Production Scientifique Cedric Berney

Total Page:16

File Type:pdf, Size:1020Kb

Production Scientifique Cedric Berney Cédric Berney – full list of publications 2019 Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C , Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q. Revisions to the classification, nomenclature, and diversity of Eukaryotes. J. Eukaryot. Microbiol . 66 :4-119. | https://doi.org/10.1111/jeu. 12691 2018 Bass D, Czech L, Williams BAP, Berney C , Dunthorn M, Mahé F, Torruella G, Stentiford GD, Williams TA. Clarifying the relationships between Microsporidia and Cryptomycota. J. Eukaryot. Microbiol . 65:773-782. | https://doi.org/10.1111/jeu.12519 Bass D, Tikhonenkov DV, Foster R, Dyal P, Janouškovec J, Keeling PJ, Gardner M, Neuhauser S, Hartikainen H, Mylnikov AP, Berney C . Rhizarian ‘Novel Clade 10’ revealed as abundant and diverse planktonic and terrestrial flagellates, including Aquavolon n. gen. J. Eukaryot. Microbiol . 65 :828-842. | https://doi.org/10.1111/jeu.12524 del Campo J, Kolisko M, Boscaro V, Santoferrara LF, Nenarokov S, Massana R, Guillou L, Simpson A, Berney C , de Vargas C, Brown MW, Keeling PJ, Wegener Parfrey L. 2018. EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol . 16 :e2005849. | https://doi.org/10.1371/journal.pbio.2005849 Ward GM, Neuhauser S, Groben R, Ciaghi S, Berney C , Romac S, Bass D. 2018. Environmental sequencing fills the gap between parasitic haplosporidians and free-living giant amoebae. J. Eukaryot. Microbiol . 65 :574-586. | https://doi.org/10.1111/jeu.12501 2017 Berney C , Ciuprina A, Bender S, Brodie J, Edgcomb V, Kim E, Rajan J, Wegener Parfrey L, Adl S, Audic S, Bass D, Caron DA, Cochrane G, Czech L, Dunthorn M, Geisen S, Glöckner FO, Mahé F, Quast C, Kaye JZ, Simpson AGB, Stamatakis A, del Campo J, Yilmaz P, de Vargas C. 2017. UniEuk: time to speak a common language in protistology! J. Eukaryot. Microbiol . 64 :407-411. | https://doi.org/10.1111/jeu.12414 Smirnov A, Nassonova E, Geisen S, Bonkowski M, Kudryavtsev A, Berney C , Glotova A, Bondarenko N, Dykova I, Mrva M, Fahrni J, Pawlowski J. 2017. Phylogeny and systematics of leptomyxid amoebae (Amoebozoa, Tubulinea, Leptomyxida). Protist 168 :220-252. | https://doi.org/10.1016/j.protis.2016.10.006 Yi Z, Berney C , Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, Cavalier-Smith T, Bass D. 2017. High throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol. Ecol. 93 :fix073. | https://doi.org/10.1093/femsec/fix073 Geisen S, Mitchell EAD, Wilkinson DM, Adl S, Bonkowski M, Brown MW, Fiore-Donno AM, Heger TJ, Jassey VEJ, Krashevska V, Lahr DJG, Marcisz K, Mulot M, Payne R, Singer D, Anderson OR, Charman DJ, Ekelund F, Griffiths BS, Rønn R, Smirnov A, Bass D, Belbahri L, Berney C , Blandenier Q, Chatzinotas A, Clarholm M, Dunthorn M, Feest A, Fernández LD, Foissner W, Fournier B, Gentekaki E, Hájek M, Helder J, Jousset A, Koller R, Kumar S, La Terza A, Lamentowicz M, Mazei Y, Santos SS, Seppey CVW, Spiegel FW, Walochnik J, Winding A, Lara E. 2017. Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol. Biochem. 111 :94-103. | https://doi.org/10.1016/j.soilbio.2017.04.001 Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, Singer D, Mayor J, Bunge J, Sernaker S, Siemensmeyer T, Trautmann I, Romac S, Berney C , Kozlov A, Mitchell EAD, Seppey CVW, Egge E, Lentendu G, Wirth R, Trueba G, Dunthorn M. 2017. