Michigan Department of Natural Resources Fisheries Division

Total Page:16

File Type:pdf, Size:1020Kb

Michigan Department of Natural Resources Fisheries Division FISHERIES DIVISION SPECIAL REPORT Number 16 April, 1995 Huron River Assessment E. M. Hay-Chmielewski Paul W. Seelbach Gary E. Whelan Douglas B. Jester Jr. Big Lake (1,018 ft) Huron River Watershed Elevation Distance Distance Lake Erie (572 ft) STATE OF MICHIGAN DNR DEPARTMENT OF NATURAL RESOURCES MICHIGAN DEPARTMENT OF NATURAL RESOURCES FISHERIES DIVISION Fisheries Special Report No. 16 April, 1995 HURON RIVER ASSESSMENT E. M. Hay-Chmielewski Paul W. Seelbach Gary E. Whelan Douglas B. Jester Jr. The Michigan Department of Natural Resources, (MDNR) provides equal opportunities for employment and for access to Michigan’s natural resources. State and Federal laws prohibit discrimination on the basis of race, color, sex, national origin, religion, disability, age, marital status, height and weight. If you believe that you have been discriminated against in any program, activity or facility, please write the MDNR Equal Opportunity Office, P.O. Box 30028, Lansing, MI 48909, or the Michigan Department of Civil Rights, 1200 6th Avenue, Detroit, MI 48226, or the Office of Human Resources, U.S. Fish and Wildlife Service, Washington D.C. 20204. For more information about this publication or the American Disabilities Act (ADA), contact, Michigan Department of Natural Resources, Fisheries Division, Box 30028, Lansing, MI 48909, or call 517-373-1280. COVER: A three dimensional drawing of the area containing the Huron River watershed. It shows how the water flows from the headwaters down the landscape, gathering the contributions from the tributaries, to Lake Erie. The figure is an adaptation of a drawing provided by the Huron River Watershed Council, Ann Arbor. The significant problems we face cannot be solved at the same level of thinking we were at when we created them. Albert Einstein 2 TABLE OF CONTENTS List of Tables ........................................................................................................................................ 5 List of Figures....................................................................................................................................... 7 Acknowledgements .............................................................................................................................. 9 Executive Summary............................................................................................................................. 10 INTRODUCTION............................................................................................................................... 13 RIVER ASSESSMENT ...................................................................................................................... 16 Geography.............................................................................................................................. 16 History 16 Biological Communities ........................................................................................................ 18 Original Fish Communities...................................................................................... 18 Factors Affecting Fish Communities....................................................................... 20 Present Fish Communities ....................................................................................... 22 Aquatic Invertebrates (except mussels)................................................................... 23 Mussels 23 Amphibians and Reptiles ......................................................................................... 24 Mammals .................................................................................................................. 25 Birds 25 Other Natural Features of Concern.......................................................................... 25 Pest Species .............................................................................................................. 25 Geology and Hydrology ........................................................................................................ 26 Geology .................................................................................................................... 26 Climate 27 Annual stream flows................................................................................................. 27 Seasonal flow stability ............................................................................................. 28 Daily flow stability................................................................................................... 29 Channel Morphology ............................................................................................................. 30 Channel gradient....................................................................................................... 30 Channel cross sections ............................................................................................. 32 Soils and Land Use Patterns .................................................................................................. 36 Special Jurisdictions............................................................................................................... 38 Navigability .............................................................................................................. 38 Federal Energy Regulatory Commission................................................................. 38 County Drain Commissioners.................................................................................. 39 Natural River Designations..................................................................................... 39 State and Huron-Clinton Metropolitan Authority Parklands .................................. 40 Recreational Use .................................................................................................................... 40 Dams and Barriers.................................................................................................................. 42 Water Quality......................................................................................................................... 46 Fishery Management.............................................................................................................. 48 Citizen Involvement............................................................................................................... 