Wright State University CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2010

Constitutive and Jasmonate-Inducible Defenses in Phloem of Two North American and Two Asian Ash Species Grown in a Common Garden

Qin Wang Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

Part of the Biology Commons

Repository Citation Wang, Qin, "Constitutive and Jasmonate-Inducible Defenses in Phloem of Two North American and Two Asian Ash Species Grown in a Common Garden" (2010). Browse all Theses and Dissertations. 986. https://corescholar.libraries.wright.edu/etd_all/986

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. CONSTITUTIVEANDJASMONATEINDUCIBLEDEFENSESINPHLOEMOF

TWONORTHAMERICANANDTWOASIANASHSPECIESGROWNINA

COMMONGARDEN

AThesissubmittedinpartialfulfillment oftherequirementsforthedegreeof MasterofScience By QINWANG B.S.,ShenYangAgricultureUniversity,2007 2010 WrightStateUniversity WRIGHTSTATEUNIVERSITY SCHOOLOFGRADUATESTUDIES March14,2010 IHEREBYRECOMMENDTHATTHETHESISPREPAREDUNDERMY SUPERVISIONBYQINWANGENTITLEDConstitutiveandJasmonateinducible defensesinphloemoftwoNorthAmericanandtwoAsianashspeciesgrowninthe commongarden. BEACCEPTEDINPARTIALFULFILLMENTOFTHE REQUIRMENTSFORTHEDEGREEOFMasterofScience. DonCipollini,Ph.D. ThesisDirector DavidGoldstein,Ph.D. DepartmentChair CommitteeonFinalExamination DonCipollini,Ph.D. ThomasRooney,Ph.D. JohnO.Stireman,Ph.D. JohnA.Bantle,Ph.D. VicePresidentforResearchand GraduateStudiesandInterim DeanofGraduateStudies Abstract Wang,Qin.M.S.DepartmentofBiologicalSciences,WrightStateUniversity, 2009.ConstitutiveandjasmonateinducibledefensesinphloemoftwoNorthAmerican andtwoAsianashspeciesgrowninthecommongarden. EmeraldAshBorer(EAB)ismoredamagingtoNorthAmericanashesthanAsian ashes.VariationintheresistanceofashspeciestofeedingbylarvaeofEABmaybe relatedtovariationinlevelsofchemicaldefensesinthephloem.Icomparedconstitutive andmethyljasmonate(MeJA)induciblelevelsofseveralchemicaldefensesinthephloem ofyoungManchurian,Chinese,white,andgreenashes.Manchurianashisknowntobe highlyresistanttoattackbyEABinthefield,whilewhiteandgreenashesareboth susceptible.Thehypothesesofthisexperimentwerethat:(1)Manchurian( mandshurica)andChineseash(Fraxinus chinensis)’phloemorbarkcontains concentrationsofuniquesecondarycompoundsandhigherlevelofdefenseprotein activitiesthanwhiteandgreenash.(2)MeJAtreatmentwillinduceincreasesincontentof protein,Peroxidase(POD),polyphenoloxidase(PPO)contentandmostofthesecondary compoundsinallspecies.PhloemextractsofManchurianashshowedhighertotalsoluble proteincontentandsignificantlyfasterbrowningthanwhiteandgreenash,butlower peroxidaseactivityandpolyphenoloxidaseactivity.ActivitiesofPPO,POD,phenolic andlignincontent,andtherateofbrowningreactionswerenotfoundtoexhibit differencesbetweenMeJAtreatedanduntreatedgroups.However,ourHPLCresults revealedManchurianashcontainednineuniquephenoliccompounds:Homovanillic Alcohol,Esculetin,EsculinRelatedCmpd,Esculin,Fraxin,Fraxidinhexoside, Pinoresinoldihexoside,CalceolariosideA,CalceolariosideB.Wealsofoundobvious increasesinspecificcompounds(ofthe20compoundswereanalyzedinthefourash species)inGreenash,ChineseashandManchurianashintheMeJAtreatedgroup.Also, CanonicalDiscriminantFunctionAnalysisoffivecommoncompounds(Tyrosol Hexoside,Mandshurin,Pinoresinolcompound,SyringaresinolandOleuropein)revealed thatManchurianashwasdifferentfromtheotherthreeashes,butclosertoGreenashand Chineseash.GreenashandChineseashweresimilartoeachother.Whiteashwasvery iii differentfromallotherthreeashes.Inthisstudy,thehighlyresistantManchurianash wasdistinguishablefromthehighlysusceptiblewhiteashbyhavinghighertotalsoluble proteincontentandasignificantlyfasterbrowning.Thesusceptiblegreenashwas distinguishablefromManchurianashbyhavinglowertotalproteinlevelsandalower degreeofbrowning. ThephloemchemistryofgreenandChineseashwaslargelysimilar inthisstudy,indicatingthattheymaybesimilarintheirresistancetoEAB,andWhite ashshowedhadlevelsofperoxidaseactivity,polyphenoloxidaseactivity,contentof phenolicandlowerrateofbrowningreactionthantheotherthreespecies.Fromtheresult ofDiscriminateFunctionAnalysis,Whiteashalsoshowedmaximalseparationfromthe others.SinceWhiteashisassusceptibleasGreenashinNorthAmerica,Whiteashmay containdifferentcompoundsorenzymesthanGreenthatmaybeattractivetoEAB. iv T A B L E O F C O N T E N T S INTRODUCTION……………………………………………………………………....1 THEINVASIONOFEMERALDASHBORERTO GENUS FRAXINUS ..…...1 OBJECTIVES………………………………………...……………………………3 HYPOTHESES………………………………………………………..……….....3 BACKGROUNDOFEMERALDASHBORER………..…………..…………….3 CONTROLMETHODS...…………………………..……………………..……….4 A. PHYSICALCONTROL…………………………………..……………..…4 B.BIOLOGICALCONTROL……………………………………..……….....4 C.CHEMICALCONTROL…………………………………..………….....…5 RESISTANCEINASIANASHSPECIES……………………..………………...6 METHYLJASMONATEINDUCEDDEFENSES……..……………..8 MATERIALSANDMETHOD………………………..……………..……………...…10 PLANTSPECIESANDGROWTH………….…………………….………....…10 TREATMENTSMeJA……..………………….…………………………..……..10 MEASUREMENTS……..…………………………………………………..…...11 DEFENSEPROTEINEXTRACTIONANDANALYSIS………..………….....11 ASHPHENOLICANDLIGNINEXTRACTION…………...…………...... 13 IDENTIFICATIONOFPHENOLICSECONDARYCOMPOUNDS…...…...... 14 STATISTICALANALYSIS…………………………………...……...………....15 RESULTS………………………………………………………………………………16 PEROXIDASEACTIVITY………………...……………………………….....16 POLYPHENOLOXIDASEACTIVITY……………………………..………..16 v SOLUBLEPHENOLICCONCENTRATIONS……………………..………...17 TOTALAMOUNTOFLIGNIN……………………..…………………….….17 TRYPSININHIBITORACTIVITY………………………..………………….17 PROTEINACTIVITY……………………..………………………………..…17 RATEOFBROWNINGREACTION…………………………..……………..18 HPLC………..…………….…………………………………………….….….18 RESULTSOFTHECANONICALDISCRIMINANTANALYSIS……..……18 DISCUSSION…………………….…………………………………………………....20 LITERATURECITED…………………………………………………………………26 vi L I S T O F F I G U R E S FIGURE1. CONSTITUTIVEANDMEJA–INDUCIBLEPEROXIDASE