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1:0091. | https://doi.org/10.1038/s41559-017-0091 2016 Mordret S, Romac S, Henry N, Colin S, Carmichael M, Berney C , Audic S, Richter D, de Vargas C, Decelle J. 2016. The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying planktonic ciliate ( Tiarina sp.). ISME J. 10 :1424-1436. | https://doi.org/10.1038/ismej.2015.211 Schwelm A, Berney C , Dixelius C, Bass D, Neuhauser S. 2016. The large subunit rDNA sequence of Plasmodiophora brassicae does not contain intra-species polymorphism. Protist 167 :544-554. | https://doi.org/10.1016/j.protis.2016.08.008 Van Wichelen J, D'Hondt S, Claeys M, Vyverman W, Berney C , Bass D, Vanormelingen P. 2016. A hotspot of amoebae diversity: 8 new naked amoebae associated with the planktonic bloom-forming cyanobacterium Microcystis . Acta Protozool . 55 :61-87. | https://doi.org/10.4467/16890027AP.16.007.4942 Ward GM, Bennett M, Bateman K, Stentiford GD, Kerr R, Feist SW, Williams ST, Berney C , Bass D. 2016. A new phylogeny and environmental DNA insight into paramyxids: an increasingly important but enigmatic clade of protistan parasites of marine invertebrates. Int. J. Parasitol . 46 :605-619. | https://doi.org/10.1016/j.ijpara.2016.04.010 2015 Berney C , Geisen S, Van Wichelen J, Nitsche F, Vanormelingen P, Bonkowski M, Bass D. 2015. Expansion of the 'reticulosphere': diversity of novel branching and network-forming amoebae helps to define Variosea (Amoebozoa). Protist 166 :271-295. | https://doi.org/10.1016/j.protis.2015.04.001 Cavalier-Smith T, Fiore-Donno AM, Chao E, Kudryavtsev A, Berney C , Snell EA, Lewis R. 2015. Multigene phylogeny resolves deep branching of Amoebozoa. Mol. Phylogenet. Evol. 83 :293-304. | https://doi.org/10.1016/j.ympev.2014.08.011 de Vargas C, Audic S, Henry N, Decelle J, Mahà F, Logares R, Lara E, Berney C , Le Bescot N, ProbertI, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans Coordinators , Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348 :1261605. | https://doi.org/10.1126/science.1261605 2014 Cavalier-Smith T, Chao EE, Snell EA, Berney C , Fiore-Donno AM, Lewis R. 2014. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol. Phylogenet. Evol. 81 :71-85. | https://doi.org/10.1016/j.ympev.2014.08.012 Chambouvet A, Berney C , Romac S, Audic S, Maguire F, de Vargas C, Richards TA. 2014. Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments. BMC Microbiol. 14 :110. | https://doi.org/10.1186/1471-2180-14-110 Hartikainen H, Ashford OS, Berney C , Okamura B, Feist SW, Baker-Austin C, Stentiford GD, Bass D. 2014. Lineage- specific molecular probing reveals novel diversity and ecological partitioning of Haplosporidians. ISME J. 8:177-186. | https://doi.org/10.1038/ismej.2013.136 Hartikainen H, Stentiford GD, Bateman KS, Berney C , Feist SW, Longshaw M, Okamura B, Stone D, Ward G, Wood C, Bass D. 2014. Mikrocytids are a broadly distributed and divergent radiation of parasites in aquatic invertebrates. Curr. Biol. 24 :807-812. | https://doi.org/10.1016/j.cub.2014.02.033 2013 Berney C , Romac S, Mahé F, Santini S, Siano R, Bass D. 2013. Vampires in the oceans: predatory Cercozoan amoebae in marine habitats. ISME J. 7:2387-2399. | https://doi.org/10.1038/ismej.2013.116 Guillou L, Bachar D, Audic S, Bass D, Berney C , Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R. 2013. The Protist Ribosomal Reference database (PR 2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucl. Acids Res. 41 :D597-D604. | https://doi.org/10.1093/nar/gks1160 2012 Bass D, Yabuki A, Santini S, Romac S, Berney C . 