The Ecological Potentials of Phytomyxea (''Plasmodiophorids

Total Page:16

File Type:pdf, Size:1020Kb

The Ecological Potentials of Phytomyxea (''Plasmodiophorids Hydrobiologia (2011) 659:23–35 DOI 10.1007/s10750-010-0508-0 DISREGARDED DIVERSITY AND ECOLOGICAL POTENTIALS Review/Opinion Paper The ecological potentials of Phytomyxea (‘‘plasmodiophorids’’) in aquatic food webs Sigrid Neuhauser • Martin Kirchmair • Frank H. Gleason Received: 17 May 2010 / Revised: 14 September 2010 / Accepted: 24 September 2010 / Published online: 20 October 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract The Phytomyxea (‘‘plasmodiophorids’’) the parasites. Furthermore, significant amounts of including both Plasmodiophorida and Phagomyxida nutrients derived from the hosts, both primary is a monophyletic group of Eukaryotes composed of producers (plants and algae) and primary consumers obligate biotrophic parasites of green plants, brown (litter decomposers and plant parasites [Oomycetes]), algae, diatoms and stramenopiles commonly found in can enter the food web at different trophic levels in many freshwater, soil and marine environments. form of zoospores and resting spores. Large numbers However, most research on Phytomyxea has been of zoospores and resting spores are produced which restricted to plant pathogenic species with agricul- can be eaten by secondary and tertiary consumers, tural importance, thereby missing the huge ecological such as grazing zooplankton and metazoan filter- potential of this enigmatic group of parasites. Mem- feeders. Therefore, these microbes can act as energy- bers of the Phytomyxea can induce changes in rich nutrient resources which may significantly alter biomass in their hosts (e.g. hypertrophies of the host the trophic relationships in fresh water, soil and tissue) under suitable environmental conditions. marine habitats. Based on the presented data, Phy- Upon infection they alter the metabolism of their tomyxea can significantly contribute to the complex- hosts, consequently changing the metabolic status of ity and energy transfer within food webs. their host. This results in an altered chemical composition of the host tissue, which impacts the Keywords Aquatic ecosystems Á Food webs Á diversity of species which feed on the tissues of Biotrophic parasites Á Plasmodiophora Á the infected host and on the zoospores produced by Host–pathogen interaction Guest editors: T. Sime-Ngando & N. Niquil / Disregarded Introduction Microbial Diversity and Ecological Potentials in Aquatic Systems During the past decade an unexpectedly high diver- sity of microbial eukaryotes has been revealed in S. Neuhauser (&) Á M. Kirchmair Institute of Microbiology, Leopold Franzens-University many aquatic habitats (Moreira & Lo´pez-Garcı´a, Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria 2002; Gleason et al., 2008; Lefe`vre et al., 2008; e-mail: [email protected] Lopez-Garcia & Moreira, 2008; Sime-Ngando et al., 2010). Amongst these eukaryotes the heterotrophic F. H. Gleason School of Biological Sciences A12, University of Sydney, flagellates are thought to play key roles in aquatic Sydney, NSW 2006, Australia ecosystems as parasites and saprobes. Heterotrophic 123 24 Hydrobiologia (2011) 659:23–35 flagellates (HF) are defined as microbes with zoo- on soil-borne plant pathogens. We expect that the spores approximately less than or equal to 5 lmin underlying mechanisms of parasitism are similar in diameter and without chlorophyll (Sime-Ngando all aquatic, soil and marine habitats. et al., 2010). Their roles in food webs include recycling inorganic and organic nutrients, contribut- ing to the energy flow in food webs, trophic Classification upgrading and regulation of population size of their hosts (Sime-Ngando et al., 2010). The Phytomyxea are a monophyletic group of Eukary- Based on the morphology of both the primary and otes. During the past few years the common name secondary zoosporic stages, Phytomyxea can be ‘‘plasmodiophorids’’ as introduced by Braselton has included in the ecological concept of HF as proposed been used for this group (Braselton, 1995). The true by Sime-Ngando et al. (2010). However, phytomyxean taxonomic position of this group has been debated zoospores lack distinctive morphological features frequently since the publication of the original which would allow