ACTIVITIESINPHLOEMEXTRACTSOFMANSHURIAN,CHINESE,WHITE

ANDGREENASH……………………………………………………...………………37

FIGURE2. CONSTITUTIVEANDMEJA–INDUCIBLE

POLYPHENOLOXIDASEACTIVITIESINPHLOEMEXTRACTSOF

MANSHURIAN,CHINESE,WHITEANDGREEN

ASH……………………………………………………………………………….…....38 FIGURE3. CONSTITUTIVEANDMEJA–INDUCIBLESOLUBLEPHENOLIC

CONCENTRATIONINPHLOEMEXTRACTSOFMANSHURIAN,CHINESE,WHITE

ANDGREENASH………………………………………………………………...…...39

FIGURE4. CONSTITUTIVEANDMEJA–INDUCIBLETOTALLIGNININ

PHLOEMEXTRACTSOFMANSHURIAN,CHINESE,WHITEANDGREEN

ASH……………………….…………………………………………………….……....39 FIGURE5. CONSTITUTIVEANDMEJA–INDUCIBLETRYPSININHIBITOR

ACTIVITYINPHLOEMEXTRACTSOFMANSHURIAN,CHINESE,WHITEAND

GREENASH………………………………………………………………………..….40

FIGURE6. CONSTITUTIVEANDMEJA–INDUCIBLESOLUBLEPROTEIN

CONTENTINPHLOEMEXTRACTSOFMANSHURIAN,CHINESE,WHITEAND

GREENASH………………………………………………………………………...…41

FIGURE7. CONSTITUTIVEANDMEJA–INDUCIBLE RATEOFBROWNING REACTIONINPHLOEMEXTRACTSOFMANSHURIAN,CHINESE,WHITEAND vii GREENASH……………………………..………………………………………….…41 FIGURE8. COMPARISIONOFHPLCPROFILESAT280NMOFCONSTITUTIVE

PHLOEMEXTRACTS(100%METHANOL)OFTWOMANCHURIANASHGROUPS:

TREATEDANDCONTROLGROUPSOVERLAY……………………….………….42

FIGURE9. COMPARISIONOFHPLCPROFILESAT280NMOF

CONSTITUTIVEPHLOEMEXTRACTS(100%METHANOL)OFTWOCHINESE

ASHGROUPS:TREATEDANDCONTROLGROUPSOVELAY……………….….42

FIGURE10. COMPARISIONOFHPLCPROFILESAT280NMOFCONSTITUTIVE

PHLOEMEXTRACTS(100%METHANOL)OFTWOWHITEASHGROUPS:

TREATEDANDCONTROLGROUPSOVERLAY.…………………………..….….43

FIGURE11. COMPARISIONOFHPLCPROFILESAT280NMOFCONSTITUTIVE

PHLOEMEXTRACTS(100%METHANOL)OFTWOGREENASHGROUPS:

TREATEDANDCONTROLGROUPSOVERLAY…………………………...,,……43

FIGURE12. RESULTOFTHEDISCRIMINANTFUNCTIONANALYSISOFFIVE

COMMONCOMPOUNDS(TYROSOLHEXOSIDE,MANDSHURIN,PINORESINOL,

SYRINGARESINOLANDOLEUROPEIN)ALLFOURSPECIESSHARE……...…44

FIGURE13. MAXIMUMLIKEHOODOFAREDUCEDSETOFTHEITS DATA.……………….……………………………………………………………....…45 viii L I S T O F T A B L E S TABLE1. RESULTOFAONEWAYANOVASEVERALDEFENSERELATED

CHEMICALTRAITSINFOURASHSPECIES…………………………………….…32

TABLE2. LISTOFPHENOLICCOMPOUNDSTHATWEREEXAMEDINASH

PHLOEMSAMPLESBYHPLC……………………………………………………….33

TABLE3. MEANPEAKAREAS(±SE)OFSELECTEDINDIVIDUALPHENOLIC

COMPOUNDSINWHITE,GREEN,CHINESEANDMANCHUEIANASHIN

CONTROLANDMEJATREAEDGROUPS………………………. ……..……….…34

TABLE4. CANONICALLOADINGOFTHEINDEPENDEDVARIABLESONFIVE

COMMONCOMPOUNDSAMONG4ASHSPECIES……………………………….36

ix ACKNOWLEDGEMENTS Iwouldliketoextendmysinceregratitudetomysupervisor,DonCipolliniforhis

instructiveadvice,encouragement,andsupportfromtheinitialtothefinallevelenabled

metodevelopanunderstandingofthesubjectandcompletionofthistwoyearthesis.

IamheartilythankfultomycommitteemembersThomasRooneyandJohnO

Stiremanfortheirassistanceandadvice.IwouldalsoliketothankStephanieEnrightand

DeahLeiuranceforassistingwithstatisticalanalysis.

Finally,Iamindebtedtoallmyfriendswhohaveputconsiderabletimeandeffort

intotheircommentsonthedraft,myparentsfortheircontinuoussupportand

encouragement.

Thisresearchwassupported,inpart,bytheDepartmentofBiologicalSciences, WrightStateUniversity. x INTRODUCTION

The invasion of to Genus Fraxinus

TheashgenusFraxinus isacommontreegenusinNorthAmericaforests.

Various Fraxinus speciesarewidelydistributedacrosstheeasternU.S,andportionsof

southeasternCanada,occurringinmanydifferentforestecosystems(Littleetal.,1953).

Fraxinus speciesarealsoeconomicallyvaluable.Thiswoodcanbeusedforbows,tool

handles,andofficefurnitureandsportsequipmentsuchasbaseballbats,andtheyare

importantornamentaltrees.However,inthelate1990s,ametallicwoodboringbeetle

(familyBuprestidae),knownastheemeraldashborer(Agrilus planipennis),haskilled

millionsoftreesinNorthAmericainlessthan10years,andcontinuestospreadto

northeasternNorthAmericaandevenCanada.Innaturalforests,EABmaydramatically

changethecompositionandsuccessiondynamicsofmanynaturalforests,andcause

widespreaddamagetourbanforestsinthecentralandeasternU.S.(MacFarlaneand

PattersonMeyer,2005).

RecentstudiesshowedthatanAsianashspecies,Manchurianash,ismoreresistantto

EABthanNorthAmericancongeners(Rebekatal.2007). In,EABmostlikely

attacksonlystressedashtrees,includingManchurianash(F. manshurica)(Gouldetal.

2005).However,healthyNorthAmericanashspeciesaresusceptibletoEAB,including

white(F. americana)andgreen(F. pennsylvanica)ash,andattackusuallyleadstodeath.

ThereasonEABisrareinmayberelatedtotheircoevolutionaryhistorywithAsian

Ashes,whichhaveevolvedtoresistthem(Gouldetal.2005).Thus,wehypothesizethat

thecompoundsproducedbyAsianash’sphloemconferresistancetoEABbecauseof theirpriorevolutionaryhistory.Inthisstudy,Itestedtendifferentproteinsand 1 compoundsamong4differentashspeciesfrombothAsiaandNorthAmerica.Theash

speciesincluded:Chineseash(Fraxinus chinensis),Manchurianash(F. manshurica ),

white(F. americana)andgreen(F. pennsylvanica)ash.WepredictedthatChineseash

andManchurianashwouldcontaineitherhigherlevelsofchemicaldefensesoraunique

profileofdefensesinthephloemcomparedtoNorthAmericanashes,someofwhichare

presumablyassociatedwithresistancetoEAB. 2 OBJECTIVES Hypotheses Mystudyfocusedoncomparingconstitutiveandinduciblelevelsofbothdefense

proteinactivitiesandsecondarycompoundsamongdifferentashtreesinthephloem,with

andwithoutMeJAtreatment.Myhypothesesare:(a)Manchurian(Fraxinus mandshurica)

andChineseash(Fraxinus chinensis)trees’phloemorbarkcontainsconcentrationsof

uniquesecondarycompoundsandhigherlevelofdefenseproteinactivitiesthanwhite

andgreenash.(b)ThesedefensesmaybespeciallyinducedbyMeJAandinvolvedin

resistanceofAsianashestoEAB.(c)MeJAtreatmentwillinduceincreasesinprotein,

Peroxidase,polyphenoloxidase,andmostofthesecondarycompoundsinallspecies.

Background on Emerald Ash Borer EmeraldAshBorer(Agrilus planipennis)isaninvasiveinsect,whicharrivedfrom

easternAsiacountriesthroughtheprocessofimportingmerchandiseshippedonsolid

woodpackagingmaterials.ThisinsectwasfirstofficiallyfoundintheDetroit,Michigan,

U.S.,areainthesummerof2002(Hermsetal.2004).EABisaninvasivebarkfeeding

beetlethatcankillhealthytreeswithinashortperiodoftime.Thisbeetlenormallylay

eggsonstressedtrees,butwhentheEABpopulationsincrease,theywillalsoattack

healthytrees.Astheresult,youngerashtreescanbekilledwith12years,andlarger

treescannotsurvivelongerthan4years.Thisbeetlelaysitseggsintheregionofthe

secondaryphloem,wherelarvaecreatetunnelscalledgalleries.TheEABadultscause

littledamagebychewingonash,butthelarvaefeedontheinnerbarkofashtrees,

disruptingthetree'sabilitytotransportnutrients,resultingindeathforthetree.Currently, 3 theEABhasalreadyinfestedandkilledmillionsofashtrees(Fraxinus spp.)inMichigan,

Ohio,Indiana,MarylandandOntario(Hermsetal.2004)andhasthepotentialto

decimateallNorthAmericanashspecies.Treeremovalandreplacementcostwould rangebetween$1billionand$4.2billioninOhioalone(Polandetal.2006).Themethods

currentlyusedtocontrolEABcanbeclassifiedinthreeways:physicalcontrol,biological

control,andchemicaltreatment.