2012. Reticulamoeba is a long-branched Granofilosean (Cercozoa) that is missing from sequence databases. PLoS One 7:e49090. | https://doi.org/10.1371/journal.pone.0049090 Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C , Bowser SS, Cepicka I, Decelle J, Dunthorn M, Fiore- Donno AM, Gile GH, Holzmann M, Jahn R, Jirků M, Keeling PJ, Kostka M, Kudryavtsev A, Lara E, Lukeš J, Mann DG, Mitchell EAD, Nitsche F, Romeralo M, Saunders GW, Simpson AGB, Smirnov AV, Spouge JL, Stern RF, Stoeck T, Zimmermann J, Schindel D, de Vargas C. 2012. CBOL Protist Working Group: Barcoding Eukaryotic richness beyond the Animal, Plant, and Fungal kingdoms. PLoS Biol. 10 :e1001419. | https://doi.org/10.1371/journal.pbio.1001419 2011 Glücksman E, Snell EA, Berney C , Chao EE, Bass D, Cavalier-Smith T. 2011. The novel marine gliding zooflagellate genus Mantamonas (Mantamonadida ord. n.: Apusozoa). Protist 162 :207-221. | https://doi.org/10.1016/j.protis.2010.06.004 2010 Bråte J, Logares R, Berney C , Ree KR, Klaveness D, Jakobsen KS, Shalchian-Tabrizi K. 2010.
Recommended publications
  • Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland
    fmicb-10-01332 June 8, 2019 Time: 10:19 # 1 ORIGINAL RESEARCH published: 11 June 2019 doi: 10.3389/fmicb.2019.01332 Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland Anna Maria Fiore-Donno1,2*, Tim Richter-Heitmann3, Florine Degrune4,5, Kenneth Dumack1,2, Kathleen M. Regan6, Sven Marhan7, Runa S. Boeddinghaus7, Matthias C. Rillig4,5, Michael W. Friedrich3, Ellen Kandeler7 and Michael Bonkowski1,2 1 Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany, 2 Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany, 3 Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany, 4 Institute of Biology, Plant Ecology, Freie Universität Berlin, Berlin, Germany, 5 Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany, 6 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, United States, 7 Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany Edited by: Soil protists are increasingly appreciated as essential components of soil foodwebs; Jaak Truu, University of Tartu, Estonia however, there is a dearth of information on the factors structuring their communities. Reviewed by: Here we investigate the importance of different biotic and abiotic factors as key Anne Winding, drivers of spatial and seasonal distribution of protistan communities. We conducted Aarhus University, Denmark 2 Ida Karlsson, an intensive survey of a 10 m grassland plot in Germany, focusing on a major group Swedish University of Agricultural of protists, the Cercozoa. From 177 soil samples, collected from April to November, Sciences, Sweden we obtained 694 Operational Taxonomy Units representing 6 million Illumina reads.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • Complex Communities of Small Protists and Unexpected Occurrence Of
    Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, Purificación López-García To cite this version: Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, et al.. Complex communities of small protists and unexpected occurrence of typical marine lineages in shal- low freshwater systems. Environmental Microbiology, Society for Applied Microbiology and Wiley- Blackwell, 2015, 17 (10), pp.3610-3627. 10.1111/1462-2920.12591. hal-03022575 HAL Id: hal-03022575 https://hal.archives-ouvertes.fr/hal-03022575 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Europe PMC Funders Group Author Manuscript Environ Microbiol. Author manuscript; available in PMC 2015 October 26. Published in final edited form as: Environ Microbiol. 2015 October ; 17(10): 3610–3627. doi:10.1111/1462-2920.12591. Europe PMC Funders Author Manuscripts Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems Marianne Simon, Ludwig Jardillier, Philippe Deschamps, David Moreira, Gwendal Restoux, Paola Bertolino, and Purificación López-García* Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405 Orsay, France Summary Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well-known.
