TOWARDS the DEVELOPMENT of ASH VARIETIES RESISTANT to EMERALD ASH BORER Lindsay Ann Kolich Purdue University
Total Page:16
File Type:pdf, Size:1020Kb
Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Spring 2014 TOWARDS THE DEVELOPMENT OF ASH VARIETIES RESISTANT TO EMERALD ASH BORER Lindsay Ann Kolich Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Entomology Commons, and the Plant Sciences Commons Recommended Citation Kolich, Lindsay Ann, "TOWARDS THE DEVELOPMENT OF ASH VARIETIES RESISTANT TO EMERALD ASH BORER" (2014). Open Access Theses. 205. https://docs.lib.purdue.edu/open_access_theses/205 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. *UDGXDWH6FKRRO(7')RUP 5HYLVHG 0114 PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance 7KLVLVWRFHUWLI\WKDWWKHWKHVLVGLVVHUWDWLRQSUHSDUHG %\ Lindsay A. Kolich (QWLWOHG TOWARDS THE DEVELOPMENT OF ASH VARIETIES RESISTANT TO EMERALD ASH BORER Master of Science )RUWKHGHJUHHRI ,VDSSURYHGE\WKHILQDOH[DPLQLQJFRPPLWWHH Dr. Matthew Ginzel Dr. Clifford Sadof Dr. Ian Kaplan 7RWKHEHVWRIP\NQRZOHGJHDQGDVXQGHUVWRRGE\WKHVWXGHQWLQWKHThesis/Dissertation Agreement. Publication Delay, and Certification/Disclaimer (Graduate School Form 32)WKLVWKHVLVGLVVHUWDWLRQ adheres to the provisions of 3XUGXH8QLYHUVLW\¶V³3ROLF\RQ,QWHJULW\LQ5HVHDUFK´DQGWKHXVHRI FRS\ULJKWHGPDWHULDO Dr. Matthew Ginzel $SSURYHGE\0DMRU3URIHVVRU V BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $SSURYHGE\Dr. Steve Yaninek 04/23/2014 +HDGRIWKHDepartment *UDGXDWH3URJUDP 'DWH TOWARDS THE DEVELOPMENT OF ASH VARIETIES RESISTANT TO EMERALD ASH BORER A Thesis Submitted to the Faculty of Purdue University by Lindsay Ann Kolich In Partial Fulfillment of the Requirements for the Degree of Master of Science May 2014 Purdue University West Lafayette, Indiana ii ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Dr. Matthew Ginzel for all of his support and infinite wisdom. He has always believed in me, even when I didn’t believe in myself. I thank my thesis committee, Dr. Ian Kaplan and Dr. Cliff Sadof for helping me think outside of the box. I would like to thank Gabriel Hughes not only for his patience with me and my millions of questions, but also for being my best friend at Purdue. I would not have been able to do this project without the help of Katie Strack, who toiled away in the blazing summer sun with me and never complained. I would also like to thank Matt Paschen and Nikki VanDerLaan for their help in teaching me the ropes when I first arrived and keeping me on my toes. Thank you to those associated with the grafting, planting, and maintenance of the trees used in this study, especially Jim McKenna, Don Carlson, and Brian Beheler and thank you to John Lelito for his help in supplying EAB for my bioassays. And finally, I owe a special thanks to my family who has listened to me talk about this project for the past two years. To my parents, sister, husband, and of course, my dog, thank you from the bottom of my heart for supporting me. I wouldn’t be here without you all. iii TABLE OF CONTENTS Page LIST OF TABLES ...........................................................................................................iv LIST OF FIGURES .........................................................................................................v ABSTRACT .....................................................................................................................vii CHAPTER 1. HOST COLONIZATION BEHAVIOR OF THE EMERALD ASH BORER, AGRILUS PLANIPENNIS ................................................................................1 1.1 Introduction ....................................................................................................1 1.2 Agrilus planipennis: Natural History .............................................................4 1.3 Foliage and Bark-emitted VOCs ....................................................................9 1.4 Host Plant Resistance .....................................................................................11 1.5 Role of Roots in Herbivory Defense ..............................................................13 1.6 Current Management Methods ......................................................................14 1.7 Summary ........................................................................................................17 CHAPTER 2. CONSTITUTIVE AND EAB-INDUCED VOC PRODUCTION IN GRAFTED FRAXINUS spp .............................................................................................19 2.1 Abstract ..........................................................................................................19 2.2 Introduction ....................................................................................................21 