Photosystem II Secondary Article

Total Page:16

File Type:pdf, Size:1020Kb

Photosystem II Secondary Article Photosystem II Secondary article John Whitmarsh, University of Illinois, Urbana, Illinois, USA Article Contents Govindjee, University of Illinois, Urbana, Illinois, USA . Introduction . Organization, Composition and Structure Photosystem II is a specialized protein complex that uses light energy to oxidize water, . Light Capture: The Antenna System resulting in the release of molecular oxygen into the atmosphere, and to reduce . Primary Photochemistry: The Reaction Centre plastoquinone, which is released into the hydrophobic core of the photosynthetic . Oxidation of Water: The Source of Molecular Oxygen membrane. All oxygenic photosynthetic organisms, which include plants, algae and some . Reduction of Plastoquinone: The Two-electron Gate bacteria, depend on photosystem II to extract electrons from water that are eventually used . Photosystem II Contributes to a Proton Electrochemical Potential that Drives ATPase to reduce carbon dioxide in the carbon reduction cycle. The complex is composed of a . Downregulation: Energy is Diverted Away from the central reaction centre in which electron transport occurs, and a peripheral antenna system Reaction Centre when there is Excess Light which contains chlorophyll and other pigment molecules that absorb light. Secondary Electron Transfer Reactions in Photosystem II Protect Against Photodamage . Inactive Photosystem II: A Significant Proportion of Introduction Reaction Centres do not Work In Vivo . Fluorescence: Monitoring Photosystem II Activity In Photosynthetic organisms use light energy to produce Vivo organic molecules (Ort and Whitmarsh, 2001). In plants, . Summary algae and some types of bacteria, the photosynthetic process depends on photosystem II, a membrane-bound protein complexthat removes electrons from water and Chloroplasts originated from photosynthetic bacteria transfers them to plastoquinone, a specialized organic invading a nonphotosynthetic cell. In both chloroplasts molecule. Because the removal of electrons from water and bacteria, thylakoid membranes form vesicles that results in the release of molecular oxygen into the atmo- define an inner and outer aqueous space. Light-driven sphere, this photosystem II-dependent process is known as electron transfer through the photosystem II and photo- oxygenic photosynthesis. Photosystem II is the only system I reaction centres provides the energy for creating a protein complexknown to oxidizewater and release proton electrochemical potential across the thylakoid molecular oxygen. A more ancient form of photosynthesis membrane. The energy stored in the proton electrochemi- occurs in some bacteria that are unable to oxidize water cal gradient drives a membrane-bound adenosine tripho- and therefore do not release oxygen. There is fossil sphate (ATP) synthase that produces ATP. Overall, the evidence that photosystem II-containing organisms light-driven electron transport reactions, occurring evolved about three billion years ago and that oxygenic through the thylakoid membrane, provide NADPH and photosynthesis converted the earth’s atmosphere from a ATP for the production of carbohydrates, the final product highly reducing anaerobic state to the oxygen-rich air of oxygenic photosynthesis. surrounding us today (Des Marais, 2000). By releasing Photosystem II uses light energy to drive two chemical oxygen into the atmosphere, photosystem II enabled the reactions: the oxidation of water and the reduction of evolution of cellular respiration and thus profoundly plastoquinone (Govindjee and Coleman, 1990; Nugent, affected the diversity of life. 2001). The primary photochemical reaction of photosys- Oxygenic photosynthesis depends on two reaction tem II results in separating a positive and a negative charge centre protein complexes, photosystem II and photosys- within the reaction centre and is governed by Einstein’s law tem I, which are linked by the cytochrome bf complexand of photochemistry: one absorbed photon drives the small mobile electron carriers (Whitmarsh and Govindjee, transfer of one electron. This means that four photo- 1999) (Figure 1). Photosystem II, the cytochrome bf chemical reactions are needed to remove four electrons complexand photosystem I are embedded