them to be easily identified within description of Plasmodiophora brassicae Woronin a pool of HF. In the studies by Lefe`vre et al. (2007, (reviewed by Neuhauser et al., 2010). Woronin (1878) 2008) the analysis of HF populations revealed a classified Pl. brassicae originally as a protist (sensu considerable number of zoospores belonging to sapro- Haeckel). Later the Phytomyxea were thought to bic or parasitic zoosporic true fungi (Chytridiomycota, belong to the Mastigomycota together with other Blastocladiomycota, etc.) and groups of parasitic zoosporic fungi and stramenopiles. Sparrow (1960) protists. Although no Phytomyxea were detected by included them in the aquatic phycomycetes. Currently Lefe`vre et al. (2008), we propose that these microbes they are considered to be members of the protist are frequently present in freshwater, soil and marine supergroup Rhizaria, because the affiliation of Phy- ecosystems. Recently evidence has suggested that the tomyxea to the Rhizaria has been indicated repeatedly Phytomyxea have been under-sampled in DNA-based by molecular studies (Cavalier-Smith, 1993; Bulman environmental screening studies in many ecosystems et al., 2001; Archibald & Keeling, 2004; Nikolaev because of negative primer bias (Neuhauser et al., et al., 2004; Bass et al., 2009). Throughout this article 2010). However, DNA sequences of some previously we will use zoological nomenclature for the higher unknown taxa of Phytomyxea have been identified taxonomic levels. Tentatively the Class Phytomyxea is in clone libraries from a saline meromictic lake placed within the Phylum Cercozoa and the Subphy- (Takishita et al., 2007a), and in sediment of a deep lum Endomyxa (Bass et al., 2009). Based on 18S sea methane cold steep (Takishita et al., 2007b). rDNA data the Class Phytomyxea comprises two Furthermore, a high diversity of known and unsampled orders: Plasmodiophorida, which are mainly parasites taxa has been detected in randomly collected soil of green plants and the Phagomyxida which are and fresh water samples using primers specific for parasites of diatoms and brown algae. Currently there Plasmodiophorida (Neuhauser et al., unpublished). are 41 known species belonging to twelve genera Collectively these studies support the view that this (Table 1). group of microbes has been previously under-sampled in many ecosystems. Furthermore it can be expected that Phytomyxea are widely distributed in many Life cycles aquatic ecosystems and play more important roles as biotrophs than previously thought. All known species of Phytomyxea are obligate The purposes of this article are (i) to describe the biotrophs. These microbes have complex life cycles distinctive features of Phytomyxea, (ii) to provide the with two free swimming zoosporic stages, two basis for considering them as members of the HF plasmodial stages that are linked to the host, a thin- group and (iii) to discuss some of their potential walled zoosporangial stage and thick-walled resting ecological roles in freshwater, soil and marine spores. In some species the resting spores aggregate ecosystems. The ecological potential will be illus- into cytosori which are the most prominent and trated using data available from the sparse literature important morphological characteristic. The form, on aquatic hosts and from the more detailed studies size and pigmentation of the resting spores and the 123 Hydrobiologia (2011) 659:23–35 Table 1 Phytomyxean species according to Karling (1968) including the species described more recently Terrestrial Fresh water Marine Green plants Ligniera verrucosa Maire & A. Tisson Ligniera isoetes Palm Plasmodiophora bicaudata Feldmann Ligniera junci (Schwartz) Maire & A. Tisson* Ligniera junci Plasmodiophora diplantherae (Ferd. & Winge) Ivimey Ligniera pilorum Fron. & Gaillat Membranosorus heterantherae Ostenf. & H.E. Cook Ligniera betae (Neˇmec) Karling Petersen Plasmodiophora halophilae Ferd. & Winge Ligniera hypogeae (Borzı´) Karling Sorodiscus callitrichis Lagerh. & Winge Plasmodiophora maritima Feldm.