2.3 Materials and Methods ...................................................................................24 2.3.1 Field Site and Experimental Design ...............................................24 2.3.2 Source of Beetles ............................................................................24 2.3.3 VOC Collection and Bioassays .......................................................25 2.3.4 Internal Leaf Pool Volatile Extraction and GC-MS Analysis ........26 2.4 Results ............................................................................................................28 2.4.1 Leaf Area Consumed by EAB ........................................................28 2.4.2 Volatile Profiles ..............................................................................29 2.5 Discussion ......................................................................................................31 LIST OF REFERENCES .................................................................................................53 iv LIST OF TABLES Table Page Table 2.1 Volatile organic compounds emitted from the foliage of Manchurian, green, white, and black ash identified in published research ........................................... 35 Table 2.2 Fraxinus species that served as scion and rootstock donors in reciprocal grafts ..................................................................................................................... 36 Table 2.3 Volatile organic compounds identified by GC-MS from grafted ash containing combinations of green, black, white, Manchurian, and Chinese ash .................... 39 Table 2.4 Results of MANOVA for effects of graft combination, phase of the trees, and their interaction on the volatile emissions of compounds from grafted trees ....... 46 v LIST OF FIGURES Figure Page Figure 2.1 Mean (±SE) leaf area consumed (cm2) by adult female EAB of grafts containing green and Manchurian ash ..............................................................37 Figure 2.2 Mean (±SE) leaf area consumed (cm2) by adult female EAB of grafts containing green and Chinese ash .....................................................................38 Figure 2.3 Representative GC-MS chromatograms of volatile extracts from a) green ash conspecific grafts, b) green ash scion Manchurian ash rootstock, and c) Manchurian ash conspecific grafts ....................................................................40 Figure 2.4 Representative GC-MS chromatograms of volatile extracts from a) green ash conspecific grafts, b) green ash scion Chinese ash rootstock, and c) Chinese ash conspecific grafts ..............................................................................................41 Figure 2.5 Representative GC-MS chromatograms of volatile extracts from a) black ash conspecific grafts, b) black ash scion Manchurian ash rootstock, and c) Manchurian ash conspecific grafts ....................................................................42 Figure 2.6 Representative GC-MS chromatograms of volatile extracts from a) black ash conspecific grafts, b) black ash scion Chinese ash rootstock, and c) Chinese ash conspecific grafts ..............................................................................................43 Figure 2.7 Representative GC-MS chromatograms of volatile extracts from a) white ash conspecific grafts, b) white ash scion Manchurian ash rootstock, and c) Manchurian ash conspecific grafts ....................................................................44 Figure 2.8 Representative GC-MS chromatograms of volatile extracts from a) white ash conspecific grafts, b) white ash scion Chinese ash rootstock, and c) Chinese ash conspecific grafts ..............................................................................................45 Figure 2.9 Volatile compounds identified from green ash conspecific grafts, green ash scions grafted onto Manchurian ash rootstock, and Manchurian ash conspecific grafts .................................................................................................................47 Figure 2.10 Volatile compounds identified from green ash conspecific grafts, green ash scions grafted onto Chinese ash rootstock, and Chinese ash conspecific grafts .................................................................................................................48 Figure 2.11 Volatile compounds identified from black ash conspecific grafts, black ash scions grafted onto Manchurian ash rootstock, and Manchurian ash conspecific grafts ............................................................................................................... 49 Figure 2.12 Volatile compounds identified from