Control methods A. Physical control Physicalcontrolmethodsincluderemovalandchippingofinfestedashtrees.Thiscan

onlybeeffectivebeforetheinfestationsspreadtonearbyhost.Smallinfestationsin

alocalizedareathataredetectedearlymaybeeradicatedeasily,butmoreserious

infestationscannotbecontrolledbythismethodbecauseEABadultscansurviveand

spreadfrominfestedtouninfectedareasbymovingfirewood(Mcculloughetal.2007).

Physicalcontrolisnotaveryefficientwaytosolvetheproblem.

B. Biological control Biologicalcontrolhasbeenusedforover100yearsintheU.S.andisconsideredtobe

ascientificandefficientwaytocontrolbeetles.RecentlyinChina,researchersfound

severalnaturalenemiesofEABthatmaybeusefulasbiologicalcontrolagentsinNorth

America(Haacketal.2002;Liuetal.2003). wasfoundparasitizingupto

90percentofEABlarvaeinashtreesinChina.FemaleSpathius parasitizeEABlarvaeby drillingthroughthebarkandlayingupto20eggsonitshost.Thehatchingparasitoid 4 larvaefeedanddevelopintheEABlarva,resultingititsdeath(GouldandBauer2007).

Tetrastichus planipennisi andOobius agrili alsohavebeenconfirmedtosuccessfully

controlEABpopulationsinnortheasternAsia,whichistheareaofEABintroductionin

Chinathroughsurveys.However,candidatespeciesfoundinChinamaynotbeused

effectivelyagainstEABinNorthAmericabecauseofenvironmentaldifferencessuchas

optimumtemperatures,relativehumidity,andphotoperiod.Findingasuitablenatural enemyforeliminatingEABwillrequirelongtermstudies. C. Chemical control Acommonmethodbeingusedtopreventinfestationofhealthytreesfromadult

beetlespresentlyischemicalcontrolmethods.InsecticidesusedforcontrolofEABfall

intothreecategories:(1)systemicinsecticidesthatareappliedassoilinjectionsor

drenches;(2)systemicinsecticidesappliedastrunkinjectionsortrunkimplants;and(3)

protectivecoverspraysthatareappliedtothetrunk,mainbranches,andfoliage(Herms

etal.2007).However,chemicalmethodsaremorepracticalforpreventinginfestationof

ashtreesinurbanareasthaninnaturalareasbecauseinsecticidesinjectionscanbevery

expensiveandtimeconsumingtoapply.Moreover,researchandexperiencehaveshown

thatbestcontrolwillbeobtainedwhentreatmentsareinitiatedintheearlieststagesof

infestationbeforevisiblesymptomsarepresent,orperhapseventheyearbeforetreesare

infested.Itisalsoimportanttorealizethattreatmentswillhavetoberepeatedeachyear.

Insomecases,itmaybemorecosteffectivetoremoveandreplacethetree. 5 Resistance from Asian ash species ArecentstudyshowedthatanAsianashspecies,Manchurianash,ismoreresistant

tothebeetlethanitsNorthAmericancongeners(Rebeketal.2008). Incommongarden

studiesinthecoreinfestationzoneofEABinMichigan,Greenashandwhiteashreceive

muchmoreattackbyEABandaremorelikelytodiefromattackthanManchurianash

(Rebeketal.2008).LarvalEABtendtomakesmallerfeedinggalleriesonManchurianash

thanonsusceptibleNorthAmericanashes.Also,EAB hasafasterdevelopmenttimein

NorthAmericathanAsia.TheresearchfromWeietal.(2007)confirmedthatEAB

requirestwoyearstocompleteonegenerationinHarbin,Province(Yu, 1992)inNortheastofChina,whileEABgenerallyhasa1yearlifecycleinsouthern

Michigan(Mastroet al.,2007), southernOhioandtheMarylandarea.Allthelocations

havethealtitudesrangbetween35°N45°Nandhaveasimilarclimateenvironment.

NortheastofChinaalsowasthefirstplacethatlifehistoriesofEABweredocumented.

InRebeketal.’s(2008)study, severaldifferentspeciesofNorthAmericanandAsianash

werecomparedfortheirsusceptibilitytoEAB,includingtwonativegreenash,

onenativewhiteash,anAsianspecies,Manchurianash,andanF1cross

betweenNorthAmericanblackash(female)andManchurian(male).Theplantationwas

inoculatedwiththeherbivorewithashlogsinfestedwithEAB.Theresultsshowed

ManchurianashhadamuchlessdamageandhighersurvivalratethanNorthAmerican

ashes.TheF1hybridhadalowsurvivalrate.ThissuggeststhattheF1hybridcultivar

morecloselyalignsgeneticallywithitssusceptibleNorthAmericanparentrelativeto

emeraldashborerresistancetraits. 6 ThereasonEABislessdamaginginAsiamayberelatedtotheircoevolutionaryhistory

withAsianAshes,whichhaveevolvedtoresistthem(Gouldetal.2005).Plantscan

evolvetheabilitytoproducetoxinsthatcanreduceherbivrefitnesswhenbeingattacked

(DevendraandBhavdish,2008).Thus,wehypothesizedthatthecompoundscontainedin

ManchurianandChineseashphloemconferresistancetoEABbecauseoftheirprior

evolutionaryhistory.

Onecommonstrategyforhigherplantstodefendagainstherbivoresdeterrenceis

throughthewoundinducedexpressionofplantdefenses(Howe,2004).Productionof

particularresistancephytochemicalsisinitiatedbycomplexsignaltransductionpathways,

whicharerelatedtospecificsignalsatthesiteoftissuedamage.Theresistance

phytochemicalwillchangetheplant’sgeneexpressionandmetabolismandnegatively

affectherbivoregrowthandreproduction(Howe,2004). Findingsecondarycompounds

andproteinsthatconferresistancetoEABisthefirststeptodevelopmentofnew

effectiveEABcontrolprocedures.

Eylesetal.(2007)comparedthesecondarycompoundsinphloemfromthemainstem

ofwhite(Fraxinus americana L.),green(Fraxinus pennsylvanica Marsh.),and

Manchurianash(Fraxinus mandshurica).Manchurianashwasdistinguishedfromthe

NorthAmericanashspeciesbyitsuniquecontentofhydroxycoumarins(particularly

fraxin,mandshurin,andfraxidinhexoside),andsignificantlyhigherconcentrationsof

pinoresinolglucosideandpinoresinoldihexoside(Eylesetal2007).Manyplantβ 7 glucosidesarecyanogenic(Silvaetal2004);thatmeansoncebeinghydrolyzedbyaβ

glucosidase,theaglyconespontaneouslygeneratescyanide.Thismayimpairinsect

developmentbyinhibitingtrehalase,whichisakeyenzymeforcontrollingglucose

availabilityininsects.Therefore,highconcentrationsofPinoresinolglucosidemaybea

componentofresistanceinManchurianashthatcanaffectproteindigestibilitybyinsects.