-Maz. Ligniera plantaginis (Neˇmec) Karling Sorosphaera veronicae Tetramyxa parasitica K. I. Goebel Plasmodiophora brassicae Woronin Spongospora nasturtii M. W. Dick Polymyxa graminis Ledingham Tetramyxa triglochinis Molliard Polymyxa betae Keskin Sorodiscus radicicolus Ivimey Cook Sorosphaera veronicae J. Schro¨t. Sorosphaera radicalis Ivimey Cook & Schwartz* Sorosphaera viticola Kirchm., Neuh. & L. Huber Spongospora subterranea (Wallr.) Lagerh. Spongospora campanulae (Ferd. & Winge) Ivimey Cook Spongospora cotulae Barrett Tetramyxa rhizophaga Lihnell Tetramyxa elaeagni Y. Yendo & K. Takase Oomycetes Octomyxa achlyae Couch, J. Leitn. & Whiffen* Octomyxa achlyae* Octomyxa brevilegniae Pend.* Octomyxa brevilegniae* Woronina polycystis Cornu* Sorodiscus cokeri Goldie-Sm.* Woronina pythii Goldie-Sm.* Woronina leptolegnia Karling* Woronina polycystis* Woronina pythii* Green algae Sorodiscus karlingii Ivimey Cook s. l. Woronina aggregata Zopf Woronina glomerata (Cornu) A. Fisch 123 25 26 Hydrobiologia (2011) 659:23–35 mode of cytosoral aggregation are used for species delimitation in Plasmodiophorida. These thick-walled resting spores have not been identified in the Phag- omyxida yet. But recently evidence indicates that two . Species marked morphologically different types of zoospores
Recommended publications
  • Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland
    fmicb-10-01332 June 8, 2019 Time: 10:19 # 1 ORIGINAL RESEARCH published: 11 June 2019 doi: 10.3389/fmicb.2019.01332 Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland Anna Maria Fiore-Donno1,2*, Tim Richter-Heitmann3, Florine Degrune4,5, Kenneth Dumack1,2, Kathleen M. Regan6, Sven Marhan7, Runa S. Boeddinghaus7, Matthias C. Rillig4,5, Michael W. Friedrich3, Ellen Kandeler7 and Michael Bonkowski1,2 1 Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany, 2 Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany, 3 Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany, 4 Institute of Biology, Plant Ecology, Freie Universität Berlin, Berlin, Germany, 5 Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany, 6 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, United States, 7 Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany Edited by: Soil protists are increasingly appreciated as essential components of soil foodwebs; Jaak Truu, University of Tartu, Estonia however, there is a dearth of information on the factors structuring their communities. Reviewed by: Here we investigate the importance of different biotic and abiotic factors as key Anne Winding, drivers of spatial and seasonal distribution of protistan communities. We conducted Aarhus University, Denmark 2 Ida Karlsson, an intensive survey of a 10 m grassland plot in Germany, focusing on a major group Swedish University of Agricultural of protists, the Cercozoa. From 177 soil samples, collected from April to November, Sciences, Sweden we obtained 694 Operational Taxonomy Units representing 6 million Illumina reads.
    [Show full text]
  • Rare Phytomyxid Infection on the Alien Seagrass Halophila Stipulacea In
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.14053 Rare phytomyxid infection on the alien seagrass Halophila stipulacea in the southeast Aegean Sea MARTIN VOHNÍK1,2, ONDŘEJ BOROVEC1,2, ELIF ÖZGÜR ÖZBEK3 and EMINE ŞÜKRAN OKUDAN ASLAN4 1 Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, 25243 Czech Republic 2 Department of Plant Experimental Biology, Faculty of Science, Charles University, Prague, 12844 Czech Republic 3 Marine Biology Museum, Antalya Metropolitan Municipality, Antalya, Turkey 4 Department of Marine Biology, Faculty of Fisheries, Akdeniz University, Antalya, Turkey Corresponding author: [email protected] Handling Editor: Athanasios Athanasiadis Received: 31 May 2017; Accepted: 9 October 2017; Published on line: 8 December 2017 Abstract Phytomyxids (Phytomyxea) are obligate endosymbionts of many organisms such as algae, diatoms, oomycetes and higher plants including seagrasses. Despite their supposed significant roles in the marine ecosystem, our knowledge of their marine diversity and distribution as well as their life cycles is rather limited. Here we describe the anatomy and morphology of several developmental stages of a phytomyxid symbiosis recently discovered on the petioles of the alien seagrass Halophila stipulacea at a locality in the southeast Aegean Sea. Its earliest stage appeared as whitish spots already on the youngest leaves at the apex of the newly formed rhizomes. The infected host cells grew in volume being filled with plasmodia which resulted in the formation of characteristic macroscopic galls.