in the thylakoid from water, which results in the release of one molecule of membrane and operate in series to transfer electrons from dioxygen and four protons, and in the reduction of two water to nicotinamide–adenine dinucleotide phosphate molecules of plastoquinone: (NADP 1 ). The energy necessary to move electrons from 1 1 1 water to NADP is provided by light, which is captured by 2H2O 1 2PQ 1 4H 1 (4hn)!O2 1 2PQH2 1 4H the photosystem II and photosystem I antenna systems. In plants and algae the thylakoid membranes are located This chapter focuses on the composition, structure and inside chloroplasts, which are subcellular organelles. In operation of photosystem II. For brevity we describe what oxygenic bacteria the thylakoids are located inside the we know without explaining the experimental results that plasma membrane. underlie our knowledge. The references given at the end of ENCYCLOPEDIA OF LIFE SCIENCES / & 2002 Macmillan Publishers Ltd, Nature Publishing Group / www.els.net 1 Photosystem II P700* 1–3 ps –1.2 Ao 40–200 ps 15–200 ns A1 3–20 ps 200–500 ns P680* Fx 0.5–20 µs Pheo Photosystem I FA, FB FD NADPH –0.4 100–200 ps + 2H Light FNR NADP+ QA Q Cyt b6 200–600 µs B PQPQ 0 PQ Cyt b6 (volts) 1 ms PQPQ m FeS/Cyt f E Photosystem II 5 ms µ PC 0.4 50–100 s P700 20–200 µs Light 50 µs–1.5 ms 2H2O µ 4Mn 200–800 s 2H+ + Tyr O2 + 4H 1.2 20 ns–200 µs P680 Figure 1 The Z scheme showing the pathway of oxygenic photosynthetic electron transport. The vertical scale shows the equilibrium midpoint potential (Em) of the electron transport components. Approximate electron transfer times are shown for several reactions. Mn, tetranuclear manganese cluster; Tyr * tyrosine-161 on D1 protein (Yz); P680, reaction centre chlorophyll a of photosystem II; P680 , excited electronic state of P680; Pheo, pheophytin; QA,a bound plastoquinone; QB, a plastoquinone that binds and unbinds from photosystem II; PQ, a pool of mobile plastoquinone molecules; the brown box is a protein complex containing cytochrome b6 (Cyt b6), iron–sulfur protein (FeS) and cytochrome f (Cyt f); PC, plastocyanin; P700, reaction centre chlorophyll * a of photosystem I; P700 , excited electronic state of P700; Ao, a special chlorophyll a molecule; A1, vitamin K; FX,FA,FB, iron sulfur centres; FD, ferredoxin; FNR, ferredoxin–NADP reductase; NADP 1 , nicotinamide–adenine dinucleotide phosphate. For details see Whitmarsh and Govindjee (1999). the article are an entryway into the vast literature on Light photosystem II that extends back more than half a century. LHC-ΙΙ CP47 CP43 LHC-ΙΙ Fe2+ Q Organization, Composition and Outside QA B Structure Phe PQ PQ Photosystem II is embedded in the thylakoid membrane, P680 Phe PQ with the oxygen-evolving site near the inner aqueous phase PQ and the plastoquinone reduction site near the outer D1 D2 PQ Tyr Mn aqueous phase (Figure 2), an orientation that enables the Mn oxidation–reduction chemistry of the reaction centre to Inside Mn Mn contribute to the proton electrochemical gradient across 2H2O the thylakoid membrane. In chloroplasts, the photosystem O II and photosystem I complexes are distributed in different 2 + regions of the thylakoid membrane. Most of the photo- 4H system II complexes are located in the stacked membranes (grana), whereas the photosystem I complexes are located Figure 2 Schematic drawing of the photosystem II antenna system and reaction centre in the thylakoid membrane. D1 and D2 are the core in the stomal membranes. It is not clear why two reaction proteins of photosystem II reaction centre. Photosystem II uses light energy centres that operate in series are spatially separated in to remove electrons from water, resulting in the release of oxygen and eukaryotic organisms. In prokaryotes, the thylakoid protons. The electrons from water are transferred via redox cofactors in the membranes do not form grana and the photosystem II protein complex to form reduced plastoquinone. (Mn)4, manganese and I complexes appear to be intermixed. In eukaryotes the cluster involved in removing electrons from water; P680, reaction centre photosystem II complexis densely packed in the thylakoid chlorophyll of photosystem II; Pheo, pheophytin; QA, a bound plastoquinone; QB, plastoquinone that binds and unbinds from membrane, with average centre to centre distances of a few photosystem