Anumberofproteinsindifferentashspecieshavealsobeeninvestigatedthathave

potentialfunctionsrelatedtodefenseagainstEAB(Eylesetal.2007).Cipollini

(unpublisheddata)showedthatManchurianashhadhighlevelsoftrypsininhibitor,

polyphenoloxidaseactivity,andlowerlevelsofperoxidaseactivityandtotalsoluble

proteincontentthanwhiteorgreenash.Guaiacolperoxidase,polyphenoloxidaseand

trypsininhibitorareoftenassociatedwithinducedresistancetobothpathogensand

insects(Cipollinietal2004). Methyl Jasmonic induced plant defenses

Jasmonicacid(JA)anditsmethylester,methylJA(MeJA)aremembersofthe

jasmonatefamilyofoxylipins(FarmerandRyan1990;FarmerandRyan1992;Howeet

al.1996).StudiesusingMeJAtreatmenttoinducebarkdefenseshavemadegreat

progress.JAandMeJAbothhavemajoraffectsontheexpressionofwoundinducible

proteinaseinhibitors(PIs)andotherdefenses(Heil2005).Theyareselfprotection

mechanismstocopewithherbivory.Wheninducedbymechanicaldamageorinsect

attack,JAcanincreaseantiherbivoreproteingeneexpression,likeproteinaseinhibitor

andpolyphenoloxidase(PPO)thatinhibittheinsectdigestionprocess.Bothproteinase 8 inhibitorandPPOcanenhancethedeathrateofinsectlarva,orwillreducegrowthand survivalofmanyinsectherbivores(Heil2005). 9 MATERIALS AND METHODS Plants species and growth FouryearoldsaplingsofManchurianash(Fraxinus mandshurica),Chineseash

(Fraxinus chinensis),Whiteash(Fraxinus americana)andGreenash(Fraxinus

pennsylvanica )wererandomlyplantedinacommongardenonthecampusofWright

StateUniversityinMay2007.Therewere10greenash(Fraxinus pennsylvanica),11

whiteash(Fraxinus americana),8Manchurianash(Fraxinus mandshurica)and10

Chineseash( Fraxinus chinensis).Treeswerespacedabout3metersfromeachother,

withmowedgrassinbetween.Allthetreeswerewateredthreetimesthroughoutthefirst

growingseasoninadditiontonaturalrainfalltopromoteestablishment.Alltreesboreat

leasttwobranchesthatwereuseable(healthyandlongerthan10cm)forexperiments.

Treesweregrownundertheseconditionsfor14monthspriortotheiruseinexperiment.

Treatments-MeJA:

MethylJasmonicacid(MeJA)isadefensehormonethatcaninduceincreasesin

chemicaldefensesafterwoundingortheinsectfeedingprocess.Oneachtree,twosize

matchedbrancheswereselected.Onebranchwastreatedby100mmol/LMeJAinwater

with0.1%Tween20;thematchedbranchwastreatedwithonly0.1%Tween20for

comparison.(Tween20isacommondetergent,whichisoftenusedasasurfactantto

solublizetheMeJAandlimitevaporation).OnJuly23,2008,Iapplied1mlofthe

solutionsforeachbranchbyusingamediumsizedpaintbrushtohelpspreadthesolution

evenlyonthebranchbarksurface.MeJAsolutionwasplacedona10cmlongbark

surfaceoftreatedbranches.Twodayslater,Irepeatedthesametreatment.Threedays 10 later(07/25/2008)treatedbrancheswerecutfromthetrees.Thesamplesweretaken

between8cmand10cmlong,andincludedonlythetreatedportionofthebranch.Forthe

samplesfromeachtree,thetreatedanduntreatedbrancheswereputinthesamebag,

whichwereseparatelylabeledbyusinggreenandyellowstickers.Attheendofthe

collection,Iplacedallthesamplesondryice,tookthembacktothelabandplacedthem

20 oCfreezerforextractionlater. Measurements: Defense protein extraction and analysis Phloemsamplesofeachspecieswereobtainedbydissectingbranchesusingarazor

blade,weighed(around1g)andgroundinliquidnitrogen.Solubleproteinswereextracted

fromgroundtissuesinicecold0.01MSodiumPhosphatebufferpH6.8containing5%

PVPP.Homogenateswerecentrifugedfor10minat7,000xg,andthecleared

supernatantsweretransferredtofreshtubes.Forprecipitatingmostsolubleproteins,

acetoneprecipitationwasperformedfollowingtheextraction.Tenmlofcoldacetonewas

addedto2mlofextractandwellvortexed.Tubeswereplacedinafreezerfor30mins.

Aftercentrifugationat7000rpmfor10min,thesupernatantwaspouredoutandthe

pelletwaskept,andairdriedfor30mins.Thenpelletwasresuspendedin1.5mlof0.02 MNaphosbufferpH6.8,byvortexing,andextractswerestoredat20oCuntiltheywere

analyzed.

Polyphenoloxidase,peroxidase,andtrypsininhibitoractivitieswereassessedinthis

experiment.ThemethodswereconductedasinMoran&Cipollini(1998). 11 Polyphenoloxidaseactivitywasdeterminedbythefollowingprocedures;Isetupand

labeledastandardmicoplate(96wellplate).Thefirstcolumnwasfilledwithblanksand

therestofthewellswereforsamples(induplicate).Iadded40ulofNaPhosbufferfor

blanks.Forthesamplewells,eachcontained0.030mlextractand0.00294Mcaffeicacid

in0.05Msodiumphosphatebuffer,pH8.0.Ikeptthemicoplateonicewhileloading

samples.Sampleswereanalyzedbyusingamicroplatereader.Polyphenoloxidase

activitywascalculatedasthechangeinabsorbanceat470nmperminutepermilligram

1 1 protein,expressedasAbs470nm xminute xmgextractprotein (CipolliniandRedman 1999).Peroxidaseactivitywasassayedusingasimilarassay,withguaiacolandhydrogen

peroxideassubstrates.0.015mLproteinextractand0.015ml25%guaiacolwithpH6.0

wereusedasthesubstratein0.01MNaPhosphateBuffer,pH6.0.andthechangein

absorbanceat470nmperminpermilligramofproteinwasfollowedinthemicroplate

reader(Cipollini1998).Trypsininhibitoractivitywasassayedusingtheagarplate

diffusiontechniquedescribedinCipolliniandBergelson(2000).Phloemextractswere

loadedintowellsinanagarplatesupplementedwithtrypsin.Theplatewasthenstained

toshowunboundtrypsinafter18hoursofdiffusion.Thediameterofclearhalosaround

thewellswascorrelatedwiththeamountoftrypsininhibitorusingastandardcurve.

1 Trypsininhibitorcontentswasexpressedasgtrypsininhibitorxmgextractprotein

andgtrypsininhibitorxgFW1..

Newextractsweremadeonlyforbrowningrateanalysis.Theprocedurewassimilar

tothatforproteinanalysisexceptnotcontainingPVPPinthebuffer.Thebrowning

reactionwasexaminedimmediatelyafterremovalofsupernatantsfromthecentrifuged 12 phloemhomogenates.0.3mLaliquotsofeachsolubleextractwereplacedinastandard

micoplate(96wellplate)andtheabsorbanceat470nmwasrecordedtwice:beforeand

after1hrincubationatroomtemperature.Thebrowningreactioncouldbeobserved

withinafewminutesaroundwoundedphloemtissuesofash,andisdriveninplant

tissuesprimarilybytheactionofphenoloxidases(includingbothperoxidaseand

polyphenoloxidase)onendogenousphenolicsresultinginquinoneformationand

subsequentpolymerization(ChengandChrisosto1995,Dehonetal.2002).Wepropose

thathigherrateofbrowningreactionmayrelatetoastrongerselfhealingability.Therate

1 1 ofbrowningreactionwasexpressedasAbs470nmxhr xmgextractprotein and

1 1 Abs470nm xhr xgFW .

Totalproteinofallextractswasmeasuredusingbovineserumalbuminasastandard

andbioRadproteindyereagentasdescribedinBradford(1976).Allassayswere

performedinduplicate.

Ash soluble Phenolic and Lignin Extractio Phloemsamplesofeachspecieswereweighedto100mg,groundinliquidnitrogen,

andextractedtwicewith500MLofHPLCgrade100%methanol(Fisher,Pittsburgh,PA)

for48hourinthedarkat4oC.Extractswerecentrifugedfor5minathighspeed

(13400rcf).Supernatantswereusedfortotalphenolics,andthepelletwasusedforlignin

assays.PhenoliccontentwasanalyzedbyusingtheFolinmethodofBonelloandPearce

(1993).TwoLofmethanolextractwereaddedto75Lofmethanoland500Lof

waterandmixed,then37.5LofFolin’sPhenolReagentwereadded(Sigma,St.Louis, 13 MO).ThreeminuteslaterIadded37.5Lof1MNaHCO3andmixedthoroughly.After

onehourincubationatroomtemperature,thesampleswereanalyzed

spectrophotometricallyagainstastandardcurveofgallicacidat725nm.Phloemtissue

wasextractedtwicein500ulofHPLCgrademethanol(Fisher,Pittsburg)for24hat4oC.

