Color Theory: Understanding the Basics for Color Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Color Theory: Understanding the Basics for Color Analysis Color Theory: Understanding the Basics for Color Analysis By Elaine Stoltz, AICI CIM [email protected] Stoltz Image Institute, Texas USA www.stoltzimage.com Color: A physical or visual sensation experienced when light rays of particular lengths stimulate the retina of the eyes. Color embodies the dimensions of hue, value, and intensity. Why is Color Important? Color is an element of art. Elements of Art § Line § Shape § Form § Space § Texture § Color § Value Why is color important to the image industry? ____________________________ The Stoltz Image Color Philosophy “Persons are often misled in regard to their choice of dress by attending to the ______________ ________________, rather than selecting such colors as may increase _____________________.” - William Shenstone, English Poet, 1714-1763 Properties of Color § Hue § Temperature § Value § Value Contrast § Intensity Stoltz Image Institute, Copyright 2015 1 Hue: Primary Colors: Secondary Colors Expanded Color Wheel: Neutral Colors Achromatic Colors: Muted Chromatic Colors: Quiz! 1st Color ___________________________________ 2nd Color ___________________________________ 3rd Color ___________________________________ 4th Color ___________________________________ 5th Color ___________________________________ 6th Color ___________________________________ Quiz! 1st Color _____________________________________ 2nd Color _____________________________________ 3rd Color _____________________________________ Stoltz Image Institute, Copyright 2015 2 Quiz! 1st Color _____________________________________ 2nd Color _____________________________________ 3rd Color _____________________________________ Temperature § Temperature is the warmth or coolness of a color. § A color containing ____________ is considered to be a warm color. § A color containing _____________ is considered to be a cool color. § ___________ and _____________ are considered neutral temperature colors, neither warm nor cool. Psychological temperature Warm: Relates to our experience with the ________________________ and the __________________, the __________________, and the __________________. These experiences suggest that __________ and ___________ are warm hues. Warm Colors: § __________________________ § __________________________ § __________________________ § __________________________ § _________________________ Psychological temperature Cool: Relates to our experience with the__________________, the _______________, and the ___________________. These experiences suggest that __________ and __________ are cool hues. Stoltz Image Institute, Copyright 2015 3 Cool Colors: § ________________ § ________________ § ________________ § ________________ § ________________ Neutral Temperature Colors: § ________________ § ________________ Temperature of Neutral Colors Achromatic: ______________________________________________________ Cool Muted Chromatic: _________________________________________________ Warm Temperature Chart Stoltz Image Institute, Copyright 2015 4 Quiz! Picture 1 ________________________________ Picture 3 ________________________________ Picture 2 ________________________________ Picture 4 ________________________________ Value § The relative degree of ________________ or ___________________ of a hue. § When a colored picture is turned into a __________ and ________ picture the colors represent varying _______________. Grey Scale 1 2 3 4 5 6 7 8 9 10 Quiz! Picture 1 ________________________________ Picture 3 ________________________________ Picture 2 ________________________________ Picture 4 ________________________________ Value Contrast § Comparative contrast of the values of two _______________. § The distance between the values of the two colors on a _____________. Contrast Levels § High __________ and _________ § Medium High __________ and _________, __________ and Black § Medium __________ and White, Black and ______________ § Medium Low Black and ____________, ________________ § Low Black and ____________, White and _______________ 1 2 3 4 5 6 7 8 9 10 Stoltz Image Institute, Copyright 2015 5 Quiz! Picture 1 ________________________________ Picture 3 ________________________________ Picture 2 ________________________________ Picture 4 ________________________________ Intensity § The relative degree of _____________ or ____________ of a hue. § Other words for intensity are ____________, the _____________, the degree of ______________, __________, or _____________. § Intensity can be altered by the texture of a _______________. § Textures that reflect light are more____________ than a matte fabric. Example: A______________________ would be brighter than a _________________. Quiz! Picture 1 ________________________________ Picture 3 ________________________________ Picture 2 ________________________________ Picture 4 ________________________________ Resonance § Resonance is the visual impression of a hue as it moves _______________________. § Resonance is a result of what was used to alter the ______________ pigment. 5 Resonances: § Tinted § Washed § Shaded § Toasted § Muted Stoltz Image Institute, Copyright 2015 6 § Tinted: A hue that is mixed with ________ to lighten a color. It appears opaque and milky. § Washed: A pure hue that is mixed with __________ to lighten a color. It appears translucent and lightweight. The original pure pigment is still readily apparent. § Shaded: A pure hue that is mixed with _________ to darken a color. _________ is a cool color and will make all warm pigments appear cooler and cool pigments cooler still. § Toasted: A pure hue that is mixed with __________ in order to lighten or darken a color. ____________ is a warm color. Toasting cool colors with __________ will warm them. § Muted: Can lighten or darken a pigment by adding the pigment’s ______________. When __________________ are side by side, they intensify each other. When they are mixed with each other, they mute or de-intensify each other. ___________________ Colors: Two hues that lie ___________________ one another on the color wheel. Harmony § Combined use of color patterns to achieve enough variety to avoid _______________, but not so much variety to create __________________. 