    [Show full text]
  • That Is Missing from Sequence Databases
    Reticulamoeba Is a Long-Branched Granofilosean (Cercozoa) That Is Missing from Sequence Databases David Bass1*, Akinori Yabuki2¤,Se´bastien Santini3, Sarah Romac4,Ce´dric Berney1 1 Department of Life Sciences, The Natural History Museum, London, United Kingdom, 2 Department of Zoology, University of Oxford, Oxford, United Kingdom, 3 Structural and Genomic Information Laboratory, CNRS, UMR 7256, Mediterranean Institute of Microbiology, Aix-Marseille University, Marseille, France, 4 CNRS, UMR 7144, Equipe Evolution du Plancton et Paleo-Oceans, Roscoff, France Abstract We sequenced the 18S ribosomal RNA gene of seven isolates of the enigmatic marine amoeboflagellate Reticulamoeba Grell, which resolved into four genetically distinct Reticulamoeba lineages, two of which correspond to R. gemmipara Grell and R. minor Grell, another with a relatively large cell body forming lacunae, and another that has similarities to both R. minor and R. gemmipara but with a greater propensity to form cell clusters. These lineages together form a long-branched clade that branches within the cercozoan class Granofilosea (phylum Cercozoa), showing phylogenetic affinities with the genus Mesofila. The basic morphology of Reticulamoeba is a roundish or ovoid cell with a more or less irregular outline. Long and branched reticulopodia radiate from the cell. The reticulopodia bear granules that are bidirectionally motile. There is also a biflagellate dispersal stage. Reticulamoeba is frequently observed in coastal marine environmental samples. PCR primers specific to the Reticulamoeba clade confirm that it is a frequent member of benthic marine microbial communities, and is also found in brackish water sediments and freshwater biofilm. However, so far it has not been found in large molecular datasets such as the nucleotide database in NCBI GenBank, metagenomic datasets in Camera, and the marine microbial eukaryote sampling and sequencing consortium BioMarKs, although closely related lineages can be found in some of these datasets using a highly targeted approach.
    [Show full text]
  • Proposal for Practical Multi-Kingdom Classification of Eukaryotes Based on Monophyly 2 and Comparable Divergence Time Criteria
    bioRxiv preprint doi: https://doi.org/10.1101/240929; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proposal for practical multi-kingdom classification of eukaryotes based on monophyly 2 and comparable divergence time criteria 3 Leho Tedersoo 4 Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia 5 Contact: email: [email protected], tel: +372 56654986, twitter: @tedersoo 6 7 Key words: Taxonomy, Eukaryotes, subdomain, phylum, phylogenetic classification, 8 monophyletic groups, divergence time 9 Summary 10 Much of the ecological, taxonomic and biodiversity research relies on understanding of 11 phylogenetic relationships among organisms. There are multiple available classification 12 systems that all suffer from differences in naming, incompleteness, presence of multiple non- 13 monophyletic entities and poor correspondence of divergence times. These issues render 14 taxonomic comparisons across the main groups of eukaryotes and all life in general difficult 15 at best. By using the monophyly criterion, roughly comparable time of divergence and 16 information from multiple phylogenetic reconstructions, I propose an alternative 17 classification system for the domain Eukarya to improve hierarchical taxonomical 18 comparability for animals, plants, fungi and multiple protist groups. Following this rationale, 19 I propose 32 kingdoms of eukaryotes that are treated in 10 subdomains. These kingdoms are 20 further separated into 43, 115, 140 and 353 taxa at the level of subkingdom, phylum, 21 subphylum and class, respectively (http://dx.doi.org/10.15156/BIO/587483).