Thesupernatantswerestoredat20 oCtilltheywereanalyzedbyHPLC.HPLCanalysis wasconductedasinEylesetal(2007). TheproceduresforligninmeasurementwereasdescribedbyBonelloandBlodgett

(2003,2007)werefollowedwithslightmodifications.Inbrief,thepelletsforphenolic

extractionwerewashedwith1mlofwaterand0.9mloftert-butylmethylether(Sigma).

Thepelletswerelefttodryovernight,andthenprocessedaccordingtothemethodsof

BonelloandPeace(1993).Inbrief,aftertheadditionof2mlof0.5MaqueousNaOHto

thepellet,thesuspensionwasheatedinastopperedtubefor16hat80C.Aftercooling,the residuewascentrifuged,1.6mlofthesupernatantwastaken,adjustedtopH7.9with2.5M HCI,andmadeupto2.5mlwithwater.Followingthis,0.5mlofthesolutionwasdiluted with2.5mlof0.06MaqueousNaOH.TheUVspectrumofthislastfraction(pH12)was determinedagainstthatofthefractionatpH7.9usingaVarianspectrophotometer(Series

634;VarianLtd,WaltononThames,UK)connectedtoaVarianrecorder(Model9176). Thespectrumwasrunbetween220and400nm.

Identification of phenolic secondary compounds:

CompoundswereidentifiedbyHPLCasinEylesetal.(2007).Thegraphsproduced

fromtheHPLChavepeaksthatcorrespondtospecificsolublecompounds.Peaks 14 showingsignificantconcentrationsweretargeted.Iselected20majorpeaksforanalysis

thatmatcheduptothecompoundsalreadyidentifiedinashspeciesinEylesetal,2007.

Concentrationsofeachcompoundweredeterminedusingpeakareas.

Statistical Analysis:

TheprogramSASwasusedforstatisticalanalysis.NestedANOVAwasusedfor

statisticalanalysis,anddefenseproteinactivitiestotalproteincontent,ligninandthe

browningreactionwerecomparedamongfourspeciesandamongmethyljasmonate

treatments.TwofactorsinthemodelincludedspeciesandMeJAnestedwithinspecies.

SinceImeasuredmultipleattributesofthesameindividualtrees,Pvalueformultiple

comparisionswereadjustedbyusingaBonferronicorrection.Wefoundnosignificant

differencesbetweentreatedanduntreatedgroups,soweredidtheanalysisbyusingone

wayANOVAwithspeciesastheindependentvariable.Canonicaldiscriminantanalysis

(CDA)wasusedtodeterminewhetherdifferencesinplantsphenolicchemicallevels

separateallfourspecies.Canonicaldiscriminantanalysis(CDA)isamultivariate

statisticalprocedure(CampbellandAtchley,1981).CDApermitscomparisonofthe

degreeofvariabilityexistingandsimultaneouslyexaminesdifferencesinthechemical

variablesandindicatestherelativecontributionofeachvariabletodiscriminationamong

species.Fivephenoliccompoundsthatallashspeciescontainedwereusedasvariables

fortheanalysis.IusedthePROCCANDISCprocedure,withspeciesasthefactor.Log

transformationwasappliedasneededtomeettheassumptionsofnormality. 15 RESULTS MeJAhadnodiscernableeffectonlevelsofperoxidase,polyphenoloxidaseand

Trypsininhibitoractivitiesoronphenolics,ligninandbrowningreaction.Therefore,all

analysesofthesecompoundsfocusedondifferencesbetweenspecies.

Peroxidase activities Fig1A(Activityperunitextractprotein)andFig1B(Activityperunitfreshmass)

bothshowedthatdifferencesinPODactivitiesamongspecieswassignificant(Table1).

GreenashandChineseashshowedhigherperoxidaseactivity,whiteashhadthelowest

activityperunitprotein(Fig1A).Manchurianashwasintermediate.InFigB,theresult

alsoshowsGreenashhadthehighestperoxidaseactivities,whileManchurianashhad

similarbutloweractivitythanGreenash(Fig1B).Whiteashwasstillthelowest.

PeroxidaseactivityofChineseashislowerthanGreenashandManchurianash,but

muchhigherthanWhiteash.

Polyphenoloxidase activity

ItshowedsomedifferencesinbothperunitProteinandperunitmass.Chineseash

andGreenashhadsimilarhighpolyphenoloxidaseactivities(Fig2A).Whiteashand

Manchurianashhadlowerpolyphenoloxidaseactivities(Fig2A).Whenanalyzedpermit

mass,ChineseashandGreenashwerestillhadthesamelevelofpolyphenoloxidase

activities,andWhiteashandManchurianashhadlowerpolyphenoloxidaseactivities.

OnewayANOVA(Table1)resultsshowedpolyphenoloxidaseactivitiesshowed 16 significantdifferenceamongspeciesrelativetoprotein,butthereisnosignificant

differencerelativetomass(Table1).

Soluble phenolic concentration ChineseashandGreenashweresimilarandrelativelyhigh.Manchurianashwas

lower,andwhiteashhadthelowestlevel.Significantdifferencesinphenolicsactivities

werefoundamongallashspecies(Table1).

Total amount of lignin Therewasnosignificantdifferenceintotalligninamongspecies.(Fig4),(Table1). Trypsin inhibitor activity Chineseashhadthehighesttrypsininhibitoractivitiesperunitprotein(Fig5A),

GreenashwasslightlylowerthanChineseash,butnotdifferent.Manchuianashtrypsin

inhibitoractivitieswerethelowestbutnotdifferentthanWhiteash.Fortheperunit

mass,analysisnosignificanteffectsamongspeciesintrypsininhibitoractivitieswas

observed.(Fig5B),(Table1).

Protein content

Manchurianashshowedthehighestamountoftotalprotein(Fig6).Greenash,

ChineseashandWhiteashwereatthesimilarlevel,andlowerthanManchurianash.

Therewasasignificantdifferencetheamountoftotalproteinamongspecies(Table1). 17 Rate of browning reaction Manchurianashwasfoundtohavemuchhigherbrowningreactionratethanwhiteash

(Fig7).GreenashwasalittlelowerthanManchurianash,butsimilar.Chineseashwas

intermediate.OnewayAVOVAdatashowedtherewassignificantdifferencesamong

species(Table1).

HPLC profiles Table2and3showsthe20compoundsthatwereanalyzedinthe4ashspecies.They

sharefivecompounds:3.(TyrosolHexoside),10.(Mandshurin),12.(Pinoresinol

compound),14.(Syringaresinol)and19.(Oleuropein).Manchurianashinparticular

containednineuniquecompoundsfromtheother3species,2.(HomovanillicAlcohol),4.

(Esculin),5.(EsculinRelatedCmpd),7.(Esculin),8.(Fraxin),9.(Fraxidinhexoside),

11.(Pinoresinoldihexoside),15.(CalceolariosideA),18.(CalceolariosideB).Also,

compounds6.(Syringin/Oleoside),13.(PinoresinolGlucoside),16.(Oleuropein

hexoside),20.(Ligustroside)werefoundintheother3ashspeciesbutwerenotpresent

inManchurianash.TherewasnoobviousevidenceofMEJAtreatmentinductionfound

inMeJAtreatedgroup.

Result of the Canonical discriminant analysis

Thecentroidvaluesforthefivecompoundscanonicaldiscriminatefunctionsforthe

fourcultivarswereplotted(Figure12).Weanalyzedfivedifferentcompoundsthefour

ashspeciesallshare,includingTyrosolHexoside,Mandshurin,Pinoresinolcompound, 18 SyringaresinolandOleuropein.ThedistributionshowedManchurianashwasfar

differentfromtheotherthreeashes,spreadintherightuppersideofthegraph.Chinese

ashandGreenashclustercloselytoeachotheronthemiddlerightside.Whiteashis

maximallyseparatedfromtheothers,gatheredaroundattheleftsideofthegraph.The

firstthreecanonicalvariatesweresignificant(Table4)(P<0.01).Eachcanonicalvariate

isthelinearcombinationoftheindependentvariables(traits).Canonicalcorrelation

measuresthestrengthoftheoverallrelationshipbetweencanonicaldiscriminantvariate

andfivecompoundsforallfourdifferentashspecies.Thesignificantcanonical

correlationbetweenfivecommoncompoundsandthefirstcanonicalvariate(r=0.86),

compoundsandsecondcanonicalvariate(r=0.63)andcompoundsandthirdcanonical

variate(r=0.52)indicatesthatthecanonicalvariatescanexplainthedifferentiationof

thespeciesonthebasisoffivecommoncompounds.Also,thedatafromthefirst

canonicalcorrelation(table4)showedEsculetinhadthelargestCanonicalloadingonthe

firsttwodiscriminantvariates.AsianashandNorthAmericanasharedifferentinnot

onlycontaininguniquecompounds,butalsoforthecompoundstheyshare;thereare

significantdifferencesinthequantitiesforeachspecies. 19 DISCUSSION TheobjectiveofthisexperimentwastodetermineifManchurianash,whichhas

higherresistancetoEABthanNorthAmericanashes,mayhaveuniqueordramatic

differencesintheamountofdefensivecompoundsandproteinsthanNorthAmericanash

species.Fromourresults,Manchurianashdidshowhigherlevelofproteincontentper

freshmassandhigherrateofbrowningreactionthantheotherspecies.