6 Harmonies: § Monochromatic § Triadic § Complementary § Tetrad § Analogous § Neutral § Monochromatic: A harmony where the same hue is presented in ________________ from light to dark. The hue can come from the color wheel or as _________________ or ____________ from the neutral chart. § Complementary: A harmony of two hues that are ___________ each other on the color wheel. § Analogous: A harmony of ____, _______, or _______ hues that are _____________ on the color wheel. They may be used in a variety of values, intensities, and temperature. § Triadic: A harmony of _____________ hues that are ______________ from each other on the color wheel. § Tetrad: A harmony of ______________ hues that are ____________ from each other on the color wheel. § Neutral: A harmony where ___________________ neutral colors are combined. Stoltz Image Institute, Copyright 2015 7 Human Coloring “Persons are often misled in regard to their choice of dress by attending to the _______ _________________, rather than selecting such colors as may increase their _________ _________________.” English Poet, 1714-1763 We See Color First: When you walk into a store and look at the visual displays the mannequins are wearing bright colors and the outfit is perfectly accessorized. We look at the work of art and say "That is beautiful. I want the entire outfit." But your head is not on the mannequin. It’s a great outfit and beautiful work of art, but not great for you. § Your clothes are an extension of you. You are a walking work of art each day. Each morning you select an outfit in your closet and walk out the door. Whoever sees you that day will observe your work of art. Some days you might do a good job and other days you might not. It’s important for you to talk first, not your clothes. One of the biggest mistakes women make is that they select clothing that is too bright and / or too much contrast for their own natural coloring. § Your clothing colors should be in harmony with your body colors. When you leave our house each day, you cannot leave our head at home. Your eye color, hair color, skin color and red color are always going to be a part of your complete outfit. The clothing that you wear on the upper half of you lay right next to your face reflects that color onto your face. It is most important that those colors flatter your natural coloring and enhance your appearance. Temperature, Value, Value Contrast and Intensity of your natural coloring will play a role in deciding which colors to wear. § Temperature: The ______________ temperature of your outfit should be similar to your __________ body coloring temperature. § Value: The _________ value of the outfit must be similar to your ________ value. § Value Contrast: The _________ value contrast of your outfit must be similar to your _________value contrast. § Intensity: The __________ intensity of your outfit must be similar to your _________ intensity. Therefore it is imperative for you to learn what your __________ color characteristics are. You must start by studying each body color separately. You must learn the hue, temperature, value, value contrast, and intensity of each body color: eyes, skin, hair and red tones. Stoltz Image Institute, Copyright 2015 8 Customized vs. Category What is Custom Color Analysis? Benefits of Category Systems: § Familiarity § Quick consults § Minimal costs § Fast delivery
Recommended publications
  • Psychophysical Determination of the Relevant Colours That Describe the Colour Palette of Paintings
    Journal of Imaging Article Psychophysical Determination of the Relevant Colours That Describe the Colour Palette of Paintings Juan Luis Nieves * , Juan Ojeda, Luis Gómez-Robledo and Javier Romero Department of Optics, Faculty of Science, University of Granada, 18071 Granada, Spain; [email protected] (J.O.); [email protected] (L.G.-R.); [email protected] (J.R.) * Correspondence: [email protected] Abstract: In an early study, the so-called “relevant colour” in a painting was heuristically introduced as a term to describe the number of colours that would stand out for an observer when just glancing at a painting. The purpose of this study is to analyse how observers determine the relevant colours by describing observers’ subjective impressions of the most representative colours in paintings and to provide a psychophysical backing for a related computational model we proposed in a previous work. This subjective impression is elicited by an efficient and optimal processing of the most representative colour instances in painting images. Our results suggest an average number of 21 subjective colours. This number is in close agreement with the computational number of relevant colours previously obtained and allows a reliable segmentation of colour images using a small number of colours without introducing any colour categorization. In addition, our results are in good agreement with the directions of colour preferences derived from an independent component analysis. We show Citation: Nieves, J.L.; Ojeda, J.; that independent component analysis of the painting images yields directions of colour preference Gómez-Robledo, L.; Romero, J. aligned with the relevant colours of these images. Following on from this analysis, the results suggest Psychophysical Determination of the that hue colour components are efficiently distributed throughout a discrete number of directions Relevant Colours That Describe the and could be relevant instances to a priori describe the most representative colours that make up the Colour Palette of Paintings.