50 3 MANAGEMENT OPTIONS.............................................................................................................. 52 Biological Communities ........................................................................................................ 52 Geology and Hydrology ....................................................................................................... 53 Channel Morphology ............................................................................................................ 54 Soils and Land Use Patterns .................................................................................................. 55 Special Jurisdictions............................................................................................................... 55 Recreational Use ................................................................................................................... 56 Dams and Barriers.................................................................................................................. 57 Water Quality......................................................................................................................... 57 Fishery Management.............................................................................................................. 58 Citizen Involvement............................................................................................................... 59 PUBLIC COMMENT AND RESPONSE.......................................................................................... 60 GLOSSARY ........................................................................................................................................ 64 REFERENCES.................................................................................................................................... 67 4 List of Tables Table 1. Huron River gradient (ft/mi) from the headwaters to the mouth of the river (Fisheries Division, Michigan Department of Natural Resources, unpublished data). Table 2. Archaeological sites in the Huron River watershed, listed by township. Table 3. List of common and scientific names of species referred to in text. Table 4. Non-indigenous fish species in the Huron River (Fisheries Division, Michigan Department of Natural Resources, unpublished data). Table 5. Fish stocking in the Huron River watershed, 1981-1991 (Fisheries Division, Michigan Department of Natural Resources). Table 6. List of fishes in the Huron River watershed. Table 7. Increases (++) or decreases (d) in range between 1938 and 1977 of vegetation-dependent species (those fish that require vegetation at some point in their life history) on the mainstem of the Huron River and three major tributaries. Table 8. Increases (++) or decreases (d) in range between 1938 and 1977 of gravel-dependent species (those fish that require gravel at some point in their life history) on the mainstem of the Huron River and three major tributaries. Table 9. Increases (++) or decreases (d) in range between 1938 and 1977 of silt-dependent species (those fish that require silt at some point in
Recommended publications
  • Fish Survey Report
    Lake Angeline, Marquette County Lake Angeline Fisheries Survey May 3-5, 2015 Introduction: A May 2015 general fisheries survey was conducted at Marquette County’s Lake Angeline to assess the status of the fishery and to allow for the development of future sportfish management opportunities for this lake. History: Lake Angeline has a long history of quality fisheries management with periods of very good rainbow trout occupation and periods of excellent tiger muskellunge presence. The first stocking of rainbow trout occurred in 1948 and continued until 1969. Due to trout competition from yellow perch and other warmwater fish species, tiger muskellunge were stocked, not annually but very regularly, from 1970 – 1990. Citizen opposition and/or support of the muskellunge stocking was very vocal during the muskie years, with many petitions and passionate letters being sent to State legislators and Michigan tenured Governors. Historical data reveals that a natural lake occupied this site before mining operations were ever begun. The water was named Lake Angeline in 1849 by Captain Sam Moody and as the City of Ishpeming developed, the lake was the source of water supply for the community. The lake was pumped dry in 1892 and 20 million tons of iron ore were removed from the rock strata beneath the lake by means of a mining shaft and drifts. Cave-ins after the mining was abandoned created many of the depth pockets of the lake’s bottom topography. The State of Michigan DNR obtained a parcel of property ownership from Cliffs Forest Products Company in November 1984, however the easement to this parcel crossed private land and due to alleged public dumping of trash on the private land, access to the State parcel was severed in 1994.
    [Show full text]
  • The Huron River History Book
    THE HURON RIVER Robert Wittersheim Over 15,000 years ago, the Huron River was born as a small stream draining the late Pleistocene landscape. Its original destination was Lake Maumee at present day Ypsilanti where a large delta was formed. As centuries passed, ceding lake levels allowed the Huron to meander over new land eventually settling into its present valley. Its 125 mile journey today begins at Big Lake near Pontiac and ends in Lake Erie. The Huron’s watershed, which includes 367 miles of tributaries, drains over 900 square miles of land. The total drop in elevation from source to mouth is nearly 300 feet. The Huron’s upper third is clear and fast, even supporting a modest trout fishery. The middle third passes through and around many lakes in Livingston and Washtenaw Counties. Eight dams impede much of the Huron’s lower third as it flows through populous areas it helped create. Over 47 miles of this river winds through publicly owned lands, a legacy from visionaries long since passed. White Lake White Lake Mary Johnson The Great Lakes which surround Michigan and the thousands of smaller lakes, hundreds of rivers, streams and ponds were formed as the glacier ice that covered the land nearly 14,000 years ago was melting. The waters filled the depressions in the earth. The glaciers deposited rock, gravel and soil that had been gathered in their movement. This activity sculpted the land creating our landscape. In section 28 of Springfield Township, Oakland County, a body of water names Big Lake by the area pioneers is the source of the Huron River.