    [Show full text]
  • Eukaryotic Diversity Associated with Carbonates and Fluid–Seawater
    Environmental Microbiology (2007) 9(2), 546–554 doi:10.1111/j.1462-2920.2006.01158.x Brief report Eukaryotic diversity associated with carbonates and fluid–seawater interface in Lost City hydrothermal field Purificación López-García,1 Alexander Vereshchaka2 Introduction and David Moreira1* Since their discovery in the late 1970s, hydrothermal 1Unité d’Ecologie, Systématique et Evolution, UMR vents associated with mid-oceanic ridges have fascinated CNRS 8079, Université Paris-Sud, bâtiment 360, 91405 scientists of various disciplines. In these ecosystems, Orsay Cedex, France. chemolithoautotrophic prokaryotes are responsible for an 2Institute of Oceanology of the Russian Academy of important primary production that sustains dense micro- Sciences, 117997 Moscow, Russia. bial communities and, often, crowded colonies of endemic fauna. However, whereas the prokaryotic and animal Summary components of known deep-sea hydrothermal systems have been extensively described, very few studies have Lost City is a unique off-axis hydrothermal vent field been devoted to the microbial eukaryotes associated with characterized by highly alkaline and relatively low- deep-sea vents. The presence of ciliates based on temperature fluids that harbours huge carbonate microscopy observations was reported early at East chimneys. We have carried out a molecular survey Pacific Rise vents (Small and Gross, 1985). Also, a few based on 18S rDNA sequences of the eukaryotic com- classical protistology studies based on isolation and cul- munities associated with fluid–seawater interfaces tivation led to the description of a limited number of ther- and with carbonates from venting areas and the mophilic ciliates (Baumgartner et al., 2002) and a variety chimney wall. Our study reveals a variety of lineages of psychrophilic or mesophilic protists (Atkins et al., 2000).
    [Show full text]
  • Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
    University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 9-26-2018 Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Christopher E. Lane Et Al Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla,* , David Bassb,c , Christopher E. Laned, Julius Lukese,f , Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj , Matthew W. Brownk,l, Fabien Burkim,PacoCardenas n , Ivan Cepi cka o, Lyudmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s , Bente Edvardsent , Yana Eglitu, Laure Guillouv, Vladimır Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Anna Karn- kowskaaa, Sergey Karpovh,ab, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,ab, Daniel J.G. Lahrac, Enrique Laraad,ae , Line Le Gallaf , Denis H. Lynnag,ah , David G. Mannai,aj, Ramon Massanaq, Edward A.D. Mitchellad,ak , Christine Morrowal, Jong Soo Parkam , Jan W. Pawlowskian, Martha J. Powellao, Daniel J. Richterap, Sonja Rueckertaq, Lora Shadwickar, Satoshi Shimanoas, Frederick W. Spiegelar, Guifre Torruellaat , Noha Youssefau, Vasily Zlatogurskyh,av & Qianqian Zhangaw a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada b Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
    [Show full text]
  • Benthic Protists
    FEMS Microbiology Ecology, 92, 2016, fiw120 doi: 10.1093/femsec/fiw120 Advance Access Publication Date: 5 June 2016 Research Article RESEARCH ARTICLE Benthic protists: the under-charted majority Dominik Forster1, Micah Dunthorn1,Frederic´ Mahe´ 1,†,JohnR.Dolan2, Stephane´ Audic3, David Bass4,5, Lucie Bittner1,3,6, Christophe Boutte3, Richard Christen7,8, Jean-Michel Claverie9, Johan Decelle3, Bente Edvardsen10, Elianne Egge10, Wenche Eikrem10,Angelique´ Gobet3,11, Downloaded from Wiebe H.C.F. Kooistra12, Ramiro Logares13, Ramon Massana13, Marina Montresor12, Fabrice Not3,HiroyukiOgata2,14, Jan Pawlowski15, 13 3 10 Massimo C. Pernice , Sarah Romac , Kamran Shalchian-Tabrizi , http://femsec.oxfordjournals.org/ Nathalie Simon3, Thomas A. Richards16,Sebastien´ Santini9, Diana