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Testing the Effect of in Planta RNA Silencing on Plasmodiophorabrassicae Infection
    Testing the effect of in planta RNA silencing on Plasmodiophorabrassicae infection A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University S. R. Bulman 2006 ii Contents Abstract. ...................................................................................................., ................ v Acknowledgements .................................................................................................. vii List of Tables ........................................................................................................... viii List of Figures ........................................................................................................... ix CHAPTER 1. Literature Review ................................................................................ 1 Plasmodiophora brassicae ............................................................................................. 1 RNA silencing .................................................................................................................. 5 Plant defence by RNA silencing .................................................................................... 8 RNA silencing versus P. brassicae ............................................................................. 10 Molecular biology of P. brassicae ................................................................................ 10 Choice of cDNA cloning strategy in P. brassicae ......................................................
    [Show full text]
  • Plasmodiophora Brassicae
    Bi et al. Phytopathology Research (2019) 1:12 https://doi.org/10.1186/s42483-019-0018-6 Phytopathology Research RESEARCH Open Access Comparative genomics reveals the unique evolutionary status of Plasmodiophora brassicae and the essential role of GPCR signaling pathways Kai Bi1,2, Tao Chen2, Zhangchao He1,2, Zhixiao Gao1,2, Ying Zhao1,2, Huiquan Liu3, Yanping Fu2, Jiatao Xie1,2, Jiasen Cheng1,2 and Daohong Jiang1,2* Abstract Plasmodiophora brassicae is an important biotrophic eukaryotic plant pathogen and a member of the rhizarian protists. This biotrophic pathogen causes clubroot in cruciferous plants via novel intracellular mechanisms that are markedly different from those of other biotrophic organisms. To date, genomes from six single spore isolates of P. brassicae have been sequenced. An accurate description of the evolutionary status of this biotrophic protist, however, remains lacking. Here, we determined the draft genome of the P. brassicae ZJ-1 strain. A total of 10,951 protein-coding genes were identified from a 24.1 Mb genome sequence. We applied a comparative genomics approach to prove the Rhizaria supergroup is an independent branch in the eukaryotic evolutionary tree. We also found that the GPCR signaling pathway, the versatile signal transduction to multiple intracellular signaling cascades in response to extracellular signals in eukaryotes, is significantly enriched in P. brassicae-expanded and P. brassicae-specific gene sets. Additionally, treatment with a GPCR inhibitor relieved the symptoms of clubroot and significantly suppressed the development of plasmodia. Our findings suggest that GPCR signal transduction pathways play important roles in the growth, development, and pathogenicity of P. brassicae.