IhypothesizedthatManchurianandChineseashwouldhavehigherlevelsofdefensive

proteinactivitythanWhiteandGreenash.Manchurianashdidnotexhibithigher

activitieslevelofPPOandPOD.However,ChineseashandGreenashbothhadhigher

andsimilarlevelsofactivityofPPOandPOD.ChineseashandGreenasharewidely

separatedindistribution:Fraxinus pennsylvanica (Greenash)isdistributedinthecentral

andeasternUSA,Canada,andFraxinus chinensis (Chineseash)isfoundinand

northernChina.AccordingtoaphylogeneticreconstructionofthegenusFraxinus based

ontheDNAsequencesfrom106nuclearribosomalITSdata(Fig13.)(Wallander,

2008),Fraxinuspennsylvanica(Greenash)andFraxinuschinensis(Chineseash)are

widelyseparatedintwodifferentclades.Thefactthatthesetwoashspecieshadsuch

similardefenseactivitiescannotbeexplainedbytheirphylogeneticrelationship.Itis

possiblethatourcultivarofChineseAshwasactuallymisidentifiedandactually

representsaGreenashorGreenxChinesehybrid,butwelackadditionalevidencein

supportofthishypothesis.Manchurianashdidstandoutontherateofbrowningreaction

andtotalproteincontent.ChineseashandGreenashhadasimilarlevelandwhiteash 20 hadthelowestrateofbrowningreaction.ThismatchesthefactthatManchurianashis

moreresistanttoEAB.

ThefourashspecieswerealsotreatedwithMeJAtoseeifithadanyeffecton

activitiesofthedefenseproteinsandothertraits.Ouranalysisshowedtherewasno

significanteffectofthistreatmentonanyashspecies.Thisresultdidn’tsupportour

hypothesisthatashsampleswithMeJAtreatmentshouldhavemuchhigherproteinand

enzymesactivitiesthanourcontrolones.Thisresultmayhavebeencausedbylow

concentrationofMeJA(100mMMeJAwith0.1%Tween20detergentin10Ldistilled

water),whichweusedbasedonpreviousstudiesusedonpinetrees(Heijarial,etal.2008).

InHeijarial’sstudy,theMeJAsolutionwasusedatthesameconcentrationaswe

mentionedabove.Theyappliedtreatmentsolutionsoverthewholetreeincludingneedles,

branches,andbarkofthetrunkbyusingahandheldsprayer.Treatmentsweregiventhree

timesduringtwoweeks.Surroundingtreeswereprotectedfromthespraymistwitha

portableplasticscreen.Ourtreatmentwasonlyplacedonsmallsectionsofselected

matchedbranchesandsolutionswereappliedtwotimeswithinoneweek.InHeijarial’s

study,needlechemistrywastested,including:monoterpenes,sesquiterpenes,and

tricyclicresinacids.TheresultshowedMeJAtreatmentcausesincreasesof

monoterpenesandsesquiterpenesincertainyoungpinetreespecies(Heijarial,etal.2008).

Onepossiblereasonforourunexpectedresultsmightbethatdifferenttreespecieshave

differentresponsetoMeJA. 21 Inouranalysis,WhiteashshoweddistinctresultscomparedtotheotherNorth

Americanspecies.Forinstance,ithasconsistentlylowlevelsofPODactivities,low

solublephenolicconcentrationandalowrateofthebrowningreaction.Thereisno

evidencethatwhiteashcultivarsareanymoresusceptibleormoreattractivetoEABthan

otherNorthAmericanashspecies.

Themechanismsofresistanceinashspeciestoinsectsarelargelyunknown.Our

HPLCanalysisfocusedon20compoundsbasedonpreliminarydata(Whitehill,personal

communication).Thefourashspeciescontainedseveraldifferentcompounds.

Manchurianashhadninecompoundsnotfoundintheotherspecies.Theywere

HomovanillicAlcohol,Esculin,EsculinRelatedCmpd,Esculin,Fraxin,Fraxidin

hexoside,Pinoresinoldihexoside,CalceolariosideA,CalceolariosideB.Italsocontained

aparticularlyhighamountofSyringin/Oleoside,PinoresinolGlucoside,Oleuropein

hexosideandLigustroside.OurresultalsoshowthatChineseashandGreenashhave

moresimilarityinproteinandenzymeactivities,andmanycommoncompounds.InEyles

etal.(2007),phenolicprofilesofyoungManchurian,white,andgreenasheswere

examined.TheirHPLCresultwasconsistentwithoursandrevealedauniquecontentof

fraxin,fraxidinhexoside,calceoloariosidesAandBandsignificantlyhigherconcentrations

ofPinoresinolGlucosideinManchurianash. EsculinhasbeensuggestedbySilvaetal.(2006)toretardinsectdevelopmentby

inhibitingamajorenzymewhichcontrolsglucoseavailabilityininsects.Pinoresinol,

whichisoneofthesimplestlignins,alsowasdetectedinasignificantlyhigheramountin

Manchurianash(Eylesetal.2007).Somelignanmembershavebeenshowntohave 22 antifeedantactivityandcaninhibitlarvalgrowthofbloodsuckingbug(Cimex lectularius) andmilkweedbug(Oncopeltus fasciatus)(Cabraletal.1999;Garciaetal.2000). Buschmannetal.(2002)foundoutthathydroxycoumarinsplayanimportantrolein

plantswoundingresponses,andinducestheproductionofdefensivecompoundsand

enzymes.Hydroxycoumarins(1esculin,2scopolin,3esculetin,4scopoletin)arefound

inthecassavaroot,whichwereprovedbyRodriguezetal.(2000)tohavepossible

functionsasantimicrobialactivitiesagainstavarietyofdifferentfungalandbacterial

organisms.OtheruniquecompoundsofManchurianashsuchasHomovanillicAlcohol,

Fraxin,Fraxidinhexoside,CalceolariosideA,andCalceolariosideBhavenotbeen

examinedfortheirbioactivity.

WefoundthattherewasasignificantincreaseinsomecompoundsafterMeJA

treatmentinthreeashspecies.ForGreenash,tencompoundswedetectedtohave

increasedafterthetreatment.InManchurianash,elevencompoundswerefoundto

exhibitdramaticincreasesoutofsixteen.InChineseash,sixcompoundsincreased.There

wasnosignificantincreasecompoundsinWhiteash.ThisresultimpliesMeJAtreatment

hasapositiveeffectbyinducingcertaindefensecompoundsonManchurianash,Green

ashandChineseash,butnotseveralothertraitsthatwemeasured.