Sarno12, Raffaele Siano17, Daniel Vaulot3,PatrickWincker18, Adriana Zingone12, Colomban de Vargas3 and Thorsten Stoeck1,∗ 1Department of Ecology, University of Kaiserslautern, Erwin-Schrodinger¨ Str. 14, D-67663 Kaiserslautern, Germany, 2Sorbonne Universites,´ UPMC Univ. Paris 06, CNRS, UMR CNRS UMR 7093 and Laboratoire d’Oceanographie´ de Villefranche-sur-Mer, Universite´ Paris 06, F-06230 Villefranche-sur-Mer, France, 3Sorbonne by guest on July 8, 2016 Universites,´ UPMC Univ. Paris 06, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France, 4Department of Life Sciences, the Natural History Museum London, Cromwell Road, London SW7 5BD, UK, 5Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, the Nothe, Weymouth,
    [Show full text]
  • Single Cell Transcriptomics, Mega-Phylogeny and the Genetic Basis Of
    bioRxiv preprint doi: https://doi.org/10.1101/064030; this version posted July 15, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Single cell transcriptomics, mega-phylogeny and the genetic basis of 2 morphological innovations in Rhizaria 3 4 Anders K. Krabberød1, Russell J. S. Orr1, Jon Bråte1, Tom Kristensen1, Kjell R. Bjørklund2 & Kamran 5 ShalChian-Tabrizi1* 6 7 1Department of BiosCienCes, Centre for Integrative MiCrobial Evolution and Centre for EpigenetiCs, 8 Development and Evolution, University of Oslo, Norway 9 2Natural History Museum, Department of ResearCh and ColleCtions University of Oslo, Norway 10 11 *Corresponding author: 12 Kamran ShalChian-Tabrizi 13 [email protected] 14 Mobile: + 47 41045328 15 16 17 Keywords: Cytoskeleton, phylogeny, protists, Radiolaria, Rhizaria, SAR, single-cell, transCriptomiCs 1 bioRxiv preprint doi: https://doi.org/10.1101/064030; this version posted July 15, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 18 Abstract 19 The innovation of the eukaryote Cytoskeleton enabled phagoCytosis, intracellular transport and 20 Cytokinesis, and is responsible for diverse eukaryotiC morphologies. Still, the relationship between 21 phenotypiC innovations in the Cytoskeleton and their underlying genotype is poorly understood. 22 To explore the genetiC meChanism of morphologiCal evolution of the eukaryotiC Cytoskeleton we 23 provide the first single Cell transCriptomes from unCultivable, free-living uniCellular eukaryotes: the 24 radiolarian speCies Lithomelissa setosa and Sticholonche zanclea.
    [Show full text]
  • Systema Naturae∗
    Systema Naturae∗ (c) A. B. Shipunov v.5.4 Regnum Bacteria Superphylum Negibacteria Phylum 1. Eobacteria Classis 1(1). Chlorobacteria 1 2(2). Deinobacteria 2 Phylum 2. Cyanobacteria Classis 1(3). Cyanobacteria 3 Phylum 3. Spirobacteria Classis 1(4). Spirochaetae Phylum 4. Glycobacteria Classis 1(5). Sphingobacteria 4 2(6). Planctobacteria 3(7). Chlamydiae 5 4(8). Rhodobacteria 6 5(9). Thiobacteria 7 ∗Only recent taxa. Abbreviations: incertae sedis (i. s.); sedis mutabilis (s. m.); sensu lato (s. l.); sensu stricto (s. str.); pro parte (p. p.); status mutabilis (stat. m.). 1Chlorophlexaceae. 2Incl. Deinococcus, Thermus, Flexistipes. 3Incl. Heliobacillus, Gloeobacter. 4Incl. Chlorobiaceae, Cytophagales, Flavobacteriaceae. 5Incl. Verrumicrobiae. 6Incl. Enterobacteriaceae, Chromatiaceae, Rickettsia, Rhodospirillaceae and other α-, β and γ-proteobacteria. 7Incl. Myxobacteria, Bdellovibrio, Aquifex and other δ and -proteobacteria 1 6(10). Geobacteria 8 Superphylum Posibacteria Phylum 5. Posibacteria Classis 1(11). Togobacteria 9 2(12). Endobacteria 10 3(13). Mollucites 4(14). Actinobacteria Superphylum Archebacteria Phylum 6. Archebacteria Classis 1(15). Euryarcheota 11 2(16). Sulfobacteria 12 3(17). Nanoarchaeota 13 Regnum Protista Superphylum Ophistoconta Phylum 7. Choanozoa Classis 1(18). Choanomonadea 2(19). Rotosphaerea 14 3(20). Ichtyosporea 15 4(21). Aphelidea sed. m. 16 Phylum 8. Chytridiomycota Classis 1(22). Chytridiomycetes 17 8Incl. Geovibrio, Acidobacterium etc. 9Incl. Thermotogales, Heliobacteriales, Selenobacteria etc. 10Incl.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]