    [Show full text]
  • BIOLOGICAL FIELD STATION Cooperstown, New York
    BIOLOGICAL FIELD STATION Cooperstown, New York 49th ANNUAL REPORT 2016 STATE UNIVERSITY OF NEW YORK COLLEGE AT ONEONTA OCCASIONAL PAPERS PUBLISHED BY THE BIOLOGICAL FIELD STATION No. 1. The diet and feeding habits of the terrestrial stage of the common newt, Notophthalmus viridescens (Raf.). M.C. MacNamara, April 1976 No. 2. The relationship of age, growth and food habits to the relative success of the whitefish (Coregonus clupeaformis) and the cisco (C. artedi) in Otsego Lake, New York. A.J. Newell, April 1976. No. 3. A basic limnology of Otsego Lake (Summary of research 1968-75). W. N. Harman and L. P. Sohacki, June 1976. No. 4. An ecology of the Unionidae of Otsego Lake with special references to the immature stages. G. P. Weir, November 1977. No. 5. A history and description of the Biological Field Station (1966-1977). W. N. Harman, November 1977. No. 6. The distribution and ecology of the aquatic molluscan fauna of the Black River drainage basin in northern New York. D. E Buckley, April 1977. No. 7. The fishes of Otsego Lake. R. C. MacWatters, May 1980. No. 8. The ecology of the aquatic macrophytes of Rat Cove, Otsego Lake, N.Y. F. A Vertucci, W. N. Harman and J. H. Peverly, December 1981. No. 9. Pictorial keys to the aquatic mollusks of the upper Susquehanna. W. N. Harman, April 1982. No. 10. The dragonflies and damselflies (Odonata: Anisoptera and Zygoptera) of Otsego County, New York with illustrated keys to the genera and species. L.S. House III, September 1982. No. 11. Some aspects of predator recognition and anti-predator behavior in the Black-capped chickadee (Parus atricapillus).
    [Show full text]
  • Pennsylvania Muskellunge Management Plan 2017 Update
    This work made possible by funding from the Sport Fish Restoration Act Project F-57-R Fisheries Management. Pennsylvania Muskellunge Management Plan 2017 Update Prepared By: Robert Wnuk, Michael Kaufmann, Brian Ensign, and Robert Brown Acknowledgements We wish to acknowledge the technical assistance of Wisconsin Department of Natural Resources biologists Jeff Scheirer and Tim Simonsin. Their willingness to share their experiences with stocking large Muskellunge fingerlings was invaluable in creating this plan. We also thank Fisheries Management and Hatchery staff from the Pennsylvania Fish and Boat Commission who reviewed this plan and made numerous substantial contributions. Introduction The Pennsylvania Fish and Boat Commission (PFBC) published its first Statewide Muskellunge Management Plan in 2012. We provide this bullet point update to the 2012 plan to: 1) determine if the PFBC is meeting plan objectives; 2) deal with new issues in Muskellunge management; and 3) bring interested parties up to date on Muskellunge management in Pennsylvania. IS THE PFBC MEETING PLAN OBJECTIVES? o Objective 1. Improve and standardize the design and sampling methods of all surveys evaluating the management of Muskellunge in Pennsylvania. • Strategy 1: Muskellunge should be a primary species of concern when choosing sampling times and gear to maximize effectiveness and accuracy of surveys in waters where they are managed. Progress: Muskellunge are now a primary target species in PFBC surveys. • Strategy 2. Because of their rarity of catch all efforts should be taken to obtain all possible information on these fish when sampling waters where they are managed even when they are not the primary target of a survey.
    [Show full text]
  • An Evaluation of Tiger Muskellunge Introduced Into Lake Carl Etling, Oklahoma Richard A
    33 An Evaluation of Tiger Muskellunge Introduced into Lake Carl Etling, Oklahoma Richard A. Snow Oklahoma Department of Wildlife Conservation, Oklahoma Fishery Research Laboratory, Norman, OK 73072 Chas P. Patterson Oklahoma Department of Wildlife Conservation, Bryon State Fish Hatchery, Burlington, OK 73722 Daniel E. Shoup Department of Natural Resource Ecology & Management, Oklahoma State University, Stillwater OK 74078 Michael J. Porta Oklahoma Department of Wildlife Conservation, Oklahoma Fishery Research Laboratory, Norman, OK 73072 Abstract: Tiger Muskellunge (Muskellunge Esox masquinongy x Northern Pike Esox lucius) were stocked into Lake Carl Etling in the northwestern tip of Oklahoma’s panhandle in Cimarron County. This lake sustained a population of Northern Pike from 1966 – 1976, with natural reproduction maintaining the population until 1986. However, after 1986, periods of drought affecting the lake level and water temperature negatively impacted the Northern Pike population. In 2004, Lake Carl Etling’s surface area was reduced to approximately 4 ha by drought, which negatively affected the sportfish populations. Salt Cedar (Tamarix ramosissima) and other herbaceous vegetation colonized the dry lakebed before rainfall in the summer of 2013 filled Lake Carl Etling to normal elevation. Nongame fish populations became over abundant and Tiger Muskellunge were stocked as biological control and to potentially create a unique trophy fishery. However, through extensive sampling efforts only 1 adult and 76 juveniles (of the 2,656 individuals stocked) were caught. Tiger Muskellunge recruitment was affected by high turbidity and high water temperatures. A combination of increasing turbidity levels and water temperatures, post-stocking, likely resulted in increases in Tiger Muskellunge metabolism. Relative weights (Wr) decreased monthly after stocking in 2016 and 2017, with no fish observed in sampling efforts after July of 2016.