Althoughourresultdidn’tshowdifferencesinlignincontentamongspecies,ligninis

knowntoperformaleadingroleininduceddefensivereactionsonlivingtrees(e.g.Akai

andFukutomi1980;Wainhouseetal.1990).Manypreviousstudieshaveshowedthat 23 ligninisoneofthemostimportantdefensivechemicalsinplantsdefenseagainstfungi

(e.g.AkaiandFukutomi1980).Ithasalsobeenshownthatthepresenceoflignininbark

canaffectbarkfeedingandbeetletunneling(Wainhouseetal.,1990).Ligninreduces

damagebysprucebarkbeetle(Dendroctonus mican)(Wainhouseetal.,1990).Spruce

barkbeetleisalsoaninvasiveinsect,whichwasaccidentlyintroducedtoBritainfrom

mainlandEurope(BevanandKing1983).Nowitiswidelydistributedinspruce

plantationsinWalesandthewestMidlands.Ligninreducedlarvalsurvival,growthrate,

andweight(Wainhouseetal.,1990).Atthesametime,anumberofothersignificant

changeswereinducedbywounding,includinganincreaseintheconcentrationof

nitrogenanddecreasesinthemoisturecontentandtheconcentrationoffreesugars

(Wainhouseetal.1998).SimilarfactorsmayalsobeimportantforashresistancetoEAB. Overall,wecomparedAsianashandNorthAmericanashspeciesamongdifferent

factors.Significantdifferencesinthechemicaldefensewerefoundbetweenresistantash

species(Manchurianash)andNorthAmericaash.MeJAtreatmentwasappliedtoallfour

ashspecies.ActivitiesofPPO,POD,contentofphenolicandlignin,therateofbrowning

reactionswerenotfoundtoexhibitdifferencesbetweentreatedanduntreatedgroups.

WhetherdefensechemicalswereinducedbyMeJAonashtreeswasunclearsinceno

cleardifferenceswasfoundbetweentreatedanduntreatedgroupsonactivitiesofdefense

protein,buttherewereclearlypositiveeffectsonsomecompoundsfromourHPLCdata.

WefoundincreasesofspecificcompoundsinGreenash,ChineseashandManchurian

ash.ThefactthatManchurianashhasmoreresistancetoEABmayberelatedto

particulardefensesbeinginducedinManchurianashtoEABattack.WhetherAsianash 24 treescouldproducecertainchemicalcompounds,whichhasastronginfluenceonEABis

stillunknown.AnumberofstudiessuggestthatNorthAmericanashabundanceisa

positivelyassociatedwiththedisturbanceinthelandscape(Fowells,1965;Taylor,1971;

Arevaloetal.,2000;Lesica,2001;Battagliaetal.,2002).NorthAmericanashesarean

importantcomponentofmanyforestecosystemsandhavebeenputatsubstantialrisk

fromtheintroductionofEAB.Furtherstudiesareneededtoexaminethemechanistic

basisofresistancetoEABandeffectsofMeJAonashtreegrowth. 25 L I T E R A T U R E C I T E D AkaiS,FukutomiM(1980)Preformedinternalphysicaldefences.In:HorsfallJG,

CowlingEB(eds)Plantdisease.Anadvancedtreatise.VolV.Howplantsdefend

themselves,AcademicPressInc.,NewYork,pp139195

ArevaloJR,DeCoster,JK,McAlisterSD,PalmerMW(2000)ChangesintwoMinnesota

forestsduring14yearsfollowingcatastrophicwindthrow.J.VegetativeSci.11:

833–840 BattagliaLL,MinchinPR,PritchittDW(2002)Sixteenyearsofoldfieldsuccessionand

reestablishmentofabottomlandhardwoodforestinthelowerMississippi

alluvialvalley.Wetlands22(1):1–17

BlodgettJT,EylesA,BonelloP(2007)Organdependentinductionofsystemic

resistanceandsystemicsusceptibilityinPinus nigra inoculatedwithSphaeropsis

sapinea andDiplodia scrobiculata.TreePhysiol27:511–517

BonelloP,PearceR(1993)BiochemicaldefenseresponsesinprimaryrootsofScotspine

challengedin vitro withCylindrocarpon destructans. PlantPathol42(2):203211

BonelloP,BlodgettJT(2003)Pinus nigra–Sphaeropsis sapinea asamodelpathosystem

toinvestigatelocalandsystemiceffectsoffungalinfectionofpines.Physiol.Mol.

Plant.Pathol63:249–261

BradfordMM(1976)Arapidandsensitivemethodforthequantitationofmicrogram

quantitiesofproteinutilizingtheprincipleofproteindyebinding.AnalBiochem

72:248254 BuschmannH,RodriguezMX,TohmeJ,BeechingJR(2000)Accumulationof HydroxycoumarinsDuringPostharvestDeteriorationofTuberousRootsof 26 Cassava(Manihot esculenta Crantz).Ann.Bot86:11531160 CampbellNA,AtchleyWR(1981)Thegeometryofcanonicalvariateanalysis.Syst. Zool30(3):268280 CipolliniDF,RedmanAM(1999)Agedependenteffectsofjasmonicacidtreatmentand

windexposureonfoliaroxidaseactivityandinsectresistanceintomato.J.Chem.

Ecol25(2):271281

CipolliniDF,EnrightS,TrawB,andBergelsonJ(2004)Salicylicacidinhibitsjasmonic

acidinducedresistanceofArabidopsis thaliana toSpodoptera exigua.Mol.Ecol

13:16431653 CipolliniD,BergelsonJ(2000)Environmentalanddevelopmentalregulationoftrypsin

inhibitoractivityinBrassica napus.J.Chem.Ecol26(6):14111423

ChoudharyDK,JohriBN(2008)InteractionsofBacillus spp.andplants–Withspecial

referencetoinducedsystemicresistance(ISR).Microbiol.Res164(5):493513

EylesA,WilliamJ,RiedlK,CipolliniD,SchwartzS,ChanK,HermsDA,Pierluigi

Bonello(2007)ComparativephloemchemistryofManchurian(Fraxinus

mandshurica )andTwoNorthAmericanAshspecies(Fraxinus americana and

Fraxinus pennsylvanica).ChemEcol.33:1430–1448

FarmerEE,RyanCA(1990)Interplantcommunication:airbornemethyljasmonate

inducessynthesisofproteinaseinhibitorsinplantleaves.ProcNatlAcadSciUSA

87:77137718

FarmerEE,RyanCA(1992)Octadecanoidprecursorsofjasmonicacidactivatethe

synthesisofwoundinducibleproteinaseinhibitors.PlantCell4:129134 27 FranceschiVR,KreklingT,ChristiansenE(2002)Applicationofmethyljasmonateon

Picea abies (Pinaceae)stemsinducesdefenserelatedresponsesinphloemand

xylem.Am.J.Bot89:578–586

FaldtJ,MartinD,MillerB,RawatS,BohlmannJ(2003)Traumaticresindefensein

Norwayspruce(Piceaabies):methyljasmonateinducedterpenesynthasegene

expression,andcDNAcloningandfunctionalcharacterizationof(+)3carene

synthase.PlantMolBiol51:119–133

FowellsHA(1965)SilvicsofForestTreesoftheUnitedStates.U.S.Dep.Agric,For. ServHandbookNo.271 GreggA(2004)JasmonatesasSignalsintheWoundResponse.J.Plant.Physiol23:223 237 GouldJ,TannerJ,WinogradTD,LaneS(2005)Initialstudiesonthelaboratoryrearing

ofemeraldashborerandforeignexplorationfornaturalenemies.MastroV,

ReardonReds.In:Emeraldashborerresearchandtechnologydevelopment

meeting.U.S.DepartmentofAgriculture,ForestService,Morgantown,WVpp73

74 LittleEL(1953)ChecklistofnativeandnaturalizedtreesoftheUnitedStates(including Alaska).Agr.HandbookNo.41,ForestService,U.S.D.A188:192193 HoweGA,LightnerJ,BrowseJ,RyanCA(1996)Anoctadecanoidpathwaymutantof

tomatoiscompromisedinsignalingfordefenseagainstinsectattack.PlantCell

8:20672077 28 HaackRA,JendekE,LiuH,MarchantKR,PetriceTR,PolandTM,YeH(2002)The

emeraldashborer:anewexoticpestinNorthAmerica.MichiganEnt.Soc

Newsletter47:1–5

HermsDA,ShetlarDJ,StoneAK(2007)Insecticideoptionsforprotectingashtreesfrom

emeraldashborerandtheireffectiveness.HYG205107.