    [Show full text]
  • Sensory and Instrument-Measured Ground Chicken Meat Color
    Sensory and Instrument-Measured Ground Chicken Meat Color C. L. SANDUSKY1 and J. L. HEATH2 Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742 ABSTRACT Instrument values were compared to scores were compared using each of the backgrounds. sensory perception of ground breast and thigh meat The sensory panel did not detect differences in yellow- color. Different patty thicknesses (0.5, 1.5, and 2.0) and ness found by the instrument when samples on white background colors (white, pink, green, and gray), and pink backgrounds were compared to samples on previously found to cause differences in instrument- green and gray backgrounds. A majority of panelists (84 measured color, were used. Sensory descriptive analysis of 85) preferred samples on white or pink backgrounds. scores for lightness, hue, and chroma were compared to Red color of breast patties was associated with fresh- instrument-measured L* values, hue, and chroma. ness. Sensory ordinal rank scores for lightness, redness, and Reflective lighting was compared to transmission yellowness were compared to instrument-generated L*, lighting using patties of different thicknesses. Sensory a*, and b* values. Sensory descriptive analysis scores evaluation detected no differences in lightness due to and instrument values agreed in two of six comparisons breast patty thickness when reflective lighting was used. using breast and thigh patties. They agreed when thigh Increased thickness caused the patties to appear darker hue and chroma were measured. Sensory ordinal rank when transmission lighting was used. Decreased trans- scores were different from instrument color values in the mission lighting penetrating the sample made the patties ability to detect color changes caused by white, pink, appear more red.
    [Show full text]
  • A Thesis Presented to Faculty of Alfred University PHOTOCHROMISM in RARE-EARTH OXIDE GLASSES by Charles H. Bellows in Partial Fu
    A Thesis Presented to Faculty of Alfred University PHOTOCHROMISM IN RARE-EARTH OXIDE GLASSES by Charles H. Bellows In Partial Fulfillment of the Requirements for The Alfred University Honors Program May 2016 Under the Supervision of: Chair: Alexis G. Clare, Ph.D. Committee Members: Danielle D. Gagne, Ph.D. Matthew M. Hall, Ph.D. SUMMARY The following thesis was performed, in part, to provide glass artists with a succinct listing of colors that may be achieved by lighting rare-earth oxide glasses in a variety of sources. While examined through scientific experimentation, the hope is that the information enclosed will allow artists new opportunities for creative experimentation. Introduction Oxides of transition and rare-earth metals can produce a multitude of colors in glass through a process called doping. When doping, the powdered oxides are mixed with premade pieces of glass called frit, or with glass-forming raw materials. When melted together, ions from the oxides insert themselves into the glass, imparting a variety of properties including color. The color is produced when the electrons within the ions move between energy levels, releasing energy. The amount of energy released equates to a specific wavelength, which in turn determines the color emitted. Because the arrangement of electron energy levels is different for rare-earth ions compared to transition metal ions, some interesting color effects can arise. Some glasses doped with rare-earth oxides fluoresce under a UV “black light”, while others can express photochromic properties. Photochromism, simply put, is the apparent color change of an object as a function of light; similar to transition sunglasses.