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Management Plan for Muskellunge in Michigan
    ATUR F N AL O R T E N S E O U M R T C R E A STATE OF MICHIGAN S P E DNR D MI N DEPARTMENT OF NATURAL RESOURCES CHIGA FR12 March 2016 Management Plan for Muskellunge in Michigan Kregg M. Smith, Michael V. Thomas, and Patrick A. Hanchin www.michigan.gov/dnr/ FISHERIES DIVISION FISHERIES REPORT 12 Suggested Citation Format Smith, K. M., M. V. Thomas, and P. A. Hanchin. 2016. Management plan for Muskellunge in Michigan. Michigan Department of Natural Resources, Fisheries Report 12, Lansing. MICHIGAN DEPARTMENT OF NATURAL RESOURCES (DNR) MISSION STATEMENT “The Michigan Department of Natural Resources is committed to the conservation, protection, management, use and enjoyment of the state’s natural and cultural resources for current and future generations.” NATURAL RESOURCES COMMISSION (NRC) STATEMENT The Natural Resources Commission, as the governing body for the Michigan Department of Natural Resources, provides a strategic framework for the DNR to effectively manage your resources. The NRC holds monthly, public meetings throughout Michigan, working closely with its constituencies in establishing and improving natural resources management policy. MICHIGAN DEPARTMENT OF NATURAL RESOURCES NON DISCRIMINATION STATEMENT The Michigan Department of Natural Resources (MDNR) provides equal opportunities for employment and access to Michigan’s natural resources. Both State and Federal laws prohibit discrimination on the basis of race, color, national origin, religion, disability, age, sex, height, weight or marital status under the Civil Rights Acts of 1964 as amended (MI PA 453 and MI PA 220, Title V of the Rehabilitation Act of 1973 as amended, and the Americans with Disabilities Act).
    [Show full text]
  • Canadian River Basin Bioassessment
    Canadian River Basin Bioassessment Sarah Robertson, Melissa Parker, Gordon Linam, Clinton Robertson, Archis Grubh Texas Parks and Wildlife Department, Inland Fisheries Division AND Melissa Casarez University of Texas at Austin, Biodiversity Collections River Studies Report No. 26 Inland Fisheries Division Texas Parks and Wildlife Department Austin, Texas October 2017 TABLE OF CONTENTS Executive Summary .............................................................................................................. 1 Introduction ........................................................................................................................... 2 Study Area ................................................................................................................. 2 Survey and Management History .............................................................................. 2 Study Sites .............................................................................................................................. 4 Canadian River .......................................................................................................... 6 Oxbow Lakes ............................................................................................................. 6 Supplemental Fish Collection Sites ........................................................................... 7 Water Quality and Quantity .................................................................................................... 8 Fish Assemblage ....................................................................................................................
    [Show full text]
  • Summary of Temperature Metrics for Aquatic Invasive Fish Species in the Prairie Region
    Summary of Temperature Metrics for Aquatic Invasive Fish Species in the Prairie Region Theresa E. Mackey, Caleb T. Hasler, and Eva C. Enders Fisheries and Oceans Canada Ecosystems and Oceans Science Central and Arctic Region Freshwater Institute Winnipeg, MB R3T 2N6 2019 Canadian Technical Report of Fisheries and Aquatic Sciences 3308 1 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique.