http://ohioline.osu.edu/hygfact/2000/2051.html

LiuHP,BauerLS,GaoRT,ZhaoTH,PetriceTR,HaackRA(2003)Exploratorysurvey

fortheemeraldashborer,Agrilus planipennis (Coleoptera:Buprestidae),andits

naturalenemiesinChina.GreatLakesEntomol36:191–204

LesicaP(2001)RecruitmentofFraxinus pennsylvanica ()inEasternMontana

woodlands.Madrono48:286–292

HeilM,BostockRM(2002)InducedSystemicResistance(ISR)AgainstPathogensin

theContextofInducedPlantDefensesAnn.Bot89:503512

MacFarlaneDW&MeyerSP(2005)Characteristicsanddistributionofpotentialashtree

hostsforemeraldashborer.For.Ecol.Manage213:15–24

MartinDM,ThollD,GershenzonJ,BohlmannJ(2002)Methyljasmonateinduces

traumaticresinducts,terpenoidresinbiosynthesis,andterpenoidaccumulationin

developingxylemofNorwaysprucestems.PlantPhysiol129:1003–1018

MartinDM,GershenzonJ,BohlmannJ(2003)Inductionofvolatileterpenebiosynthesis

anddiurnalemissionbymethyljasmonateinfoliageofNorwayspruce(Picea

abies).PlantPhysiol132:1586–1599 29 McculloughDG,PolandTM,CappaertD,ClarkEL,FraserI,MastroV,SmithS,PellS

(2007)Effectsofchipping,grinding,andHeatonSurvivalofEmeraldAshBorer

(Agrilus planipennis)(Coleoptera:Buprestidae).J.Econ.Entomol100:1304–1315

RebekEJ,HermsDA,SmitleyDR(2008)InterspecificVariationinResistanceto

EmeraldAshBorer(Coleoptera:Buprestidae)AmongNorthAmericanand

AsianAsh(Fraxinus spp.).Environ.Entomol.37(1):242246

RodriguezMX,BuschmannH,IglesiasC,BeechingJR(2000)Productionof

antimicrobialcompoundsincassava(Manihot esculenta Crantz)rootsduringpost

harvestphysiologicaldeterioration.In:CarvalhoLJCB,ThroAM,VilarinhosAD,

eds.CassavaBiotechnology.IVthInternationalScientificMeetingCassava

BiotechnologyNetwork.Embrapa,Brasiliapp320328

SilvaMCP,TerraWR,Ferreia,C(2006)Absorptionoftoxicbetaglucosidesproduced

byplantsandtheireffectontissuetrehalasesfrominsects.Comp.Biochem.

Physiol.B143:367–373

TaylorSM(1971)EcologicalseparationandpostsettlementhabitatchangesofFraxinus

americana andFraxinus pennsylvanica inWashtenawCounty,Michigan.Am.J.

Bot.58:466–467

GouldJ,BauerL(2007)“BiologicalControlofEmeraldAshBorer(Agrilus planipennis

)”USDA.January21,2010<

http://www.aphis.usda.gov/plant_health/plant_pest_info/emerald_ash_b/backgroun

d.shtml>

WainhouseD,CrossDJ,HowellRS(1990)Theroleofligninasadefenceagainstthe sprucebarkbeetle Dendroctonus micans:Effectonlarvaeandadults.Oecologia85: 30 257265 WainhouseD,AshburnerR,WardE,BoswellR(1998)Theeffectofligninandbark

woundingonsusceptibilityofsprucetreestoDendroctonus micans.JChemEcol

24:1551–1561 WallanderE(2008)SystematicsofFraxinus (Oleaceae)andevolutionofdioecyPlant SystEvol273:25–49

WeiX,WuY,ReardonR,SunTH,SunHJ(2004)Biologyanddamagetraitsofemerald

ashborer(Agrilus planipennis Fairmaire)inChina.InsectSci14:367373 31 32

33

34

35

36

Green Green a proteinB. loemextractsof a

E)oftenreplicateplants. White b White b antlydifferentatP≤0.05.

a 37 Chinese ab Chinese

b Manch Manch POD/pCon POD/pMJ a

0 50 300 250 200 150 100 350

0 10 30 20 40

470 470 Figure.1ConstitutiveandMeJAinducibleperoxidaseactivitiesinph Manchurian,Chinese,white,andgreenash.A.Activityperunitextracts Activityperunitfreshmass.Eachbarrepresentsthemean(S Barswithdifferentlettersforeachspeciesaresignific B A

a itextracts nphloem Green Green ean(SE)oftenreplicate

ficantlydifferentatP≤0.05. e t ab White White Whi

38 a Chinese Chinese

b

Con MJ Manch

Manch p p / / O O PP PP

1 0 6 5 4 3 2 7

0 20 60 40 80

470 470 Figure2.ConstitutiveandMeJAinduciblepolyphenoloxidaseactivityi extractsofManchurian,Chinese,white,andgreenash.A.Activityperun proteinB.Activityperunitfreshmass.Eachbarrepresentsthem plants.Barswithdifferentlettersforeachspeciesaresigni B A

12

a a 10 a 8 b 6

4

2

0 Manch Chinese White Green

Phenolics Con Phenolics MJ

Figure3.ConstitutiveandMeJAinduciblesolublePhenolicconcentrationinphloem extractsofManchurian,Chinese,white,andgreenash.Activityperunitfreshmass.Each barrepresentsthemean(SE)oftenreplicateplants.Barswithdifferentlettersforeach speciesaresignificantlydifferentatP≤0.05. 25

20

15

10

5

0 Manch Chinese White Green

Lignin Con Lignin MJ

Figure4.ConstitutiveandMeJAinducibletotalLignininphloemextractsof Manchurian,Chinese,white,andgreenash.Activityperunitfreshmass.Eachbar representsthemean(SE)ofeightreplicateplants. Barswithdifferentlettersforeach speciesaresignificantlydifferentatP≤0.05. 39 100 A 80

a a 60

b 40 b 20

0 Man ch Chine se White Green

TI/p Con TI/p MJ

B 10

8

6

4

2

0 Manch Chinese White Green

Figure.5ConstitutiveandMeJAinducibletrypsininhibitoractivityinphloemextractsof Manchurian,Chinese,white,andgreenash.A.Activityperunitextractsprotein.B. Activityperunitfreshmass.Eachbarrepresentsthemean(SE)oftenreplicateplants. BarswithdifferentlettersforeachspeciesaresignificantlydifferentatP≤0.05. 40 itfresh

s.Eachbar forphloemextracts a nphloemextractsof b Green Green nts.Barswithdifferent

e t hdifferentlettersforeach 0.05 ab b Whi White

41

b Chinese ab Chinese

Con MJ

Con MJ

a Manch a m m / / Manch Pro Pro Browning Browning

0 7 4 3 2 1 ......

0 0 0.5 0.5 0 0 0 0 0.6 0.0 0.4 0.2 1.0 1.0 0.8 0.6 1.4 1.2

470 ofManchurian,Chinese,white,andgreenash.Rateofbrowningreactionperun massEachbarrepresentsthemean(SE)ofeightreplicatepla lettersforeachspeciesaresignificantlydifferentatP≤ Figure.7ConstitutiveandMeJAinduciblerateofbrowningreaction Figure.6ConstitutiveandMeJAinduciblesolubleproteincontenti Manchurian,Chinese,white,andgreenash.Activityperunitfreshmas representsthemean(SE)oftenreplicateplants.Barswit speciesaresignificantlydifferentatP≤0.05.

7 15 10 18 Figure8.ComparisonofHPLCprofilesat280nmofconstitutivephloemextracts(100% methanol)oftwoManchurianAshgroups:treatedandcontrolgroupsoverlay.Forpeak assignmentsofthemajorpeaks,seeTables2and3 6 17 14 20 Figure9.ComparisonofHPLCprofilesat280nmofconstitutivephloemextracts(100% methanol)oftwoChineseAshgroups:treatedandcontrolgroupsoverlay.Forpeak assignmentsofthemajorpeaks,seeTables2and3 42 6 14 20 Figure10.ComparisonofHPLCprofilesat280nmofconstitutivephloemextracts(100% methanol)oftwoWhiteAshgroups:treatedandcontrolgroupsoverlay.Forpeak assignmentsofthemajorpeaks,seeTables2and3 6 20 13 14 Figure11.Graph8.ComparisonofHPLCprofilesat280nmofconstitutivephloem extracts(100%methanol)oftwoGreenAshgroups:treatedandcontrolgroupsoverlay. Forpeakassignmentsofthemajorpeaks,seeTables2and3 43

Figure12.ResultofthediscriminantFunctionAnalysisoffivecommoncompounds (TyrosolHexoside,Mandshurin,Pinoresinolcompound,SyringaresinolandOleuropein) allfourashspeciesshare. 44 Figure13.MaximumlikelihoodtreeofareducedsetoftheITSdata.Bootstrapvalues areshownbelowthebranchesWallanderE/PlantSystEvol273(2008):25–49 45