II; Tyr, a tyrosine residue in photosystem II (Yz); PQ, a pool of hundred angstroms. One square centimetre of a typical leaf mobile plastoquinone molecules. The antenna complexes are: LHC-II, contains about 30 trillion photosystem II complexes. peripheral light-harvesting complex of photosystem II; CP47 and CP43, Although photosystem II is found in prokaryotic chlorophyll–protein complexes of 47 and 43 kDa, respectively. cyanobacteria (e.g. Synechocystis spp.) and prochloro- phytes (e.g. Prochloron spp.), in eukaryotic green algae (e.g. Fucus spp.) and all higher plants (e.g. Arabidopsis (e.g. Chlamydomonas spp.), red algae (e.g. Porphyridium spp.), extensive research indicates that its structure and spp.), yellow-green algae (e.g. Vaucheria) and brown algae function are remarkably similar in these diverse organisms. 2 ENCYCLOPEDIA OF LIFE SCIENCES / & 2002 Macmillan Publishers Ltd, Nature Publishing Group / www.els.net Photosystem II Photosystem II is arranged as a central reaction centre
Recommended publications
  • Light-Induced Psba Translation in Plants Is Triggered by Photosystem II Damage Via an Assembly-Linked Autoregulatory Circuit
    Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit Prakitchai Chotewutmontria and Alice Barkana,1 aInstitute of Molecular Biology, University of Oregon, Eugene, OR 97403 Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 22, 2020 (received for review April 26, 2020) The D1 reaction center protein of photosystem II (PSII) is subject to mRNA to provide D1 for PSII repair remain obscure (13, 14). light-induced damage. Degradation of damaged D1 and its re- The consensus view in recent years has been that psbA transla- placement by nascent D1 are at the heart of a PSII repair cycle, tion for PSII repair is regulated at the elongation step (7, 15–17), without which photosynthesis is inhibited. In mature plant chloro- a view that arises primarily from experiments with the green alga plasts, light stimulates the recruitment of ribosomes specifically to Chlamydomonas reinhardtii (Chlamydomonas) (18). However, we psbA mRNA to provide nascent D1 for PSII repair and also triggers showed recently that regulated translation initiation makes a a global increase in translation elongation rate. The light-induced large contribution in plants (19). These experiments used ribo- signals that initiate these responses are unclear. We present action some profiling (ribo-seq) to monitor ribosome occupancy on spectrum and genetic data indicating that the light-induced re- cruitment of ribosomes to psbA mRNA is triggered by D1 photo- chloroplast open reading frames (ORFs) in maize and Arabi- damage, whereas the global stimulation of translation elongation dopsis upon shifting seedlings harboring mature chloroplasts is triggered by photosynthetic electron transport.
    [Show full text]
  • Evolution of Photochemical Reaction Centres
    bioRxiv preprint doi: https://doi.org/10.1101/502450; this version posted December 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution of photochemical reaction 2 centres: more twists? 3 4 Tanai Cardona, A. William Rutherford 5 Department of Life Sciences, Imperial College London, London, UK 6 Correspondence to: [email protected] 7 8 Abstract 9 The earliest event recorded in the molecular evolution of photosynthesis is the structural and 10 functional specialisation of Type I (ferredoxin-reducing) and Type II (quinone-reducing) reaction 11 centres. Here we point out that the homodimeric Type I reaction centre of Heliobacteria has a Ca2+- 12 binding site with a number of striking parallels to the Mn4CaO5 cluster of cyanobacterial 13 Photosystem II. This structural parallels indicate that water oxidation chemistry originated at the 14 divergence of Type I and Type II reaction centres. We suggests that this divergence was triggered by 15 a structural rearrangement of a core transmembrane helix resulting in a shift of the redox potential 16 of the electron donor side and electron acceptor side at the same time and in the same redox direction. 17 18 Keywords 19 Photosynthesis, Photosystem, Water oxidation, Oxygenic, Anoxygenic, Reaction centre 20 21 Evolution of Photosystem II 22 There is no consensus on when and how oxygenic photosynthesis originated. Both the timing and the 23 evolutionary mechanism are disputed.
