spatial datasets are needed to fully investigate biodiversity change in space and time, as shown by Geri et al. [7], who carried out innovative procedures to recover and properly map historical floristic and vegetation data for biodiversity monitoring.
    [Show full text]
  • Models of the World's Large Marine Ecosystems: GEF/LME Global
    Intergovernmental Oceanographic Commission technical series 80 Models of the World’s Large Marine Ecosystems UNESCO Intergovernmental Oceanographic Commission technical series 80 Models of the World’s Large Marine Ecosystems* GEF/LME global project Promoting Ecosystem-based Approaches to Fisheries Conservation and Large Marine Ecosystems UNESCO 2008 * As submitted to IOC Technical Series, UNESCO, 22 October 2008 IOC Technical Series No. 80 Paris, 20 October 2008 English only The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of UNESCO and IOC concerning the legal status of any country or territory, or its authorities, or concerning the delimitation of the frontiers of any country or territory. For bibliographic purposes, this document should be cited as follows: Models of the World’s Large Marine Ecosystems GEF/LME global project Promoting Ecosystem-based Approaches to Fisheries Conservation and Large Marine Ecosystems IOC Technical Series No. 80. UNESCO, 2008 (English) Editors: Villy Christensen1, Carl J. Walters1, Robert Ahrens1, Jackie Alder2, Joe Buszowski1, Line Bang Christensen1, William W.L. Cheung1, John Dunne3, Rainer Froese4, Vasiliki Karpouzi1, Kristin Kastner5, Kelly Kearney6, Sherman Lai1, Vicki Lam1, Maria L.D. Palomares1,7, Aja Peters-Mason8, Chiara Piroddi1, Jorge L. Sarmiento6, Jeroen Steenbeek1, Rashid Sumaila1, Reg Watson1, Dirk Zeller1, and Daniel Pauly1. Technical Editor: Jair Torres 1 Fisheries Centre,
    [Show full text]
  • Pedro Giovâni Da Silva EFEITO AMBIENTAL, ESPACIAL E
    Pedro Giovâni da Silva EFEITO AMBIENTAL, ESPACIAL E TEMPORAL NA ESTRUTURAÇÃO DAS ASSEMBLEIAS DE SCARABAEINAE (COLEOPTERA: SCARABAEIDAE) NA MATA ATLÂNTICA DO SUL DO BRASIL Tese submetida ao Programa de Pós- Graduação em Ecologia da Universidade Federal de Santa Catarina para a obtenção do Grau de Doutor em Ecologia. Orientadora: Prof.ª Dr.ª Malva Isabel Medina Hernández Florianópolis 2015 2 Ficha de identificação da obra elaborada pelo autor através do Programa de Geração Automática da Biblioteca Universitária da UFSC. 4 Este trabalho é dedicado à minha esposa, pais e irmãs. 6 AGRADECIMENTOS Agradecer a todos que de alguma forma contribuíram com este trabalho é uma tarefa difícil e espero não esquecer ninguém. Agradeço o apoio e companheirismo de minha esposa, Franciéle, que me ajudou inclusive na realização das coletas quando possível – subir os morros da Mata Atlântica no verão nunca é fácil! Agradeço a meus pais, Pedro e Leni, e minhas irmãs, Carla, Fabiana, Tatiane e Daniele, pelo suporte de sempre durante o caminho que escolhi seguir. Não posso deixar de incluir na lista de familiares minha cunhada, Dirnele, que também quase morreu ajudou nas coletas. Enorme e sincero agradecimento à minha orientadora, Profa. Malva Isabel Medina Hernández, pela aprendizagem e oportunidade de continuar meu aperfeiçoamento acadêmico-profissional junto a um espetacular time de colegas-amigos do Laboratório de Ecologia Terrestre Animal (LECOTA), com os quais tive a alegria de compartilhar horas de experiências de aprendizado e troca de ideias (e scripts de R!), e muita ajuda de campo. Cito aqui Renata, Juliano, Moacyr, Patrícia, Victor, Andros, Cássio, Alexandre, Mari Niero, Mariah, Camila, Júlia, Malu, Mari Dalva, Clisten, Aline, Anderson e Talita.
    [Show full text]
  • A Consumer's Guide to Nestedness Analysis
    Oikos 118: 3Á17, 2009 doi: 10.1111/j.1600-0706.2008.17053.x, # 2008 The Authors. Journal compilation # 2008 Oikos Subject Editor: Jennifer Dunne. Accepted 25 July 2008 A consumer’s guide to nestedness analysis Werner Ulrich, Ma´rio Almeida-Neto and Nicholas J. Gotelli W. Ulrich ([email protected]), Dept of Animal Ecology, Nicolaus Copernicus Univ. in Torun´, Gagarina 9, PLÁ87-100 Torun´, Poland. Á M. Almeida-Neto, Univ. de Brasilia, IB-Dept Ecologia, CEP 70910-900, Asa Norte, Brazil. ÁN. J. Gotelli, Dept of Biology, Univ. of Vermont, Burlington, VT 05405, USA. Nestedness analysis has become increasingly popular in the study of biogeographic patterns of species occurrence. Nested patterns are those in which the species composition of small assemblages is a nested subset of larger assemblages. For species interaction networks such as plantÁpollinator webs, nestedness analysis has also proven a valuable tool for revealing ecological and evolutionary constraints. Despite this popularity, there has been substantial controversy in the literature over the best methods to define and quantify nestedness, and how to test for patterns of nestedness against an appropriate statistical null hypothesis. Here we review this rapidly developing literature and provide suggestions and guidelines for proper analyses. We focus on the logic and the performance of different metrics and the proper choice of null models for statistical inference. We observe that traditional ‘gap-counting’ metrics are biased towards species loss among columns (occupied sites) and that many metrics are not invariant to basic matrix properties. The study of nestedness should be combined with an appropriate gradient analysis to infer possible causes of the observed presenceÁ absence sequence.