    [Show full text]
  • The War and Fashion
    F a s h i o n , S o c i e t y , a n d t h e First World War i ii Fashion, Society, and the First World War International Perspectives E d i t e d b y M a u d e B a s s - K r u e g e r , H a y l e y E d w a r d s - D u j a r d i n , a n d S o p h i e K u r k d j i a n iii BLOOMSBURY VISUAL ARTS Bloomsbury Publishing Plc 50 Bedford Square, London, WC1B 3DP, UK 1385 Broadway, New York, NY 10018, USA 29 Earlsfort Terrace, Dublin 2, Ireland BLOOMSBURY, BLOOMSBURY VISUAL ARTS and the Diana logo are trademarks of Bloomsbury Publishing Plc First published in Great Britain 2021 Selection, editorial matter, Introduction © Maude Bass-Krueger, Hayley Edwards-Dujardin, and Sophie Kurkdjian, 2021 Individual chapters © their Authors, 2021 Maude Bass-Krueger, Hayley Edwards-Dujardin, and Sophie Kurkdjian have asserted their right under the Copyright, Designs and Patents Act, 1988, to be identifi ed as Editors of this work. For legal purposes the Acknowledgments on p. xiii constitute an extension of this copyright page. Cover design by Adriana Brioso Cover image: Two women wearing a Poiret military coat, c.1915. Postcard from authors’ personal collection. This work is published subject to a Creative Commons Attribution Non-commercial No Derivatives Licence. You may share this work for non-commercial purposes only, provided you give attribution to the copyright holder and the publisher Bloomsbury Publishing Plc does not have any control over, or responsibility for, any third- party websites referred to or in this book.
    [Show full text]
  • Book of Abstracts of the International Colour Association (AIC) Conference 2020
    NATURAL COLOURS - DIGITAL COLOURS Book of Abstracts of the International Colour Association (AIC) Conference 2020 Avignon, France 20, 26-28th november 2020 Sponsored by le Centre Français de la Couleur (CFC) Published by International Colour Association (AIC) This publication includes abstracts of the keynote, oral and poster papers presented in the International Colour Association (AIC) Conference 2020. The theme of the conference was Natural Colours - Digital Colours. The conference, organised by the Centre Français de la Couleur (CFC), was held in Avignon, France on 20, 26-28th November 2020. That conference, for the first time, was managed online and onsite due to the sanitary conditions provided by the COVID-19 pandemic. More information in: www.aic2020.org. © 2020 International Colour Association (AIC) International Colour Association Incorporated PO Box 764 Newtown NSW 2042 Australia www.aic-colour.org All rights reserved. DISCLAIMER Matters of copyright for all images and text associated with the papers within the Proceedings of the International Colour Association (AIC) 2020 and Book of Abstracts are the responsibility of the authors. The AIC does not accept responsibility for any liabilities arising from the publication of any of the submissions. COPYRIGHT Reproduction of this document or parts thereof by any means whatsoever is prohibited without the written permission of the International Colour Association (AIC). All copies of the individual articles remain the intellectual property of the individual authors and/or their
    [Show full text]
  • Measuring the Color of a Paint on Canvas
    Application Note Materials Measuring the Color of a Paint on Canvas Direct measurement with an UV-Vis external diffuse reflectance accessory Authors Introduction Paolo Teragni, Color measurement systems can translate the sensations, or visual appearances, Paolo Scardina, into numbers according to various geometrical coordinates and illumination Agilent Technologies, Inc. systems. The concept of “visual colorimetry” with a standard observer using a standard device as a method of color specification dates to around 1920. The first standardized color system was defined by CIE (Commission internationelle pour l’Eclairage) around 1931. One may regard the CIE system to be at the “heart” of all color measurement systems. However, for each painter, the use of colors is dictated by their personal inclination, cultural context and available materials. These are the reasons why sophisticated and portable instrumentation is needed to understand “the fine arts” and to find the best way for their conservation. Measurements of colored materials in paintings are often difficult due to their size, shape and location. It is not possible to separate one type of paint into its individual components. Therefore, the collection of reflectance spectra and color data from a small spot of paint is needed to understand and classify the different colored materials within and to be able to remake them as similar as possible to the original. The Agilent Cary 60 UV-Vis spectrophotometer with the Principal coordinates and illuminants of remote fiber optic diffuse reflectance accessory (Figure 1) provides fast and accurate diffuse reflectance measurements Color software on sample sizes around 2 mm in diameter. The Cary 60’s – Tristimulus highly focused beam makes it ideal for fiber optic work.