    [Show full text]
  • Influence of Alkaline Treatment on Structural Modifications Of
    foods Article Influence of Alkaline Treatment on Structural Modifications of Chlorophyll Pigments in NaOH—Treated Table Olives Preserved without Fermentation Marta Berlanga-Del Pozo, Lourdes Gallardo-Guerrero and Beatriz Gandul-Rojas * Chemistry and Biochemistry of Pigments, Food Phytochemistry, Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. Utrera km 1, 41013 Sevilla, Spain; [email protected] (M.B.-D.P.); [email protected] (L.G.-G.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 18 May 2020; Published: 1 June 2020 Abstract: Alkaline treatment is a key stage in the production of green table olives and its main aim is rapid debittering of the fruit. Its action is complex, with structural changes in both the skin and the pulp, and loss of bioactive components in addition to the bitter glycoside oleuropein. One of the components seriously affected are chlorophylls, which are located mainly in the skin of the fresh fruit. Chlorophyll pigments are responsible for the highly-valued green color typical of table olive specialties not preserved by fermentation. Subsequently, the effect on chlorophylls of nine processes, differentiated by NaOH concentration and/or treatment time, after one year of fruit preservation under refrigeration conditions, was investigated. A direct relationship was found between the intensity of the alkali treatment and the degree of chlorophyll degradation, with losses of more than 60% being recorded when NaOH concentration of 4% or greater were used. Oxidation with opening of the isocyclic ring was the main structural change, followed by pheophytinization and degradation to colorless products. To a lesser extent, decarbomethoxylation and dephytylation reactions were detected.
    [Show full text]
  • Etude Des Sources De Carbone Et D'énergie Pour La Synthèse Des Lipides De Stockage Chez La Microalgue Verte Modèle Chlamydo
    Aix Marseille Université L'Ecole Doctorale 62 « Sciences de la Vie et de la Santé » Etude des sources de carbone et d’énergie pour la synthèse des lipides de stockage chez la microalgue verte modèle Chlamydomonas reinhardtii Yuanxue LIANG Soutenue publiquement le 17 janvier 2019 pour obtenir le grade de « Docteur en biologie » Jury Professor Claire REMACLE, Université de Liège (Rapporteuse) Dr. David DAUVILLEE, CNRS Lille (Rapporteur) Professor Stefano CAFFARRI, Aix Marseille Université (Examinateur) Dr. Gilles PELTIER, CEA Cadarache (Invité) Dr. Yonghua LI-BEISSON, CEA Cadarache (Directeur de thèse) 1 ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my advisor Dr. Yonghua Li-Beisson for the continuous support during my PhD study and also gave me much help in daily life, for her patience, motivation and immense knowledge. I could not have imagined having a better mentor. I’m also thankful for the opportunity she gave me to conduct my PhD research in an excellent laboratory and in the HelioBiotec platform. I would also like to thank another three important scientists: Dr. Gilles Peltier (co- supervisor), Dr. Fred Beisson and Dr. Pierre Richaud who helped me in various aspects of the project. I’m not only thankful for their insightful comments, suggestion, help and encouragement, but also for the hard question which incented me to widen my research from various perspectives. I would also like to thank collaboration from Fantao, Emmannuelle, Yariv, Saleh, and Alisdair. Fantao taught me how to cultivate and work with Chlamydomonas. Emmannuelle performed bioinformatic analyses. Yariv, Saleh and Alisdair from Potsdam for amino acid analysis.
    [Show full text]
  • Chapter 3 the Title and Subtitle of This Chapter Convey a Dual Meaning
    3.1. Introduction Chapter 3 The title and subtitle of this chapter convey a dual meaning. At first reading, the subtitle Photosynthetic Reaction might seem to indicate that the topic of the structure, function and organization of Centers: photosynthetic reaction centers is So little time, so much to do exceedingly complex and that there is simply insufficient time or space in this brief article to cover the details. While this is John H. Golbeck certainly the case, the subtitle is Department of Biochemistry additionally meant to convey the idea that there is precious little time after the and absorption of a photon to accomplish the Molecular Biology task of preserving the energy in the form of The Pennsylvania State University stable charge separation. University Park, PA 16802 USA The difficulty is there exists a fundamental physical limitation in the amount of time available so that a photochemically induced excited state can be utilized before the energy is invariably wasted. Indeed, the entire design philosophy of biological reaction centers is centered on overcoming this physical, rather than chemical or biological, limitation. In this chapter, I will outline the problem of conserving the free energy of light-induced charge separation by focusing on the following topics: 3.2. Definition of the problem: the need to stabilize a charge-separated state. 3.3. The bacterial reaction center: how the cofactors and proteins cope with this problem in a model system. 3.4. Review of Marcus theory: what governs the rate of electron transfer in proteins? 3.5. Photosystem II: a variation on a theme of the bacterial reaction center.