    [Show full text]
  • Phylogenomics Supports the Monophyly of the Cercozoa T ⁎ Nicholas A.T
    Molecular Phylogenetics and Evolution 130 (2019) 416–423 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenomics supports the monophyly of the Cercozoa T ⁎ Nicholas A.T. Irwina, , Denis V. Tikhonenkova,b, Elisabeth Hehenbergera,1, Alexander P. Mylnikovb, Fabien Burkia,2, Patrick J. Keelinga a Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada b Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia ARTICLE INFO ABSTRACT Keywords: The phylum Cercozoa consists of a diverse assemblage of amoeboid and flagellated protists that forms a major Cercozoa component of the supergroup, Rhizaria. However, despite its size and ubiquity, the phylogeny of the Cercozoa Rhizaria remains unclear as morphological variability between cercozoan species and ambiguity in molecular analyses, Phylogeny including phylogenomic approaches, have produced ambiguous results and raised doubts about the monophyly Phylogenomics of the group. Here we sought to resolve these ambiguities using a 161-gene phylogenetic dataset with data from Single-cell transcriptomics newly available genomes and deeply sequenced transcriptomes, including three new transcriptomes from Aurigamonas solis, Abollifer prolabens, and a novel species, Lapot gusevi n. gen. n. sp. Our phylogenomic analysis strongly supported a monophyletic Cercozoa, and approximately-unbiased tests rejected the paraphyletic topologies observed in previous studies. The transcriptome of L. gusevi represents the first transcriptomic data from the large and recently characterized Aquavolonidae-Treumulida-'Novel Clade 12′ group, and phyloge- nomics supported its position as sister to the cercozoan subphylum, Endomyxa. These results provide insights into the phylogeny of the Cercozoa and the Rhizaria as a whole.
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • Distribution of Two Formae Speciales of Polymyxa Graminis in the Czech Republic*
    PLANT SCIENCES DISTRIBUTION OF TWO FORMAE SPECIALES OF POLYMYXA GRAMINIS IN THE CZECH REPUBLIC* L. Grimová, L. Winkowska, B. Špuláková, P. Růžičková, P. Ryšánek Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Crop Protection, Prague, Czech Republic It has been shown that two formae speciales of P. graminis, namely f. sp. temperata (ribotype Pg-I) and f. sp. tepida (ribotype Pg-II), are widely distributed throughout temperate areas of Europe. In this study, the presence of both forms of the temper- ate Polymyxa spp. was identified in soil samples from different locations of the Czech Republic during a survey performed in 2012 and 2013. Based on polymerase chain reaction results, of the total 58 tested samples, 67.2% contained at least one monitored forma specialis. Specifically, P. graminis f. sp. temperata was detected in 48.3% of soil samples, while P. graminis f. sp. tepida was detected in 44.8% of samples. Mixed populations were found in 25.9% of the tested areas. This plasmodio- phorid was confirmed not only in crop fields but also in meadows and forests in all explored regions. Our results extend the knowledge on the distribution of both ribotypes of P. graminis and provide the first evidence of f. sp. tepida within the Czech Republic. Plasmodiophoromycetes, temperate ribotypes, monitoring, PCR doi: 10.1515/sab-2017-0011 Received for publication on March 17, 2016 Accepted for publication on November 1, 2016 INTRODUCTION ous species in the Chenopodiaceae and the related plant families Amaranthaceae, Portulacaceae, and The genus Polymyxa represents one of ten genera in the Caryophyllaceae (Barr, Asher, 1992; Legrève family Plasmodiophoracea (order Plasmodiophorales, et al., 2002; R u s h , 2003).
    [Show full text]
  • Complex Communities of Small Protists and Unexpected Occurrence Of
    Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, Purificación López-García To cite this version: Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, et al.. Complex communities of small protists and unexpected occurrence of typical marine lineages in shal- low freshwater systems. Environmental Microbiology, Society for Applied Microbiology and Wiley- Blackwell, 2015, 17 (10), pp.3610-3627. 10.1111/1462-2920.12591. hal-03022575 HAL Id: hal-03022575 https://hal.archives-ouvertes.fr/hal-03022575 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Europe PMC Funders Group Author Manuscript Environ Microbiol. Author manuscript; available in PMC 2015 October 26. Published in final edited form as: Environ Microbiol. 2015 October ; 17(10): 3610–3627. doi:10.1111/1462-2920.12591. Europe PMC Funders Author Manuscripts Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, and Purificación López-García* Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405 Orsay, France Summary Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well-known.