    [Show full text]
  • Image Processing Based Automatic Color Inspection and Detection of Colored Wires in Electric Cables
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 5 (2017) pp. 611-617 © Research India Publications. http://www.ripublication.com Image Processing based Automatic Color Inspection and Detection of Colored Wires in Electric Cables 1Rajalakshmi M, 2Ganapathy V, 3Rengaraj R and 4Rohit D 1Assistant Professor, 2Professor, Dept. of IT., SRM University, Kattankulathur-603203, Tamil Nadu, India. 3Associate Professor, Dept. of EEE, SSN College of Engg., Kalavakkam-603110, Tamil Nadu, India. 4Research Associate, Siechem Wires and Cables, Pondicherry, India. Abstract manipulation and interpretation of visual information, and it plays an increasingly important role in our daily life. Also it In this paper, an automatic visual inspection system using is applied in a variety of disciplines and fields in science and image processing techniques to check the consistency of technology. Some of the applications are television, color of the wire after insulation, and meeting the photography, robotics, remote sensing, medical diagnosis requirements of the manufacturer, is presented. Also any and industrial inspection. Probably the most powerful image color irregularities occurring across the insulation are processing system is the human brain together with the eye. displayed. The main contributions of this paper are: (i) the The system receives, enhances and stores images at self-learning system, which does not require manual enormous rates of speed. The objective of image processing intervention and (ii) a color detection algorithm that can be is to visually enhance or statistically evaluate some aspect of able to meet up with varied finishing of the wire insulation. an image not readily apparent in its original form.
    [Show full text]
  • Color Space Analysis for Iris Recognition
    Graduate Theses, Dissertations, and Problem Reports 2007 Color space analysis for iris recognition Matthew K. Monaco West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Monaco, Matthew K., "Color space analysis for iris recognition" (2007). Graduate Theses, Dissertations, and Problem Reports. 1859. https://researchrepository.wvu.edu/etd/1859 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Color Space Analysis for Iris Recognition by Matthew K. Monaco Thesis submitted to the College of Engineering and Mineral Resources at West Virginia University in partial ful¯llment of the requirements for the degree of Master of Science in Electrical Engineering Arun A. Ross, Ph.D., Chair Lawrence Hornak, Ph.D. Xin Li, Ph.D. Lane Department of Computer Science and Electrical Engineering Morgantown, West Virginia 2007 Keywords: Iris, Iris Recognition, Multispectral, Iris Anatomy, Iris Feature Extraction, Iris Fusion, Score Level Fusion, Multimodal Biometrics, Color Space Analysis, Iris Enhancement, Iris Color Analysis, Color Iris Recognition Copyright 2007 Matthew K.
    [Show full text]
  • Color Itextile Quick and Accurate Quality Control and Color Formulation Software
    Color iTextile Quick and Accurate Quality Control and Color Formulation Software Color iTextile adapts to your workflow to make color fast and easy. Color iTextile Software is a document-oriented software solution that removes the guesswork from evaluating colors. Its easy adaptability allows analysis of lab dips, production samples, and finished products. Coupled with the industry’s most advanced color matching technology, Color iTextile enables quick, accurate color analysis with the capability to optimize every formula for cost and color accuracy. Specifications Color Spaces CIE L*a*b*, CIE L*C*h*, Hunter Lab, CIE (XYZxy) Illuminants D50, D55, D65, D75, F2, F7, F11, C, A, Horizon (GretagMacbeth), TL84, Ultralume 3000 Color Differences FMCII, CIE DL*, Da*, Db*, CIE DL*, DC*, DH*, Hunter DL, Da, Db Pass / Fail All Attributes of CIELab, CIELch or Hunter Lab, CMC (l:c), CIE2000 (l:c:h) Whiteness [ASTM E313, CIE, GANZ, Berger, Stensby, Taube, Tappi] Yellowness [ASTM E313, D1925] Industry-Standard Strength [SWL, Summed, Weighted Sum], Munsell Notation Indices Gloss [ASTM E429, Gloss60] Grey Scale [ISO 105 Staining, Color Change] Metamerism, Color Constancy Index Features User Defined Screen Layouts Interactive Plots and Graphs Visual Representation of Tolerances Cross Trial Color Differences Document Driven Architecture - Jobs Multiple Tolerancing Methods [User, Statistical, CMC, Historical] Data Tagging and Tracking General NetProfiler Enabled Import Capabilities [CxF, EXP, DAT, QTX] Data Management / MS Access Database Fully Integrated
    [Show full text]
  • Capture Color Analysis Gamuts