    [Show full text]
  • Lecture Inhibition of Photosynthesis Inhibition at Photosystem I
    1 Lecture Inhibition of Photosynthesis Inhibition at Photosystem I 1. General Information The popular misconception is that susceptible plants treated with these herbicides “starve to death” because they can no longer photosynthesize. In actuality, the plants die long before the food reserves are depleted. The photosynthetic inhibitors can be divided into two distinct groups, the inhibitors of Photosystem I and inhibitors of Photosystem II. Both of these groups work in the energy production step of photosynthesis, or the light reactions. Light is required as well as photosynthesis for these herbicides to kill susceptible plants. Herbicides that inhibit Photosystem I are considered to be contact herbicides and are often referred to as membrane disruptors. The end result is that cell membranes are rapidly destroyed resulting in leakage of cell contents into the intercellular spaces. These herbicides act as “electron interceptors” or “electron thieves” within Photosystem I of the light reaction of photosynthesis. They divert electrons from the normal electron transport sequence necessary in Photosystem I. This in turn inhibits photosynthesis. The membrane disruption occurs as a result of secondary responses. Herbicides that inhibit Photosystem I are represented by only one family, the bipyridyliums. See chemical structure shown under herbicide families. These molecules are cationic (positively charged) and are therefore highly water soluble. Their cationic properties also make them highly adsorbed to soil colloids resulting in no soil activity. 2. Mode of Action See Figure 7.1 (The electron transport chain in photosynthesis and the sites of action of herbicides that interfere with electron transfer in this chain (Q = electron acceptor; PQ = plastoquinone).
    [Show full text]
  • Photosystem I-Based Applications for the Photo-Catalyzed Production of Hydrogen and Electricity
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2014 Photosystem I-Based Applications for the Photo-catalyzed Production of Hydrogen and Electricity Rosemary Khuu Le University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biochemical and Biomolecular Engineering Commons Recommended Citation Le, Rosemary Khuu, "Photosystem I-Based Applications for the Photo-catalyzed Production of Hydrogen and Electricity. " PhD diss., University of Tennessee, 2014. https://trace.tennessee.edu/utk_graddiss/3146 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Rosemary Khuu Le entitled "Photosystem I- Based Applications for the Photo-catalyzed Production of Hydrogen and Electricity." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemical Engineering. Paul D. Frymier, Major Professor We have read this dissertation and recommend its acceptance: Eric T. Boder, Barry D. Bruce, Hugh M. O'Neill Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Photosystem I-Based Applications for the Photo-catalyzed Production of Hydrogen and Electricity A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Rosemary Khuu Le December 2014 Copyright © 2014 by Rosemary Khuu Le All rights reserved.
    [Show full text]
  • Chlorophyll and Pheophytin
    Application Note: Chlorophyll and Pheophytin INTRODUCTION Chlorophyll, the photosynthetic pigment in all plants, is a fluorescent molecule, thus it can be determined by fluorometry. Fluorometric techniques are now well established for both qualitative and quantitative measurement of the chlorophylls and pheophytins. For many applications, they have replaced the traditional spectrophotometric methods and have made analysis in the field practical. ADVANTAGES Fluorometric methods have many advantages over other methods. As one author stated, "Chlorophyll a was selected because... it is the only index of phytoplankton abundance presently available that can be measured by a continuous in-situ technique..."(1). According to another researcher, "The relative simplicity of these techniques enables much information to be rapidly gathered..." (2). A comparison study conducted by the U.S. Environmental Protection Agency has shown that fluorometric methods compare favorably with spectrophotometric results (3). Fluorometry has the following advantages over spectrophotometry: Sensitivity: Fluorometry is at least 1,000 times more sensitive than the spectrophotometric techniques (4 ,5). Up to 10 liters of water may be required for a single spectrophotometric chlorophyll determination (6, p. 186), but the fluorometer can obtain the same data from samples of 500 ml or less. Sometimes the large volumes required for spectrophotometric determination are nearly impossible to filter because of clogging problems. The spectrophotometric determination of chlorophyll involves filtration, disruption of the cells, and extraction of the chlorophyll, followed by absorbance measurements. The same extraction technique can be used to produce samples for fluorometric determination, with the advantage of greater sensitivity and thus smaller sample requirements. Speed: With a spectrophotometer, one must measure absorbance at several wavelengths (4, 6, p.