    [Show full text]
  • Consumer Preferences and Willingness to Pay for Potting Mix with Biochar
    energies Article Consumer Preferences and Willingness to Pay for Potting Mix with Biochar McKenzie Thomas 1, Kimberly L. Jensen 1,*, Dayton M. Lambert 2, Burton C. English 1 , Christopher D. Clark 1 and Forbes R. Walker 3 1 Department of Agricultural and Resource Economics, The University of Tennessee, Knoxville, TN 37996, USA; [email protected] (M.T.); [email protected] (B.C.E.); [email protected] (C.D.C.) 2 Department of Agricultural Economics, Oklahoma State University, Stillwater, OK 74078, USA; [email protected] 3 Department of Biosystems Engineering and Soil Sciences, The University of Tennessee, Knoxville, TN 37996, USA; [email protected] * Correspondence: [email protected] Abstract: Biochar is a co-product of advanced biofuels production from feedstocks including food, agricultural, wood wastes, or dedicated energy crops. Markets for soil amendments using biochar are emerging, but little is known about consumer preferences and willingness to pay (WTP) for these products or the depth of the products’ market potential for this product. This research provides WTP estimates for potting mix amended with 25% biochar, conditioned on consumer demographics and attitudes about product information labeling. Data were collected with an online survey of 577 Ten- nessee home gardeners. WTP was elicited through a referendum contingent valuation. Consumer WTP for an 8.81 L bag of 25% biochar potting mix is $8.52; a premium of $3.53 over conventional pot- ting mix. Demographics and attitudes toward biofuels and the environment influence WTP. Biochar Citation: Thomas, M.; Jensen, K.L.; amounts demanded are projected for the study area’s potential market.
    [Show full text]
  • Consumption and the Consumer Society
    Consumption and the Consumer Society By Brian Roach, Neva Goodwin, and Julie Nelson A GDAE Teaching Module on Social and Environmental Issues in Economics Global Development And Environment Institute Tufts University Medford, MA 02155 http://ase.tufts.edu/gdae This reading is based on portions of Chapter 8 from: Microeconomics in Context, Fourth Edition. Copyright Routledge, 2019. Copyright © 2019 Global Development And Environment Institute, Tufts University. Reproduced by permission. Copyright release is hereby granted for instructors to copy this module for instructional purposes. Students may also download the reading directly from https://ase.tufts.edu/gdae Comments and feedback from course use are welcomed: Comments and feedback from course use are welcomed: Global Development And Environment Institute Tufts University Somerville, MA 02144 http://ase.tufts.edu/gdae E-mail: [email protected] NOTE – terms denoted in bold face are defined in the KEY TERMS AND CONCEPTS section at the end of the module. CONSUMPTION AND THE CONSUMER SOCIETY TABLE OF CONTENTS 1. INTRODUCTION ................................................................................................. 5 2. ECONOMIC THEORY AND CONSUMPTION ............................................... 5 2.1 Consumer Sovereignty .............................................................................................. 5 2.2 The Budget Line ....................................................................................................... 6 2.3 Consumer Utility ......................................................................................................
    [Show full text]
  • Accounting for Marine Economic Activities in Large Marine Ecosystems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Woods Hole Open Access Server ACCOUNTING FOR MARINE ECONOMIC ACTIVITIES IN LARGE MARINE ECOSYSTEMS Porter Hoagland and Di Jin Marine Policy Center Woods Hole Oceanographic Institution Woods Hole, MA 02543 Abstract We develop an index that is a measure of the intensity of marine activities in large marine ecosystems (LMEs). We compare this marine activity index with an index of socioeconomic development across ocean regions. This comparison identifies regions that may be capable of achieving the sustainable development of their regional marine environment on their own and those that are less likely to do so. The latter may be candidates for international financial or management assistance. An important next step is to carry out detailed case studies designed to improve our understanding of any specific ocean region. Keywords: economics; indexes; large marine ecosystems; marine activity; sustainable management 1 1. Introduction Sixty-four large marine ecosystems (LMEs) have been identified around the world’s coastal margins. The large ecological zones of these LMEs are economically important, producing 95 percent of the world’s marine fisheries biomass, among other goods and services valued at many trillions of dollars each year. Counterbalancing these economic benefits is the fact that pollution is more severe in LMEs than in other ocean areas, and some LME coastal habitats are among the most seriously degraded on earth. It is in the world’s interest to ensure that those marine resources and habitats at risk are protected and managed sustainably for both present and future generations.
    [Show full text]