    Capture Color Analysis Gamuts Jack Holm; Hewlett-Packard Company; Palo Alto, CA, USA monochromator to measure digital camera spectral sensitivities, as Abstract specified in ISO/DIS 17321-1 [2], because the field of view of the A common method for obtaining scene-referred colorimetry camera is illuminated with monochromatic light so the flare is also estimates is to apply matrices to radiometrically linearized capture evenly distributed and therefore has no effect on the device signals, obtained either from digital cameras or scans of measurements. photographic film. These matrices can be determined using While the linearization step may be non-trivial, it is different test colors and different error minimization criteria. Since deterministic in that there is a single correct linearization, which the spectral sensitivities of these capture media typically do not can be determined through careful measurement and inversion of meet the Luther condition, the application of the matrices warps the capture device/medium opto-electronic conversion function. In the spectral locus, as analyzed by the capture devices and media. the film case this is more complicated, as it is first necessary to The warped loci of spectral colors represent the boundary of the calibrate and characterize the scanner to produce the desired film gamut of possible scene colors that can be estimated by the device. densities. Then the measured film densities must be matrixed to the These gamuts tend to have roughly similar shapes for many analytical densities that correspond most closely with the exposure popular capture devices and media, and often extend outside the collected by each film layer.
    [Show full text]
  • Greek Color Theory and the Four Elements [Full Text, Not Including Figures] J.L
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Greek Color Theory and the Four Elements Art July 2000 Greek Color Theory and the Four Elements [full text, not including figures] J.L. Benson University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/art_jbgc Benson, J.L., "Greek Color Theory and the Four Elements [full text, not including figures]" (2000). Greek Color Theory and the Four Elements. 1. Retrieved from https://scholarworks.umass.edu/art_jbgc/1 This Article is brought to you for free and open access by the Art at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Greek Color Theory and the Four Elements by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Cover design by Jeff Belizaire ABOUT THIS BOOK Why does earlier Greek painting (Archaic/Classical) seem so clear and—deceptively— simple while the latest painting (Hellenistic/Graeco-Roman) is so much more complex but also familiar to us? Is there a single, coherent explanation that will cover this remarkable range? What can we recover from ancient documents and practices that can objectively be called “Greek color theory”? Present day historians of ancient art consistently conceive of color in terms of triads: red, yellow, blue or, less often, red, green, blue. This habitude derives ultimately from the color wheel invented by J.W. Goethe some two centuries ago. So familiar and useful is his system that it is only natural to judge the color orientation of the Greeks on its basis. To do so, however, assumes, consciously or not, that the color understanding of our age is the definitive paradigm for that subject.
    [Show full text]
  • Correlation of Visual and Instrumental Color Measurements to Establish Color Tolerance Using Regression Analysis by Malathy Jawahar,* Swarna V
    409 CORRELATION OF VISUAL AND INSTRUMENTAL COLOR MEASUREMENTS TO ESTABLISH COLOR TOLERANCE USING REGRESSION ANALYSIS by MALATHY JAWAHAR,* SWARNA V. KANTH, R. VENBA AND NARASIMHAN KANNAN CHANDRA BABU Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai 600 020, India ABSTRACT perceptible changes in the leathers need to be characterized and the batch can be assorted into acceptable and unacceptable Color is one of the important parameter considered in the groups to enable corrective measures. The color variations are determination of quality for fashion materials like leather. The due to inconsistency in raw material homogeneity and leather color variation in each piece of leather sample in a batch processing technology adopted that result in variations in dye should be within the acceptable range. Visual assessment is diffusion and uptake. Even though hides and skins are currently used in leather industry for quality control and color processed and finished with organolleptic properties needed sorting. The current method used is subjective and often leads for end-use applications; the resultant leathers may be rejected, to disagreement between buyer and seller. Color measurement if the color does not match the buyer’s sample/swatch (beyond using reflectance spectrophotometer evaluates color 5% tolerance limit). Assortment of color into groups of almost consistently and is an objective assessment system. However, similar shades is also done during the manufacture of leather there is always an apprehension that the instrumental color products. The panels of leather product should be of same assortment may not agree with the human perception of color color as more than one piece of leather is used.
    [Show full text]