    [Show full text]
  • (CP) Gene of Papaya Ri
    Results and Discussion 4. RESULTS AND DISCUSSION 4.1 Genetic diversity analysis of coat protein (CP) gene of Papaya ringspot virus-P (PRSV-P) isolates from multiple locations of Western India Results – 4.1.1 Sequence analysis In this study, fourteen CP gene sequences of PRSV-P originating from multiple locations of Western Indian States, Gujarat and Maharashtra (Fig. 3.1), have been analyzed and compared with 46 other CP sequences from different geographic locations of America (8), Australia (1), Asia (13) and India (24) (Table 4.1; Fig. 4.1). The CP length of the present isolates varies from 855 to 861 nucleotides encoding 285 to 287 amino acids. Fig. 4.1: Amplification of PRSV-P coat protein (CP) gene from 14 isolates of Western India. From left to right lanes:1: Ladder (1Kb), 2: IN-GU-JN, 3: IN-GU-SU, 4: IN-GU-DS, 5: IN-GU-RM, 6: IN-GU-VL, 7: IN-MH-PN, 8: IN-MH-KO, 9: IN-MH-PL, 10: IN-MH-SN, 11: IN-MH-JL, 12: IN-MH-AM, 13: IN-MH-AM, 14: IN-MH-AK, 15: IN-MH-NS,16: Negative control. Red arrow indicates amplicon of Coat protein (CP) gene. Table 4.1: Sources of coat protein (CP) gene sequences of PRSV-P isolates from India and other countries used in this study. Country Name of Length GenBank Origin¥ Reference isolates* (nts) Acc No IN-GU-JN GU-Jamnagar 861 MG977140 This study IN-GU-SU GU-Surat 855 MG977142 This study IN-GU-DS GU-Desalpur 855 MG977139 This study India IN-GU-RM GU-Ratlam 858 MG977141 This study IN-GU-VL GU-Valsad 855 MG977143 This study IN-MH-PU MH-Pune 861 MH311882 This study Page | 36 Results and Discussion IN-MH-PN MH-Pune
    [Show full text]
  • Computational Study of Redox Active Centers of Blue Copper Proteins: a Computational DFT Study Matej Pavelka, J.V
    Computational Study of Redox Active Centers of Blue Copper Proteins: A Computational DFT Study Matej Pavelka, J.V. Burda To cite this version: Matej Pavelka, J.V. Burda. Computational Study of Redox Active Centers of Blue Copper Proteins: A Computational DFT Study. Molecular Physics, Taylor & Francis, 2009, 106 (24), pp.2733-2748. 10.1080/00268970802672684. hal-00513245 HAL Id: hal-00513245 https://hal.archives-ouvertes.fr/hal-00513245 Submitted on 1 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Molecular Physics For Peer Review Only Computational Study of Redox Active Centers of Blue Copper Proteins: A Computational DFT Study Journal: Molecular Physics Manuscript ID: TMPH-2008-0332.R1 Manuscript Type: Full Paper Date Submitted by the 07-Dec-2008 Author: Complete List of Authors: Pavelka, Matej; Charles University, Chemical Physics and Optics Burda, J.V.; Charles University, Czech Republic, Department of Chemical physics and optics DFT calculations, plastocyanin, blue copper proteins, copper Keywords: complexes URL: http://mc.manuscriptcentral.com/tandf/tmph Page 1 of 45 Molecular Physics 1 2 3 4 5 Computational Study of Redox Active Centers of Blue Copper 6 7 Proteins: A Computational DFT Study 8 9 10 11 Mat ěj Pavelka and Jaroslav V.