    [Show full text]
  • Abbreviations
    Abbreviations AfDD Acriflavine direct detection AODC Acridine orange direct count ARA Arachidonic acid BPE Bleach plant effluent Bya Billion years ago CFU Colony forming unit DGGE Denaturing gradient gel electrophoresis DHA Docosahexaenoic acid DOC Dissolved organic carbon DOM Dissolved organic matter DSE Dark septate endophyte EN Ectoplasmic net EPA Eicosapentaenoic acid FITC Fluorescein isothiocyanate GPP Gross primary production ITS Internal transcribed spacer LDE Lignin-degrading enzyme LSU Large subunit MAA Mycosporine-like amino acid MBSF Metres below surface Mpa Megapascal MPN Most probable number MSW Molasses spent wash MUFA Monounsaturated fatty acid Mya Million years ago NPP Net primary production OMZ Oxygen minimum zone OUT Operational taxonomic unit PAH Polyaromatic hydrocarbon PCR Polymerase chain reaction © Springer International Publishing AG 2017 345 S. Raghukumar, Fungi in Coastal and Oceanic Marine Ecosystems, DOI 10.1007/978-3-319-54304-8 346 Abbreviations POC Particulate organic carbon POM Particulate organic matter PP Primary production Ppt Parts per thousand PUFA Polyunsaturated fatty acid QPX Quahog parasite unknown SAR Stramenopile Alveolate Rhizaria SFA Saturated fatty acid SSU Small subunit TEPS Transparent Extracellular Polysaccharides References Abdel-Waheb MA, El-Sharouny HM (2002) Ecology of subtropical mangrove fungi with empha- sis on Kandelia candel mycota. In: Kevin D (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 247–265 Abe F, Miura T, Nagahama T (2001) Isolation of highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–2034 Abe F, Minegishi H, Miura T, Nagahama T, Usami R, Horikoshi K (2006) Characterization of cold- and high-pressure-active polygalacturonases from a deep-sea yeast, Cryptococcus liquefaciens strain N6.
    [Show full text]
  • Keynote and Oral Papers1. Algal Diversity and Species Delimitation
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: http://www.tandfonline.com/loi/tejp20 Keynote and Oral Papers To cite this article: (2015) Keynote and Oral Papers, European Journal of Phycology, 50:sup1, 22-120, DOI: 10.1080/09670262.2015.1069489 To link to this article: http://dx.doi.org/10.1080/09670262.2015.1069489 Published online: 20 Aug 2015. Submit your article to this journal Article views: 76 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Download by: [University of Kiel] Date: 22 September 2015, At: 02:13 Keynote and Oral Papers 1. Algal diversity and species delimitation: new tools, new insights 1KN.1 1KN.2 HOW COMPLEMENTARY BARCODING AND GENERATING THE DIVERSITY - POPULATION GENETICS ANALYSES CAN UNCOVERING THE SPECIATION HELP SOLVE TAXONOMIC QUESTIONS AT MECHANISMS IN FRESHWATER AND SHORT PHYLOGENETIC DISTANCES: THE TERRESTRIAL MICROALGAE EXAMPLE OF THE BROWN ALGA Š PYLAIELLA LITTORALIS Pavel kaloud ([email protected]) Christophe Destombe1 ([email protected]), Department of Botany, Charles Univrsity in Prague, Alexandre Geoffroy1 ([email protected]), Prague 12801, Czech Republic Line Le Gall2 ([email protected]), Stéphane Mauger3 ([email protected]) and Myriam Valero4 Species are one of the fundamental units of biology, ([email protected]) comparable to genes or cells. Understanding the general patterns and processes of speciation can facilitate the 1Station Biologique de Roscoff, Sorbonne Universités, formulation and testing of hypotheses in the most impor- Université Pierre et Marie Curie, CNRS, Roscoff tant questions facing biology today, including the fitof 29688, France; 2Institut de Systématique, Evolution, organisms to their environment and the dynamics and Biodiversité, UMR 7205 CNRS-EPHE-MNHN-UPMC, patterns of organismal diversity.
    [Show full text]