    [Show full text]
  • Edison Power Plant Historic District
    Final Report of the Historic District Study Committee for the City of Ypsilanti, Washtenaw County, Michigan This Report has been prepared by the Historic District Study Committee appointed by the City Council, City of Ypsilanti, Michigan, on July 15, 2008, to study and report on the feasibility of providing legal protection to the Edison Power Plant, Dam, and Peninsular Paper Company Sign by creating the three-resource Edison Power Plant Historic District Submitted to Ypsilanti City Council December 15, 2009 Contents Charge of the Study Committee .............................................................................. 1 Composition of the Study Committee ..................................................................... 1 Verbal boundary description (legal property description) .................................. 2 Visual boundary description (maps) ...................................................................... 2 Washtenaw County GIS aerial view of Peninsular Park, location of Edison Power Plant, showing power plant, dam, parking area, park pavilion, & dock City of Ypsilanti zoning map showing Peninsular Park City of Ypsilanti Image/Sketch for Parcel: 11-11-05-100-013 Sanborn Insurance map, 1916 Sanborn Insurance map, 1927 Proposed Boundary Description, Justification, & Context Photos ...................... 8 Criteria for Evaluating Resources .......................................................................... 11 Michigan’s Local Historic Districts Act, 1970 PA 169 U.S. Secretary of the Interior National Register
    [Show full text]
  • A Review of the Interactions Between Catfishes and Freshwater Mollusks
    American Fisheries Society Symposium 77:733–743, 2011 © 2011 by the American Fisheries Society A Review of the Interactions between Catfi shes and Freshwater Mollusks in North America JEREMY S. TIEMANN* Illinois Natural History Survey Institute of Natural Resource Sustainability at the University of Illinois Urbana-Champaign 1816 South Oak Street, Champaign, Illinois 61820, USA STEPHEN E. MCMURRAY Missouri Department of Conservation, Resource Science Division 1110 South College Avenue, Columbia, Missouri 65201, USA M. CHRISTOPHER BARNHART Missouri State University, Department of Biology 901 South National, Springfi eld, Missouri 65897, USA G. THOMAS WATTERS The Ohio State University, Department of Evolution, Ecology, and Organismal Biology 1315 Kinnear Road, Columbus, Ohio 43212, USA Abstract.—Catfi shes are important in freshwater ecosystems not only as consumers, but also as essential partners in symbiotic relationships with other organisms. Freshwater mol- lusks are among the many organisms that have interactions with catfi shes. For example, icta- lurids are hosts for larvae of several native freshwater mussel species. The larvae, which attach briefl y to gills or fi ns of fi sh to complete their development to the free-living juvenile stage, disperse via upstream and downstream movement of host fi sh. In turn, freshwater mussels serve as a food source for some catfi sh species while other catfi sh species may use spent mus- sel shells for habitat. Ictalurids also benefi t from the conservation status of many freshwater mussel species. Federal and state laws protecting these invertebrates can preserve water qual- ity and habitat and, at times, provide incentives and funding for conservation and restoration of stream and riparian habitats.
    [Show full text]
  • Kyfishid[1].Pdf
    Kentucky Fishes Kentucky Department of Fish and Wildlife Resources Kentucky Fish & Wildlife’s Mission To conserve, protect and enhance Kentucky’s fish and wildlife resources and provide outstanding opportunities for hunting, fishing, trapping, boating, shooting sports, wildlife viewing, and related activities. Federal Aid Project funded by your purchase of fishing equipment and motor boat fuels Kentucky Department of Fish & Wildlife Resources #1 Sportsman’s Lane, Frankfort, KY 40601 1-800-858-1549 • fw.ky.gov Kentucky Fish & Wildlife’s Mission Kentucky Fishes by Matthew R. Thomas Fisheries Program Coordinator 2011 (Third edition, 2021) Kentucky Department of Fish & Wildlife Resources Division of Fisheries Cover paintings by Rick Hill • Publication design by Adrienne Yancy Preface entucky is home to a total of 245 native fish species with an additional 24 that have been introduced either intentionally (i.e., for sport) or accidentally. Within Kthe United States, Kentucky’s native freshwater fish diversity is exceeded only by Alabama and Tennessee. This high diversity of native fishes corresponds to an abun- dance of water bodies and wide variety of aquatic habitats across the state – from swift upland streams to large sluggish rivers, oxbow lakes, and wetlands. Approximately 25 species are most frequently caught by anglers either for sport or food. Many of these species occur in streams and rivers statewide, while several are routinely stocked in public and private water bodies across the state, especially ponds and reservoirs. The largest proportion of Kentucky’s fish fauna (80%) includes darters, minnows, suckers, madtoms, smaller sunfishes, and other groups (e.g., lam- preys) that are rarely seen by most people.
    [Show full text]