    [Show full text]
  • Small One-Helix Proteins Are Essential for Photosynthesis in Arabidopsis
    ORIGINAL RESEARCH Erschienen in: Frontiers in Plant Science ; 8 (2017). - 7 published: 23 January 2017 http://dx.doi.org/10.3389/fpls.2017.00007 doi: 10.3389/fpls.2017.00007 Small One-Helix Proteins Are Essential for Photosynthesis in Arabidopsis Jochen Beck †, Jens N. Lohscheider †, Susanne Albert, Ulrica Andersson, Kurt W. Mendgen, Marc C. Rojas-Stütz, Iwona Adamska and Dietmar Funck * Plant Physiology and Biochemistry Group, Department of Biology, University of Konstanz, Konstanz, Germany The extended superfamily of chlorophyll a/b binding proteins comprises the Light- Harvesting Complex Proteins (LHCs), the Early Light-Induced Proteins (ELIPs) and the Photosystem II Subunit S (PSBS). The proteins of the ELIP family were proposed to function in photoprotection or assembly of thylakoid pigment-protein complexes and are further divided into subgroups with one to three transmembrane helices. Two small One- Helix Proteins (OHPs) are expressed constitutively in green plant tissues and their levels increase in response to light stress. In this study, we show that OHP1 and OHP2 are Edited by: highly conserved in photosynthetic eukaryotes, but have probably evolved independently Peter Jahns, University of Düsseldorf, Germany and have distinct functions in Arabidopsis. Mutations in OHP1 or OHP2 caused severe Reviewed by: growth deficits, reduced pigmentation and disturbed thylakoid architecture. Surprisingly, Wataru Sakamoto, the expression of OHP2 was severely reduced in ohp1 T-DNA insertion mutants and vice Okayama University, Japan versa. In both ohp1 and ohp2 mutants, the levels of numerous photosystem components Rafael Picorel, Spanish National Research Council, were strongly reduced and photosynthetic electron transport was almost undetectable. Spain Accordingly, ohp1 and ohp2 mutants were dependent on external organic carbon *Correspondence: sources for growth and did not produce seeds.
    [Show full text]
  • Cellular Biology 1
    Cellular biology 1 INTRODUCTION • Specialized intracellular membrane-bound organelles (Fig. 1.2), such as mitochondria, Golgi apparatus, endoplasmic reticulum (ER). This chapter is an overview of eukaryotic cells, addressing • Large size (relative to prokaryotic cells). their intracellular organelles and structural components. A basic appreciation of cellular structure and function is important for an understanding of the following chapters’ information concerning metabolism and nutrition. For fur- ther detailed information in this subject area, please refer to EUKARYOTIC ORGANELLES a reference textbook. Nucleus The eukaryotic cell The nucleus is surrounded by a double membrane (nuclear Humans are multicellular eukaryotic organisms. All eukary- envelope). The envelope has multiple pores to allow tran- otic organisms are composed of eukaryotic cells. Eukaryotic sit of material between the nucleus and the cytoplasm. The cells (Fig. 1.1) are defined by the following features: nucleus contains the cell’s genetic material, DNA, organized • A membrane-limited nucleus (the key feature into linear structures known as chromosomes. As well as differentiating eukaryotic cells from prokaryotic cells) chromosomes, irregular zones of densely staining material that contains the cell’s genetic material. are also present. These are the nucleoli, which are responsible Inner nuclear Nucleus membrane Nucleolus Inner Outer Outer mitochondrial nuclear mitochondrial membrane membrane membrane Ribosome Intermembrane space Chromatin Mitochondrial Rough matrix Mitochondrial Nuclear endoplasmic ribosome pore reticulum Crista Mitochondrial mRNA Smooth Vesicle endoplasmic Mitochondrion Circular reticulum mitochondrial Proteins of the DNA Vesicle budding electron transport off rough ER Vesicles fusing system with trans face of Cytoplasm Golgi apparatus ‘Cis’ face + discharging protein/lipid Golgi apparatus ‘Trans’ face Lysosome Vesicles leaving Golgi with modified protein/lipid cargo Cell membrane Fig.
    [Show full text]